
Course ”Trees - the ubiquitous structure in computer science and mathematics “,

JASS’08

Bounded treewidth

Stephan Holzer

April 28, 2008

Contents

1 Introduction and Motivation 1

2 History and Definitions 2

2.1 Series-parallel Graphs . 2
2.2 Treewidth . 4
2.3 Examples of Graphs of bounded Treewidth 5

3 Applications 6

3.1 Cholesky Factorization on sparse Matrices 6
3.2 Evolution Theory . 7
3.3 A linear time Algorithm for Maximum Independent Set 8
3.4 (Extended) Monadic Second Order Formulas 10

4 Finding Tree-decompositions 11

Bibliography 13

1 Introduction and Motivation

On the one hand many of the problems we try to solve in practice are NP-
complete and on the other hand we do not have the time to wait for years
until the solution is found. Proving P=NP would help, but unfortunately
we are far away from proving or disproving this major problem of theoretical
computer science.

1

Therefore we can try to

• identify families of graphs G which appear frequently in practice

• find efficient algorithms for restricted versions of NP-complete problems
in the following sense: Let G be a family of graphs like above and A
a NP − complete problem on an underlying graph G (like TSP, MIS,
CLIQUE, ...). Now try to find an efficient algorithm for A when the
underlying graphs are guaranteed to be in G.

An important example where we succeeded in finding efficient algorithms
even for some PSPACE-complete problems are graphs of bounded treewidth
which will be introduced in this survey.

2 History and Definitions

In the 1960s/70s researchers recognized that tree structures help making
many difficult problems easy - to compute the result of a node, one only
needs to know the result of its children. Fortunately many graph-classes al-
low algorithms to use a tree structure. First we will introduce series-parallel
graphs as an important example of a class which allows the use of tree struc-
tures. We will see how to use them to compute the resistance of an electrical
network by traversing a tree. Motivated by this we present a generalization
of series-parallel graphs, namely graphs of bounded treewidth and provide
examples of those graphs.

2.1 Series-parallel Graphs

Definition 2.1. Series-parallel-graphs

We define two-terminal s-p-graphs (G, a, b) inductively, where G = (V,E) is

an undirected graph, a ∈ V a source terminal and b ∈ V a sink terminal.

1. The basic graph: (G, a, b) consisting of one edge between the two ter-

minals: V = {a, b}, E = {(a, b)}

2. Serial composition: given two two-terminal s-p-graphs (G1, a, c) and

(G2, c, b), take the disjoint union of G1 and G2, identify the two copies

of node c, consider a and b to be the new terminals.

3. Parallel composition: given two two-terminal s-p-graphs (G1, a, b) and

(G2, a, b), take the disjoint union of G1 and G2 , identify the two copies

of node a, identify the two copies of node b, consider a and b to be the

terminals of the resulting graph.

2

Series-parallel graphs appear for example when computing the resistance
of certain electrical networks when using Ohm’s laws.

Example 2.2. Recall Ohm’s laws: the resistance R of a series composition

of two resistors R1 and R2 is R = R1 + R2 and the parallel composition can

be computed using the formula 1

R
= 1

R1

+ 1

R2

.

Figure 1: Serial and parallel compositions of resistors in electrical networks
can be described by s-p-graphs

When computing the resistance of an electrical network N like in figure 2

one recognizes that we are computing along a tree-structure. In the tree the

leave nodes correspond to the resistors and each internal node corresponds

to a parallel or a serial composition of its children. We can compute the

value of a node v by depth first search starting in v. Notice that when we

finished computing the value of a node v we know the essential information

of a subnetwork N [v] of N represented by node v and can forget the internal

structure of N [v].

Figure 2: Computing resistance of a electrical network by using a tree-
structure

3

2.2 Treewidth

We have noticed that tree-structures help to solve problems on graphs which
are even more complex than trees. Therefore it is natural to define a family
of graphs which should include as many graphs as possible and at the same
time allows to design algorithms which can compute along a tree-structure.
This family can be characterized by the notion of bounded tree-width which
was introduced by Robertson and Seymour [RS83] in the 1980s! First we will
define "tree-decomposition".

