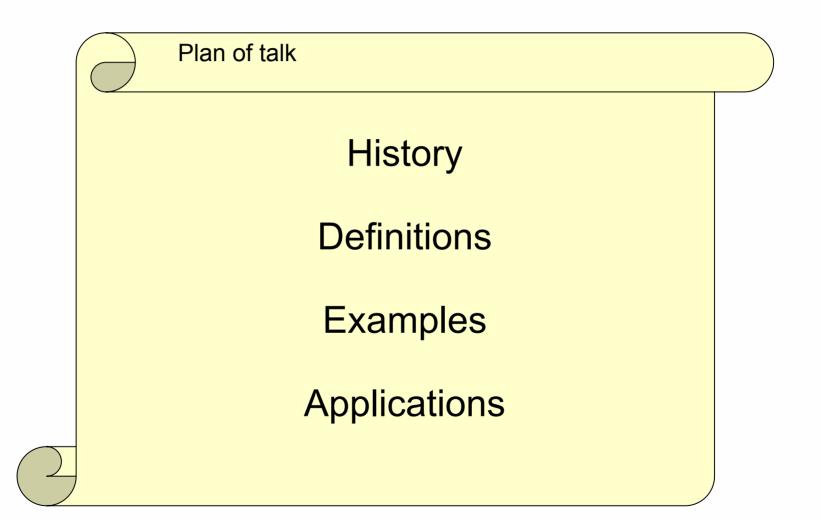
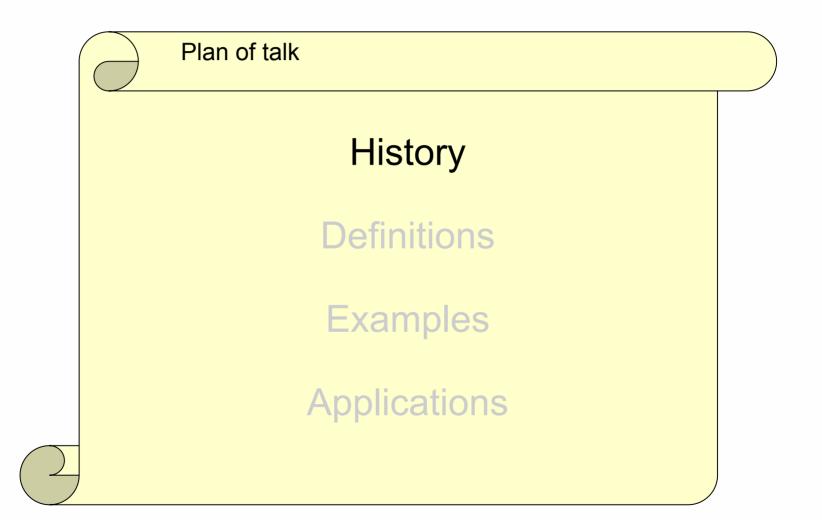
JASS 2008

Bounded Treewidth

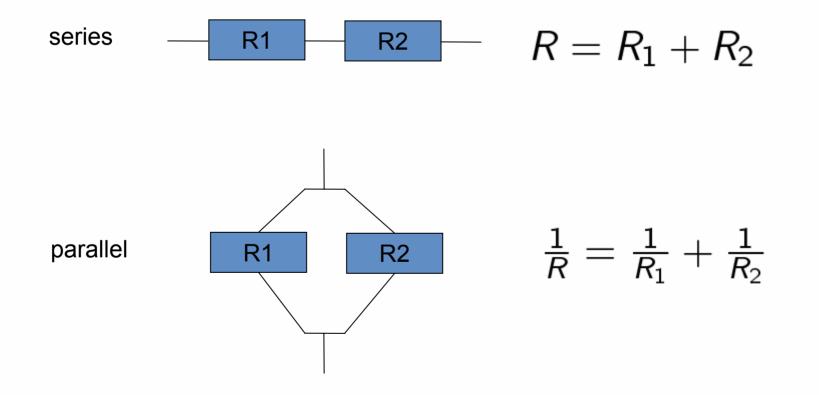
Stephan Holzer Technische Universität München





