Tutte Polinomial

Mikhail Khristoforov

Saint Petersburg State University
March 11, 2008

Main definitions

Main definitions

- We will consider finite graphs (multigraphs) with at least one vertex, maybe with loops and multiple edges.

Main definitions

- We will consider finite graphs (multigraphs) with at least one vertex, maybe with loops and multiple edges.
- Let us define

Main definitions

- We will consider finite graphs (multigraphs) with at least one vertex, maybe with loops and multiple edges.
- Let us define
- $V(G)$ is set of G 's verties,

Main definitions

- We will consider finite graphs (multigraphs) with at least one vertex, maybe with loops and multiple edges.
- Let us define
- $V(G)$ is set of G 's verties,
- $v(G)$ is number of G 's verties,

Main definitions

- We will consider finite graphs (multigraphs) with at least one vertex, maybe with loops and multiple edges.
- Let us define
- $V(G)$ is set of G 's verties,
- $v(G)$ is number of G 's verties,
- $E(G)$ is multiset of G 's edges,

Main definitions

- We will consider finite graphs (multigraphs) with at least one vertex, maybe with loops and multiple edges.
- Let us define
- $V(G)$ is set of G 's verties,
- $v(G)$ is number of G 's verties,
- $E(G)$ is multiset of G 's edges,
- $e(G)$ number of G 's edges,

Main definitions

- We will consider finite graphs (multigraphs) with at least one vertex, maybe with loops and multiple edges.
- Let us define
- $V(G)$ is set of G 's verties,
- $v(G)$ is number of G 's verties,
- $E(G)$ is multiset of G 's edges,
- e(G) number of G's edges,
- $k(G)$ is number of connectivity components.

Main definitions

- We will consider finite graphs (multigraphs) with at least one vertex, maybe with loops and multiple edges.
- Let us define
- $V(G)$ is set of G 's verties,
- $v(G)$ is number of G 's verties,
- $E(G)$ is multiset of G 's edges,
- e(G) number of G's edges,
- $k(G)$ is number of connectivity components.
- $H \subset G$ if H is subgraph of G.

We have to introduce two operations over graphs:

We have to introduce two operations over graphs:

- deletion.

We have to introduce two operations over graphs:

- deletion.
- contraction.

Deletion

Deletion

Contraction

Contraction

Formally

- Deleting operation: $G-e$

Formally

- Deleting operation: $G-e=(V, E-\{e\})$,

Formally

- Deleting operation: $G-e=(V, E-\{e\})$,
- Contraction operation: G/e,

Formally

- Deleting operation: $G-e=(V, E-\{e\})$,
- Contraction operation: G/e, If e is incident with u and v then in G / e vertices u and v are replaced by single vertex $w=(u v)$ and each element $f \in E-\{e\}$ that is incident with either u or v is replaced be an edge or loop incident with w.

Chromatic polynomial.

[^0]
Chromatic polynomial.

Definition: coloring of graph's vertices is regular if adjacent vertices have different colors.

Definition: Let $C_{G}(s)=C(G, s)$ be the number of regular colorings G in s colors.

Chromatic polynomial.

Definition: coloring of graph's vertices is regular if adjacent vertices have different colors.

Definition: Let $C_{G}(s)=C(G, s)$ be the number of regular colorings G in s colors.
So C_{G} is function $\mathbb{N}_{0} \rightarrow \mathbb{N}_{0}$

Some easy properties of $C(G)$

Some easy properties of $C(G)$

- If G has at least 1 loop then

Some easy properties of $C(G)$

- If G has at least 1 loop then $C(G)=0$

Some easy properties of $C(G)$

- If G has at least 1 loop then $C(G)=0$
- If $G=G_{1} \sqcup G_{2}$ then $C(G)=C\left(G_{1}\right) C\left(G_{2}\right)$