Definition 2.3. Tree-decomposition

Let G = (V,E) be a graph. A tree-decomposition of G is a pair ({Xi|i ∈
I}, T = (I, F)) with T = (I, F) a tree and {Xi|i ∈ I} a family of subsets of

V for each node i ∈ I of T , such that

•
⋃

i∈I Xi = V

• if (v, w) ∈ E is an edge, then there exists an i ∈ I with v ∈ Xi and

w ∈ Xi

• all nodes j on any i-k-path satisfy Xi ∩ Xk ⊆ Xj

In the following we will denominate the elements in V of G vertices and
the elements in I of T nodes. A subset Xi ⊆ V of the vertices of G corre-
sponding to a node i of T will be called a bag.

Definition 2.4. Treewidth

The treewidth of a tree-decomposition td = ({Xi|i ∈ I}, T = (I, F)) is defined

to be treewidth(td) := maxi∈I |Xi| − 1. Now let G be a graph and TD := all

tree-decompositions of G. Define treewidth(G) := mintd∈TD(treewitdh(td))

Figure 3: Example of one possible optimal tree-decomposition with treewidth
2

It is reasonable to subtract −1 like in the definition of treewitdh in order
to ensure that the treewidth of a tree is 1.

4

2.3 Examples of Graphs of bounded Treewidth

The following table contains some common families of graphs as well as a
brief description of each class and its treewidth. In figure 4 the reader will
find examples for each class which was not mentioned yet.

Class Description Treewidth
Trees connected graph with no circles 1
Cycle consists of a closed chain of vertices 2
Series-parallel graphs see definition above 2
Outerplanar graphs graph that has a planar embedding in

the plane where all vertices lie on a
fixed circle and the edges lie inside the
disk of the circle

3

Halin graphs tree in which all leaves are connected
by a cycle and no node has degree 2

3

Pseudoforests graph in which each connected compo-
nent has at most one cycle

2

Cactus graphs graph in which any two simple cycles
have at most one vertex in common

2

Figure 4: Examples of: cactus graph [wik], pseudoforest [wik], outerplanar
graph, Halin graph

Example 2.5. In this example we will determine the treewidth of a circle. In

figure 5 we see a cycle consisting of five vertices and its tree-decomposition.

Check that this tree-decomposition is legal and optimal. As no bag contains

5

Figure 5: A cycle’s optimal tree-decomposition

more than 3 vertices of the circle, the treewidth equals 2. For larger circles,

the tree-decomposition can be extended in a canonical way.

All results for bounded treewidth apply to theses classes. Remark that planar
graphs have no bounded tree width.

3 Applications

In this section we present the main ideas of some algorithms which use
bounded treewidth to be more efficient than algorithms for general instances
of unbounded treewidth. Bounded treewitdh is helpful in the context of
Cholesky factorization, evolutionary theory, expert systems, VLSI layouts
(via pathwidth - the tree T in the definition of tree-decomposition is re-
placed by a path P) and natural language processing. In an earlier talk of
the JASS 2008 the Tutte-polynomial of graphs was introduced. In general
this is a very hard problem but when the graph has bounded treewidth, it
is computable in polynomial time [And98]. Furthermore, we will see a linear
time algorithm for Independent Set restricted to bounded tree width graphs.

3.1 Cholesky Factorization on sparse Matrices

When we solve a system of linear equations we use the Gauß-elimination
algorithm which can be interpreted as factorizing the corresponding matrix
M into two triangular matrices. A special (50% faster) factorization can
be achieved when M is a hermetian positive-definite matrix: the Cholesky
factorization of a matrix M is a decomposition M = L · LT with L a lower
triangular matrix. Each step of this factorization is of the form

(

d vT

v B

)

=

(
√

d 0
v√
d

I

)

·
(

1 0

0 B−v·vT√
d

)

·
(√

d vT√
d

0 I

)

6

Where v is an (n−1)-vector, B a (n−1)×(n−1)-matrix, I the (n−1)×(n−1)
identity matrix. The process is repeated with B − v · vT . To establish a
connection to treewidth, let M be symmetric and sparse. Now consider
the graph G with vertices V = {1, · · · , n} and edges E = {(i, j)|Mi,j 6= 0}.
Removing one vertex of this graph and connecting all the neighboring vertices
corresponds to one step of the factorization as described above.