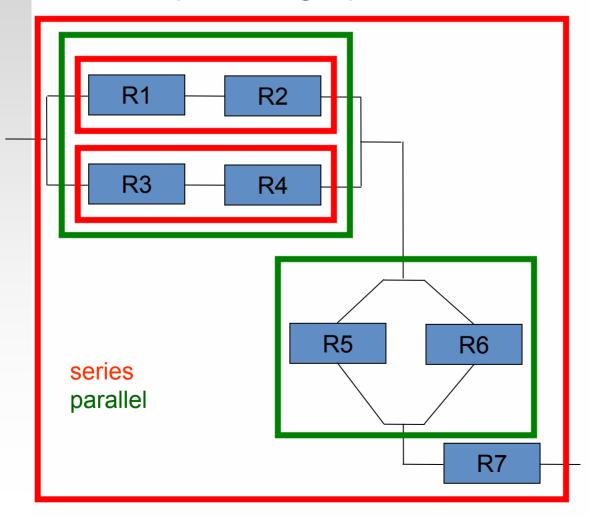
History

• Ohm's laws:

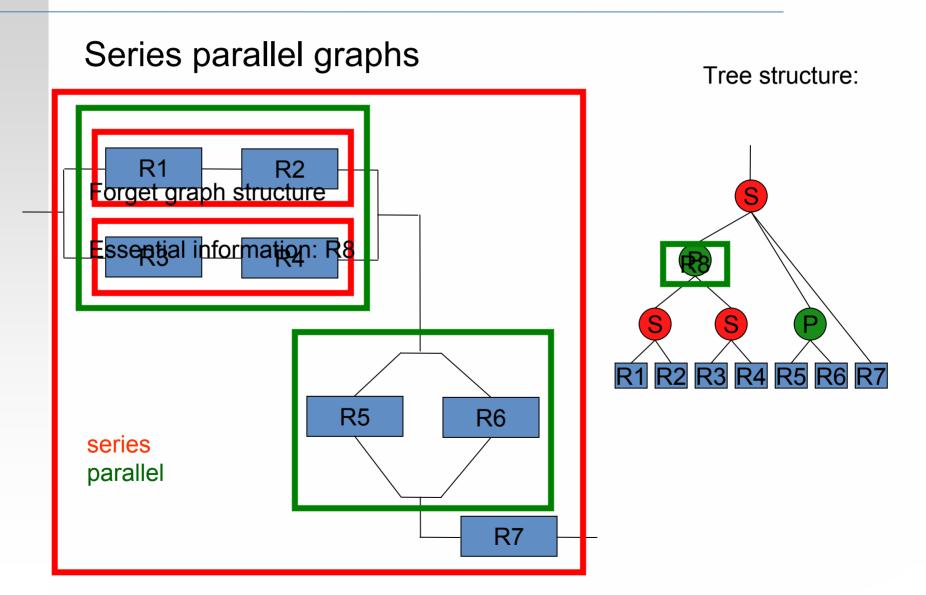


History

Series parallel graphs

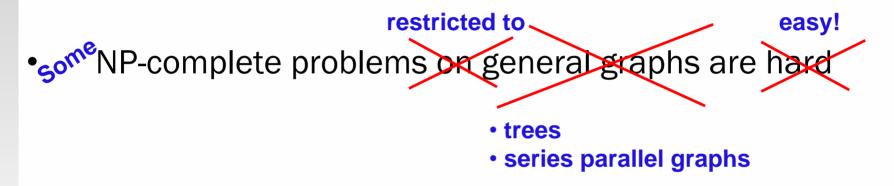


History

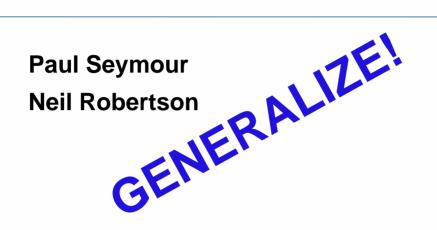


Early results (1960s / 70s)