Some easy properties of $C(G)$

- If G has at least 1 loop then $C(G)=0$
- If $G=G_{1} \sqcup G_{2}$ then $C(G)=C\left(G_{1}\right) C\left(G_{2}\right)$
- $C\left(\overline{K_{n}}, s\right)=s^{n}$

Some easy properties of $C(G)$

- If G has at least 1 loop then $C(G)=0$
- If $G=G_{1} \sqcup G_{2}$ then $C(G)=C\left(G_{1}\right) C\left(G_{2}\right)$
- $C\left(\overline{K_{n}}, s\right)=s^{n}$
- If G is a tree than $C(G, s)=s \cdot(s-1)^{e(G)}$

Some easy properties of $C(G)$

- If G has at least 1 loop then $C(G)=0$
- If $G=G_{1} \sqcup G_{2}$ then $C(G)=C\left(G_{1}\right) C\left(G_{2}\right)$
- $C\left(\overline{K_{n}}, s\right)=s^{n}$
- If G is a tree than $C(G, s)=s \cdot(s-1)^{e(G)}$
- If G is a forest then $C(G, s)=s^{k(G)}(s-1)^{e(G)}$

Some easy properties of $C(G)$

- If G has at least 1 loop then $C(G)=0$
- If $G=G_{1} \sqcup G_{2}$ then $C(G)=C\left(G_{1}\right) C\left(G_{2}\right)$
- $C\left(\overline{K_{n}}, s\right)=s^{n}$
- If G is a tree than $C(G, s)=s \cdot(s-1)^{e(G)}$
- If G is a forest then $C(G, s)=s^{k(G)}(s-1)^{e(G)}$

Note: 0^{0} is equal to 1 .

The most interesting formula is:

$$
C(G)=C(G-e)-C(G / e)
$$

The most interesting formula is:

$$
C(G)=C(G-e)-C(G / e)
$$

Relationships like that are named contraction-deletion relationships

Proof: It is easier to see that

$$
C(G-e, s)=C(G, s)+C(G / e, s)
$$

Proof: It is easier to see that

$$
C(G-e, s)=C(G, s)+C(G / e, s)
$$

Let $e=\left(v_{1}, v_{2}\right)$ there two types of coloring G in s colors: in which v_{1} and v_{2} have different colors and in which they have the same. It's obvious that there are $C(G, s)$ colorings first type and $C(G / e, s)$ second.

Proof's illustration

Proof's illustration

So we have

So we have

$$
\left\{\begin{array}{l}
C\left(\overline{K_{n}}, s\right)=s^{n} \\
C(G, s)=C(G-e, s)-C(G / e, s)
\end{array}\right.
$$

So we have
$\left\{C\left(\overline{K_{n}}, s\right)=s^{n}\right.$
$C(G, s)=C(G-e, s)-C(G / e, s)$
It implies that $C(G, s)$ is polynomial in s with integer coefficients.

Probability model

We will consider such model: for every edge of graph let cut it with probability $1-p$ and save it with probability p.

Probability model

We will consider such model: for every edge of graph let cut it with probability $1-p$ and save it with probability p. Let if $H \subset G$

$$
P_{G, p}(H)=p^{e(H)}(1-p)^{e(G)-e(H)}
$$

Probability model

We will consider such model: for every edge of graph let cut it with probability $1-p$ and save it with probability p. Let if $H \subset G$

$$
P_{G, p}(H)=p^{e(H)}(1-p)^{e(G)-e(H)}
$$

What is probability of graph saving connected?