Figure 6: We remove vertex 5 and add a clique between vertices {1, 2, 4}

Our goal is to find an elimination order of the raws/columns such that all
matrices v · vT are small in the sense that there are many 0-rows/columns.
This is possible as the matrix M is sparse. It turns out that bounding the
size of the matrices v · vT corresponds to bounding the treewidth of G.

3.2 Evolution Theory

In molecular biology we want to compute ’good’ evolution trees, that is we
are given as input a set of n species, a set of m characteristics and a n ×m-
array consisting of the value that defines the relation of each specie to each
characteristic. The goal is to compute a so called evolution tree for these
species and their possibly extinct ancestors. One variant of this problem
which we will consider is the PERFECT PHYLOGENY problem where

• the tree has n leaves and each leaf of the tree corresponds to one species
from the input

• each character which appears in at least one species, is assigned to
exactly one edge of T

• for each species i, the assignments of the characters to the edges of the
path between the root and i correspond to the characters of i

We can turn this problem into an equivalent graph problem where the input
is a graph G = (V,E) and a legal coloring of V . Now we have to decide
whether we can add edges to G in such a way that the resulting graph G′ is
chordal but has no edges between vertices of the same color, or not.

7

Figure 7: Example of a phylogenetic tree [wik]

Definition 3.1. Chordal

Let G = (V,E) be an undirected graph. G is chordal if it contains no induced

cycles Cn, n ≥ 4.

This problem can be restated as: does there exist a tree-decomposition
({Xi|i ∈ I}, T) of G such that for all i ∈ I: if v, w ∈ Xi, v 6= w, then v and w
have different colors? Therefore a necessary condition is that treewidth(G) <
number of colors.

3.3 A linear time Algorithm for Maximum Independent
Set

Maximum independent set is one of the most popular NP − complete prob-
lems and defined as follows:

Definition 3.2. Maximum independent set

Let G = (V,E) be a graph, find the maximum size of a set W ⊆ V such that

for all v, w ∈ W : (v, w) /∈ E

8

Example 3.3.

Figure 8: Example of a graph with the maximum independent set {2, 3, 5}

The situation changes when we know that G has treewidth k and we are
given a tree-decomposition ({Xi|i ∈ I}, T = (I, F)) of G, where T is a binary
tree (any tree-decomposition can be transformed into a binary one) and a
root r of T . Then we can solve maximum independent set in linear time.
This works as follows: for each i ∈ I define

Yi := {v ∈ Xi|j = i or j is a descendant of i}

If v ∈ Yi and v ∈ Xj for some vertex j ∈ I that is not a descendant of i
then v ∈ Xi by the definition of tree-decomposition. If v ∈ Yi and v ∈ Xj

adjacent to w ∈ Xj with j a descendant of i then v ∈ Xi or w ∈ Xi. Now we
have turned the global problem of finding a MIS into a local (for every node
i ∈ I of the tree T) new problem: given a maximum independent set W of
the subgraph G[Yi] induced by Yi, extend W to a MIS of G. Here it is only
important which vertices in Xi belong to W , not which vertices in Xi − Yi

belong to W . Furthermore, the size |W | of W plays a major role.

For i ∈ I, Z ⊆ Xi, define isi(Z) to be the maximum size of an indepen-
dent set W in G[Yi] with W ∩ Xi = Z. Take isi(Z) = −∞ if no such set
exists. We are going to construct a linear time algorithm which computes all
tables isi in a bottom-up manner by using the following formula to compute
all 2|Xi| entries of the table isi. Remark, that |Xi| is bounded by a constant,
namely the treewidth of G. For leaf nodes i we set:

isi(Z) =

{

|Z| if ∀v, w ∈ Z : (v, w) /∈ E
−∞ if ∃v, w ∈ Z : (v, w) ∈ E

9

Figure 9: In the picture you see a tree-decomposition and the set Y2 induced
by the bag X2. The red dots in X2 represent one possible set Z of vertices,
the vertices not in Z are colored white.