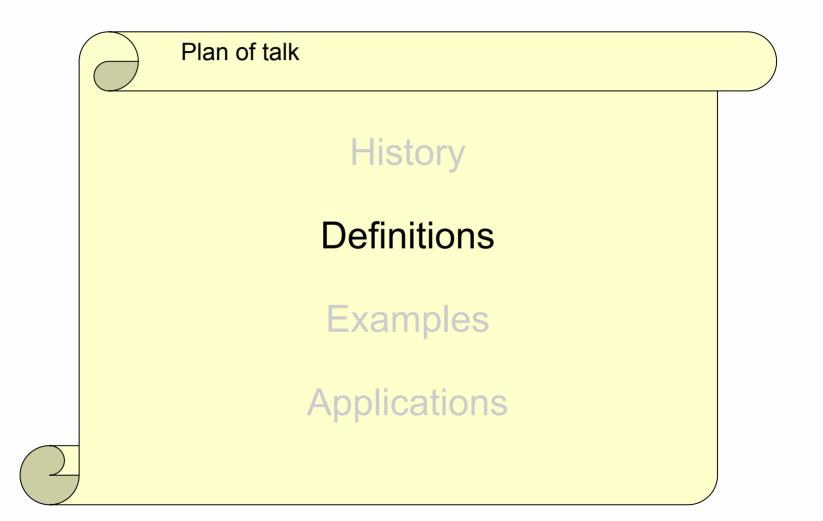
• Tree structures help!



Even some PSPACE-complete problems become easy



Tree-decomposition, Treewidth



Tree-decomposition

Definition 1

Tree-decomposition

Let

• G = (V, E) be a graph

A tree-decomposition of G is a pair $({X_i | i \in I}, T = (I, F))$

• T = (I, F) a tree

► $\{X_i | i \in I\}$ a family of subsets of *V* for each node $i \in I$ of T Such that

 $\blacktriangleright \bigcup_{i \in I} X_i = V$

• if $(v, w) \in E$ is an edge, then there exists an $i \in I$ with $v \in X_i$ and $w \in X_i$

▶ all nodes *j* on any *i*-*k*-path satisfy $X_i \cap X_k \subseteq X_j$

Treewidth

Definition 2

Treewidth

Of a tree-decomposition $td = (\{X_i | i \in I\}, T = (I, F))$

• treewidth(td) := $\max_{i \in I} |X_i| - 1$

Of a graph G

► TD := all tree-decompositions of G

▶ treewidth(G) := min_{td∈TD}(treewitdh(td))

Definition 1

Tree-decomposition Let

• G = (V, E) be a graph

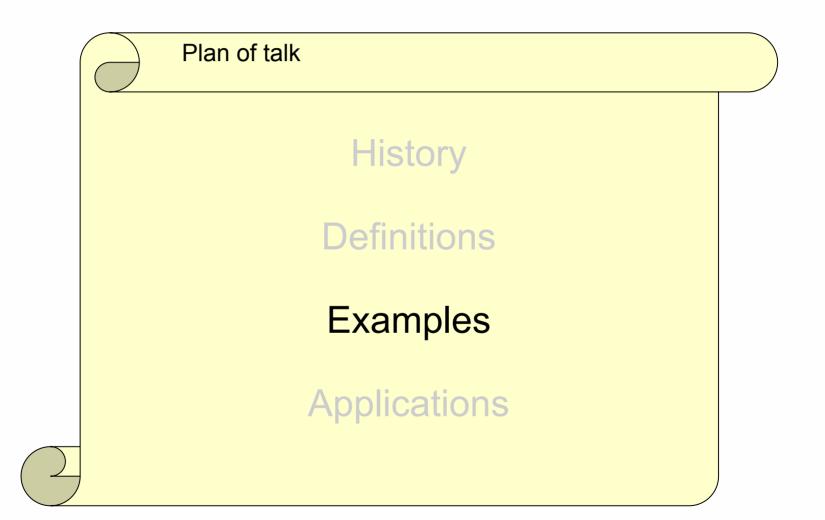
A tree-decomposition of G is a pair $({X_i | i \in I}, T = (I, F))$

- T = (I, F) a tree
- ▶ ${X_i | i \in I}$ a family of subsets of V for each node $i \in I$ of T