Let

$$
\operatorname{Connect}(H)= \begin{cases}1 & \text { if } H \text { is connected } \\ 0 & \text { else }\end{cases}
$$

Let

$$
\text { Connect }(H)= \begin{cases}1 & \text { if } H \text { is connected } \\ 0 & \text { else }\end{cases}
$$

Probability graph saved connected is equal to

Let

$$
\text { Connect }(H)= \begin{cases}1 & \text { if } H \text { is connected } \\ 0 & \text { else }\end{cases}
$$

Probability graph saved connected is equal to

$$
R(G, p)=\sum_{\substack{H \subset G \\ V(H)=V(G) \\ k(H)=k(G)}} P_{G, p}(H) \text { Connect }(H)
$$

It is easy to notice

It is easy to notice

$$
R(G)=(1-p) R(G-e)+p R(G / e)
$$

It is easy to notice

$$
R(G)=(1-p) R(G-e)+p R(G / e)
$$

$$
\text { for every } e \in E(G)
$$

It is easy to notice

$$
R(G)=(1-p) R(G-e)+p R(G / e)
$$

for every $e \in E(G)$
Relationships like that are named contraction-deletion relationships

Some easy properties of $R(G)$

Some easy properties of $R(G)$

- if G has no edges and one exactly vertex then $R(G)=1$,

Some easy properties of $R(G)$

- if G has no edges and one exactly vertex then $R(G)=1$,
- if G has no edges and more than one vertex then $R(G)=0$,

Some easy properties of $R(G)$

- if G has no edges and one exactly vertex then $R(G)=1$,
- if G has no edges and more than one vertex then $R(G)=0$, Like previous, $R(G, p)$ is polynomial with integer coefficients.

Spanning trees

Let $B(G)$ is number of G 's spanning trees.

As usually, it is easy to find $B(G)$ for graph having no edges except loops

As usually, it is easy to find $B(G)$ for graph having no edges except loops

- if G has no edges and exactly one vertex then $B(G)=1$,

As usually, it is easy to find $B(G)$ for graph having no edges except loops

- if G has no edges and exactly one vertex then $B(G)=1$,
- if G has no edges and more than one vertex then $B(G)=0$,

contraction-deletion

contraction-deletion

- $B(G)=B(G-e)$ if e is a loop

contraction-deletion

- $B(G)=B(G-e)$ if e is a loop
- $B(G)=B(G-e)+B(G / e)$ if e is not a loop

contraction-deletion

- $B(G)=B(G-e)$ if e is a loop
- $B(G)=B(G-e)+B(G / e)$ if e is not a loop (exercise).

Important idea

It is interesting that $C(G), R(G), B(G)$ and many others graph invariants (if they satisfy contraction-deletion relationships) can be expressed from one more general graph invariant, named Tutte polynomial.

Important idea

It is interesting that $C(G), R(G), B(G)$ and many others graph invariants (if they satisfy contraction-deletion relationships) can be expressed from one more general graph invariant, named Tutte polynomial.
There are o lot of way's to define Tutte polynomial and we will try some of them.

Definition: Edge is regular if that isn't neither loop nor bridge.

Definition: Edge is regular if that isn't neither loop nor bridge. Let denote

- $E^{\prime}(G)$ is multiset of G^{\prime} loops,

Definition: Edge is regular if that isn't neither loop nor bridge. Let denote

- $E^{\prime}(G)$ is multiset of G^{\prime} loops,
- $E^{b}(G)$ is multiset of it's bridges

Definition: Edge is regular if that isn't neither loop nor bridge. Let denote

- $E^{\prime}(G)$ is multiset of G^{\prime} loops,
- $E^{b}(G)$ is multiset of it's bridges
- $E^{r}(G)$ is multiset of it's regular edges.

Definition 1: Tutte polynomial $T(G)=T_{G}$ is polynomial on x, y that is element $\mathbb{Z}[x, y]$, satisfied following conditions:

Definition 1: Tutte polynomial $T(G)=T_{G}$ is polynomial on x, y that is element $\mathbb{Z}[x, y]$, satisfied following conditions:

- $T\left(\overline{K_{n}}\right)=1$

Definition 1: Tutte polynomial $T(G)=T_{G}$ is polynomial on x, y that is element $\mathbb{Z}[x, y]$, satisfied following conditions:

- $T\left(\overline{K_{n}}\right)=1$
- if $e \in E^{b}(G)$ then $T(G)=x T(G / e)$