For internal nodes i (with two children j, k) we set:

isi(Z) =

max{isj(Z
′) + isk(Z

′′)
+|Z ∩ (Xi − Xj − Xk)|
−|Z ∩ Xj ∩ Xk|
where Z ∩ Xj = Z ′ ∩ Xi

and Z ∩ Xk = Z ′′ ∩ Xi} : ∀v, w ∈ Z : (v, w) /∈ E

−∞ : ∃v, w ∈ Z : (v, w) ∈ E

The solution will be maxZ⊆Xr
isr(Z) and the runtime is O(23kn). Re-

constructing the independent set is easy as well: one only needs to have a
look on the tables isi. However, remark that the constant 23k in the runtime
grows exponentially in the treewidth.

3.4 (Extended) Monadic Second Order Formulas

There are many graph problems which can be expressed within (extended)
monadic second order formulas, that is using the following language:

• constructions: logical operations (∨,∧,¬,⇒)

10

• quantification over vertices

• edges, sets of vertices, sets of edges (e.g. ∃v ∈ V, ∀e ∈ E, ∀W ⊆
V, ∃F ⊆ E)

• membership tests (v ∈ W, e ∈ E)

• adjacency tests (v, w) ∈ E, v is endpoint of e

• certain extensions

Theorem 3.4. Let G be a graph of bounded treewidth. Graph problems on G
expressible by monadic second order logic can be solved in linear time when

given a tree-decomposition.

Example 3.5. We can express three-colorability of a graph in this language:

There is a partition W1∪̇W2∪̇W3 = V of V into three colors which can be

expressed by

∃W1 ⊆ V ∃W2 ⊆ V ∃W3 ⊆ V ∀v ∈ V : (v ∈ W1 ∨ v ∈ W2 ∨ v ∈ W3)

To express that the two vertices v and w of each edge (v, w) ∈ E should not

have the same color we use

∀v ∈ V ∀w ∈ V : (v, w) ∈ E ⇒
(¬(v ∈ W1 ∧ w ∈ W1) ∧ ¬(v ∈ W2 ∧ w ∈ W2) ∧ ¬(v ∈ W3 ∧ w ∈ W3))

By concatenating the two expressions, we obtain the desired description of

three-colorability.

4 Finding Tree-decompositions

In the last sections we saw that treewidth helps to speed up algorithms for
"easy" instances of hard problems. However, in those algorithms, it is always
necessary to know a (optimal) tree-decomposition of the given graph. Now
there arises a new problem: it is NP-complete to decide whether a (general)
graph G = (V,E) has treewidth ≤ k for some integer k? Fortunately there
exist algorithms for constant k with polynomial runtime. At the same time
we can compute an approximation of the tree-decomposition.

Theorem 4.1. For constant treewidth k = 1, 2, 3, 4, those graphs can be

recognized in linear time

11

Theorem 4.2. Let k be a constant, then there exists an O(n · log(n)) algo-

rithm, that given a graph G = (V,E), either outputs

• treewidth(G) is larger than k

• or a tree-decomposition of G with treewidth at most 3k + 2

Figure 10: Table from [Bod94] showing the complexity of computing the
treewidth of a graph according to its classification. P =polynomial time
solvable. C =constant and therefore linear time solvable, N =NP-complete.
O =open problem.

12

References

[And98] A. Andrzejak. An algorithm for the Tutte polynomials of graphs of
bounded treewidth. Discrete Mathematics, 190(1-3):39–54, 1998.

[Bod] H.L. Bodlaender. Treewidth: Characterizations, applications, and
computations. Proceedings of the 32nd International Workshop on

Graph-Theoretic Concepts in Computer Science, WG, 6:1–14.

[Bod94] H.L. Bodlaender. A tourist guide through treewidth. Developments

in Theoretical Computer Science, 1994.

[Die00] R. Diestel. Graphentheorie. Springer, 2000.

[RS83] N. ROBERTSON and PD SEYMOUR. Graph minors. I: Excluding
a forest. Journal of combinatorial theory. Series B, 35(1):39–61,
1983.

[wik] http://en.wikipedia.org.

13