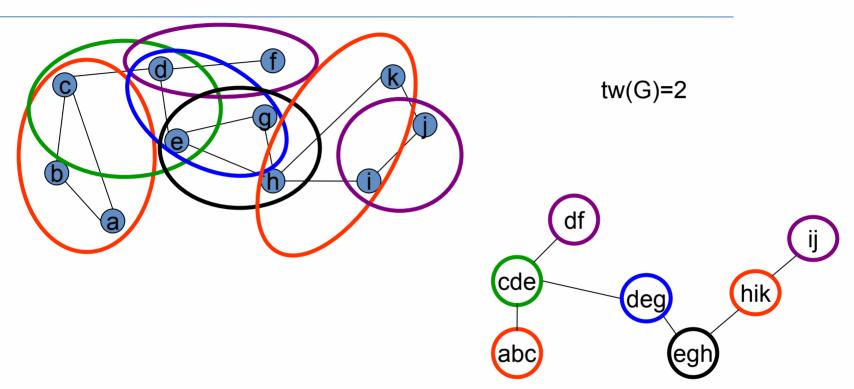
Such that

 $\blacktriangleright \bigcup_{i \in I} X_i = V$

- if $(v, w) \in E$ is an edge, then there exists an $i \in I$ with $v \in X_i$ and $w \in X_i$
- ▶ all nodes *j* on any *i*-*k*-path satisfy $X_i \cap X_k \subseteq X_i$



Example



Definition 1

Tree-decomposition Let

$$\blacktriangleright$$
 G = (V, E) be a graph

A tree-decomposition of G is a pair $({X_i | i \in I}, T = (I, F))$

- T = (I, F) a tree
- ▶ ${X_i | i \in I}$ a family of subsets of V for each node $i \in I$ of T

Such that

- $\blacktriangleright \bigcup_{i \in I} X_i = V$
- if $(v, w) \in E$ is an edge, then there exists an $i \in I$ with $v \in X_i$ and $w \in X_i$
- ▶ all nodes *j* on any *i*-*k*-path satisfy $X_i \cap X_k \subseteq X_j$

Definition 2

Treewidth

Of a tree-decomposition $td = ({X_i | i \in I}, T = (I, F))$

• treewidth(td) := $\max_{i \in I} |X_i| - 1$

Of a graph G

- ► TD := all tree-decompositions of G
- ▶ treewidth(G) := min_{td∈TD}(treewitdh(td))