Definition 1: Tutte polynomial $T(G)=T_{G}$ is polynomial on x, y that is element $\mathbb{Z}[x, y]$, satisfied following conditions:

- $T\left(\overline{K_{n}}\right)=1$
- if $e \in E^{b}(G)$ then $T(G)=x T(G / e)$
- if $e \in E^{\prime}(G)$ then $T(G)=y T(G-e)$

Definition 1: Tutte polynomial $T(G)=T_{G}$ is polynomial on x, y that is element $\mathbb{Z}[x, y]$, satisfied following conditions:

- $T\left(\overline{K_{n}}\right)=1$
- if $e \in E^{b}(G)$ then $T(G)=x T(G / e)$
- if $e \in E^{\prime}(G)$ then $T(G)=y T(G-e)$
- if $e \in E^{r}(G)$ then $T(G)=T(G / e)+T(G-e)$

Definition 1: Tutte polynomial $T(G)=T_{G}$ is polynomial on x, y that is element $\mathbb{Z}[x, y]$, satisfied following conditions:

- $T\left(\overline{K_{n}}\right)=1$
- if $e \in E^{b}(G)$ then $T(G)=x T(G / e)$
- if $e \in E^{\prime}(G)$ then $T(G)=y T(G-e)$
- if $e \in E^{r}(G)$ then $T(G)=T(G / e)+T(G-e)$

It is clear that with this definition one can calculate $T(G)$ for any G.

Definition 1: Tutte polynomial $T(G)=T_{G}$ is polynomial on x, y that is element $\mathbb{Z}[x, y]$, satisfied following conditions:

- $T\left(\overline{K_{n}}\right)=1$
- if $e \in E^{b}(G)$ then $T(G)=x T(G / e)$
- if $e \in E^{\prime}(G)$ then $T(G)=y T(G-e)$
- if $e \in E^{r}(G)$ then $T(G)=T(G / e)+T(G-e)$

It is clear that with this definition one can calculate $T(G)$ for any G.

Of course that definition needs in existence proof.

Applications

Applications

$$
C_{G}(s)=(-1)^{v(G)+k(G)} s^{k(G)} T_{G}(1-s, 0)
$$

Applications

$$
\begin{aligned}
& C_{G}(s)=(-1)^{v(G)+k(G)} s^{k(G)} T_{G}(1-s, 0) \\
& \text { Proof: }
\end{aligned}
$$

Applications

$C_{G}(s)=(-1)^{v(G)+k(G)} s^{k(G)} T_{G}(1-s, 0)$
Proof: Evidently it is enough to prove that it is correct when G hasn't regular edges and that for every regular e right part satisfies property of $C: C_{G}=C_{G-e}-C_{G / e}$.

Applications

$C_{G}(s)=(-1)^{v(G)+k(G)} s^{k(G)} T_{G}(1-s, 0)$
Proof: Evidently it is enough to prove that it is correct when G hasn't regular edges and that for every regular e right part satisfies property of $C: C_{G}=C_{G-e}-C_{G / e}$.

$$
\begin{gathered}
(-1)^{v(G)+k(G)} s^{k(G)} T_{G}(1-s, 0)= \\
(-1)^{v(G-e)+k(G-e)} s^{k(G-e)} T_{G-e}(1-s, 0)- \\
(-1)^{v(G / e)+k(G / e)} s^{k(G / e)} T_{G / e}(, 1-s, 0)
\end{gathered}
$$

Application

Application

$$
\text { So } C_{G}(s)=(-1)^{v(G)+k(G)} s^{k(G)} T_{G}(1-s, 0)
$$

Application

So $C_{G}(s)=(-1)^{v(G)+k(G)} s^{k(G)} T_{G}(1-s, 0)$
One can prove

Application

So $C_{G}(s)=(-1)^{v(G)+k(G)} s^{k(G)} T_{G}(1-s, 0)$
One can prove

- $R_{G}(p)=(1-p)^{e(G)-v(G)+k(G)} p^{v(G)-k(G)} T_{G}\left(1, \frac{1}{1-p}\right)$