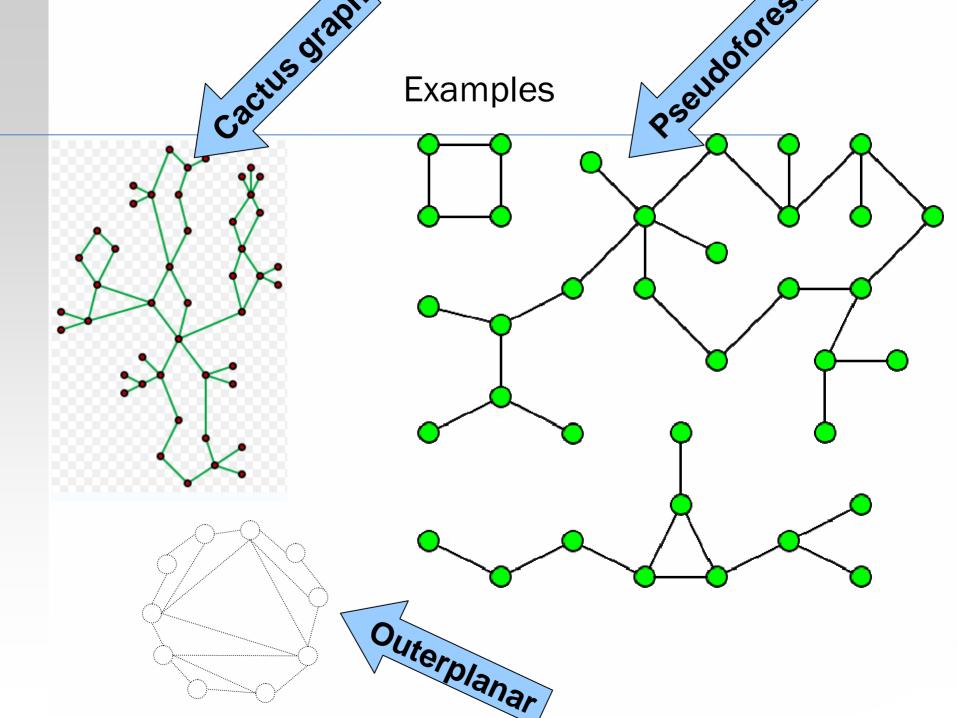
Examples

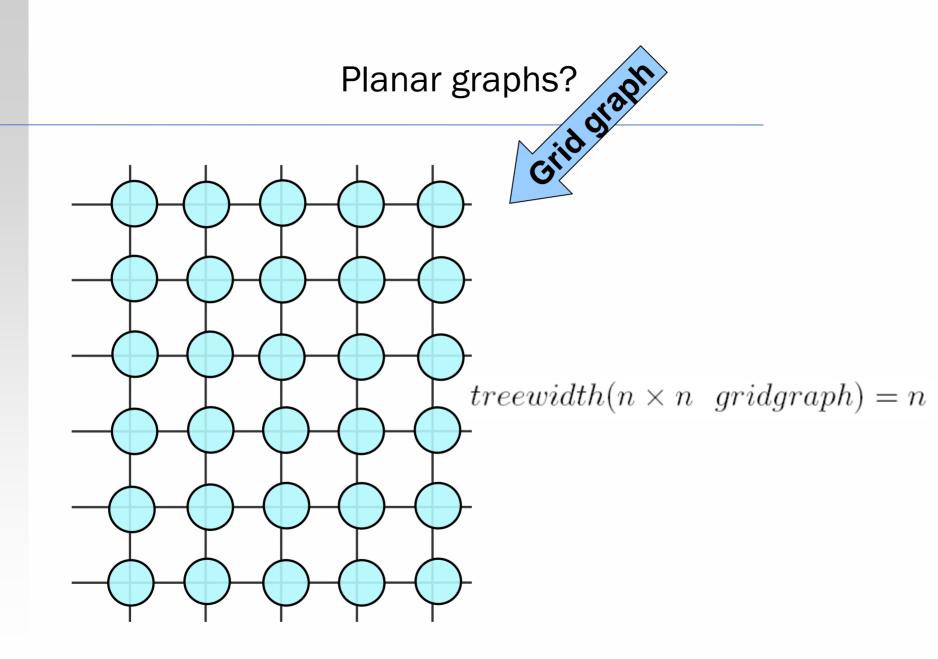
Graph classes with bounded treewidth include

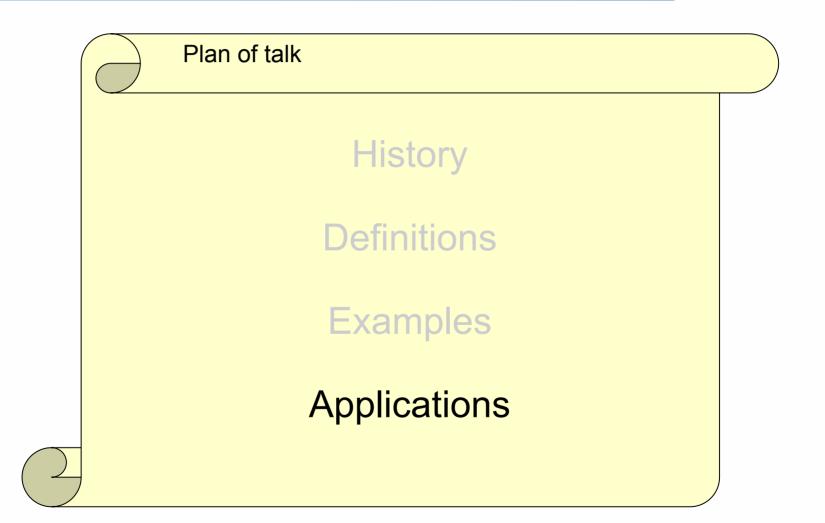
Trees	tw=1
 Series-parallel graphs 	tw=2
 Outerplanar graphs 	tw=3
 Halin graphs 	tw=3
 Pseudoforests 	tw=2
 Cactus graphs 	tw=2

 Control flow graphs arising in the compilation of structured programs

All results for bounded treewidth apply to theses classes!







Applications

- Cholesky factorisation
- Evolutionary Theory
- Expert Systems
- VLSI Layouts (via pathwidth))
- Natural language processing
- Computing Tutte-polynomial of graphs with bounded treewidth in polynomial time
- Linear time algorithms (for Independent Set)*
- and other NP-complete problems*

* when the undelying class of graphs has constant bounded tree width

Treewidth and Cholesky factorisation

Input: Symmetric positive-definite matrix M

Output: decomposition $M = L \cdot L^T$ with L a lower triangular matrix

$$\begin{bmatrix} d & v^T \\ v & B \end{bmatrix} = \begin{bmatrix} \sqrt{d} & 0 \\ v/\sqrt{d} & I \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 \\ 0 & B - v \cdot v^T/d \end{bmatrix} \cdot \begin{bmatrix} \sqrt{d} & v^T/\sqrt{d} \\ 0 & I \end{bmatrix}$$

Relation to graph: blackboard

Treewidth and Cholesky factorisation

Matrix sparse: find elimination order (raws/colums) s.t.

all matrices $v \cdot v^T$ are small

many 0-rows/columns

Treewidth and evolutionary theory

Input:

- set of n species
- set of m characteristics
- $n \times m$ -array: value(species, characteristic)

Goal: a 'good' evolution tree for these species and their possibly extinct ancestors

variant: PERFECT-PHYLOGENY-PROBLEM

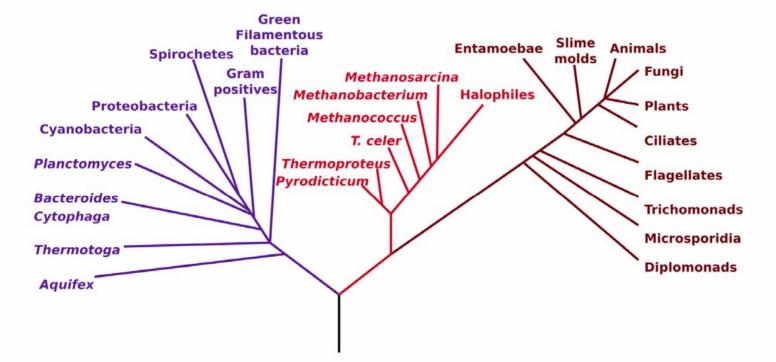
variant: PERFECT-PHYLOGENY-PROBLEM

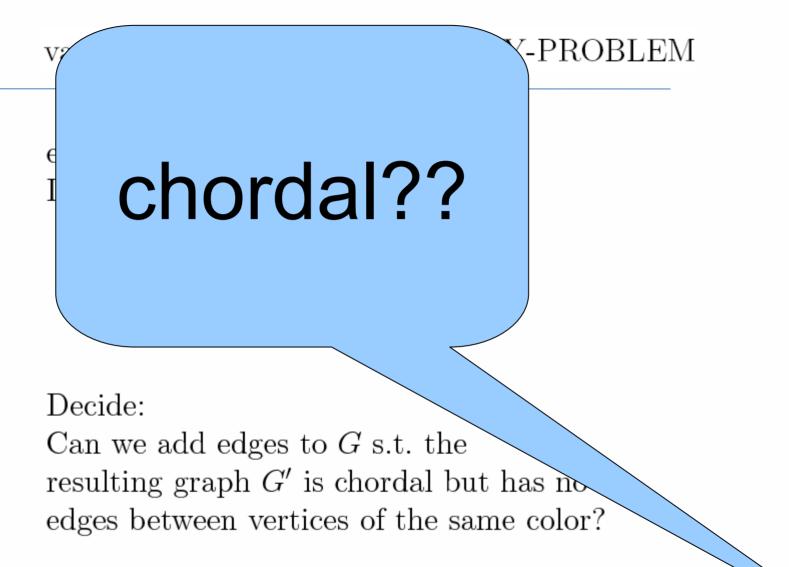
Phylogenetic Tree of Life

Bacteria

Archaea

Eucarya





Definition Let G = (V, E) be an undirected graph. *G* is *chordal* if it contains no induced cycles $C_n, n \ge 4$

So every induced cycle is a triangle!

variant: PERFECT-PHYLOGENY-PROBLEM

Equivalently: Does there exist a tree-decomposition $({X_i | i \in I}, T)$ of Gs.t. for all $i \in I$: if $v, w \in X_i, v \neq w$, then v and w have different colors.

Necessary condition: treewidth(G) <number of colors.

Necessary condition: treewidth(G) <number of colors.

Input:

graph G = (V, E)

- tree-decomposition $({X_i | i \in I}, T = (I, F))$ (binary)
- root r of T
- treewidth k

Output:

maximum size of a set $W \subseteq V$ s.t. for all $v, w \in W : (v, w) \notin E$

for each $i \in I$ define $Y_i := \{v \in X_i | j = i \text{ or } j \text{ is a descendant of } i\}$ if • $v \in Y_i$ 5 • $v \in X_j$ for some vertex $j \in I$ that is not a descendant of (def. tree-decomposition) then: $v \in X_i$ **Y2**

for each $i \in I$ define $Y_i := \{v \in X_i | j = i \text{ or } j \text{ is a descendant of } i\}$

if

- $v \in Y_i$
- $v \in X_j$ adjacent to $w \in X_j$ with j a descendant of i

then: $v \in X_i$ (def. tree-decomposition) or $w \in X_i$

New problem

Input: an Independent Set W of the subgraph $G[Y_i]$ induced by Y_i

Goal: extend W to IS of G

only |W| is important

Now:

important is only which vertices in X_i belong to W, not which vertices in $X_i - Y_i$ belong to W. For $i \in I, Z \subseteq X_i$, define $is_i(Z)$ to be the maximum size of an independent set W in $G[Y_i]$ with $W \cap X_i = Z$.

Take $is_i(Z) = -\infty$ if no such set exists.

Algorithm: Compute all tables is_i in a bottom-up manner.

leaf nodes i:

$$is_i(Z) = \begin{cases} |Z| & \text{if } \forall v, w \in Z : (v, w) \notin E \\ -\infty & \text{if } \exists v, w \in Z : (v, w) \in E \end{cases}$$

internal node i (with two children j, k:

$$is_i(Z) = \begin{cases} \max\{is_j(Z') + is_k(Z'') \\ +|Z \cap (X_i - X_j - X_k)| \\ -|Z \cap X_j \cap X_k| \\ \text{where } Z \cap X_j = Z' \cap X_i \\ \text{and } Z \cap X_k = Z'' \cap X_i \} \quad : \forall v, w \in Z : (v, w) \notin E \\ -\infty \qquad \qquad : \exists v, w \in Z : (v, w) \in E \end{cases}$$

Algorithm: Compute table *is* in bottom-up order Solution = $\max_{Z \subseteq X_r} is_r(Z)$

Runtime: $O(2^{3k}n)$

many problems Treewidth: linear time algorithms for S

General idea:

- Each table entry gives information about an equivalence class of partial solutions
- Number of equivalence classes is bounded by some constant when treewidth is bounded by a constant
- Tables can be computed using only the tables of the children of the node

Other results:

• Large classes of problems can be solved in linear time when a tree-decomposition with constant bounded treewidth is available

• Approximation results

Finding tree-decompositions

Problem:

Input: Graph G = (V, E), integer k

Dedide: Is $tw(G) \le k$

Class	Treewidth	Pathwidth
Bounded degree	N [35]	N [101] (3)
Trees/Forests	С	P [133]
Series-parallel graphs	С	P [32]
Outerplanar graphs	С	P [32]
Halin graphs	C [143]	P [32]
k-Outerplanar graphs	C[20]	P [32]
Planar graphs	Ō	N [101] (3)
Chordal graphs	P(1)	N [68]
Starlike chordal graphs	P (1)	N [68]
k-Starlike chordal graphs	P(1)	P [68]
Co-chordal graphs	P [85]	P [85]
Split graphs	P(1)	P [68, 84]
Bipartite graphs	Ν	Ν
Permutation graphs	P [34]	P [34]
Circular permutation graphs	P [34]	О
Cocomparability graphs	N $[6, 72]$	N $[6, 72]$
Cographs	P [36]	P [36]
Chordal bipartite graphs	P [86]	N [35]
Interval graphs	P(2)	P(2)
Circular arc graphs	P [135]	Ο
Circle graphs	P [83]	N $[35]$

•For constant treewidth k=1,2,3,4 graphs can be recognized in linear time

Arbitrary fixed k: O(n logn)

Thank You