Application

So $C_{G}(s)=(-1)^{v(G)+k(G)} s^{k(G)} T_{G}(1-s, 0)$
One can prove

- $R_{G}(p)=(1-p)^{e(G)-v(G)+k(G)} p^{v(G)-k(G)} T_{G}\left(1, \frac{1}{1-p}\right)$
- If $A(G)$ is the number of acyclic orientations of it's edges then

Application

So $C_{G}(s)=(-1)^{v(G)+k(G)} s^{k(G)} T_{G}(1-s, 0)$
One can prove

- $R_{G}(p)=(1-p)^{e(G)-v(G)+k(G)} p^{v(G)-k(G)} T_{G}\left(1, \frac{1}{1-p}\right)$
- If $A(G)$ is the number of acyclic orientations of it's edges then

$$
A(G)=T(G, 2,0)
$$

Definition 2: Tutte polynomial $T_{G}(x, y)$ by definition is equal to

$$
\sum_{\substack{H \subseteq G \\ v(H)=V(G)}}(x-1)^{k(H)-k(G)}(y-1)^{e(H)-v(G)+k(H)}
$$

Definition 2: Tutte polynomial $T_{G}(x, y)$ by definition is equal to

$$
(x-1)^{k(H)-k(G)}(y-1)^{e(H)-v(G)+k(H)}
$$

Why does that polynomial satisfy conditions from definition 1 ?

Definition 2: Tutte polynomial $T_{G}(x, y)$ by definition is equal to

$$
\sum_{\substack{H \subseteq G \\(H)=V(G)}}(x-1)^{k(H)-k(G)}(y-1)^{e(H)-v(G)+k(H)}
$$

Why does that polynomial satisfy conditions from definition 1 ?

- $T\left(\overline{K_{n}}\right)=1$
- if $e \in E^{b}(G)$ then $T(G)=x T(G / e)$
- if $e \in E^{\prime}(G)$ then $T(G)=y T(G-e)$
- if $e \in E^{r}(G)$ then $T(G)=T(G / e)+T(G-e)$

Proof:

Definition 2: Tutte polynomial $T_{G}(x, y)$ by definition is equal to

$$
\sum_{\substack{H \subseteq G \\(H)=V(G)}}(x-1)^{k(H)-k(G)}(y-1)^{e(H)-v(G)+k(H)}
$$

Why does that polynomial satisfy conditions from definition 1 ?

- $T\left(\overline{K_{n}}\right)=1$
- if $e \in E^{b}(G)$ then $T(G)=x T(G / e)$
- if $e \in E^{\prime}(G)$ then $T(G)=y T(G-e)$
- if $e \in E^{r}(G)$ then $T(G)=T(G / e)+T(G-e)$

Proof: Can be an exercise.

Special values

Let G be connected. By
Definition 2 Tutte polynomial $T_{G}(x, y)$ is equal to

$$
\sum_{\substack{H \subseteq G \\ V(H)=V(G)}}(x-1)^{k(H)-k(G)}(y-1)^{e(H)-v(G)+k(H)}
$$

Now it is evident that

Special values

Let G be connected. By
Definition 2 Tutte polynomial $T_{G}(x, y)$ is equal to

$$
\sum_{\substack{H \subset G \\(H)=V(G)}}(x-1)^{k(H)-k(G)}(y-1)^{e(H)-v(G)+k(H)}
$$

Now it is evident that

$$
T_{G}(1,1)=\sum_{\substack{H \subset G \\ V(H)=V(G)}} 0^{k(H)-k(G)} 0^{e(H)-v(G)+k(H)}=
$$

Special values

Let G be connected. By
Definition 2 Tutte polynomial $T_{G}(x, y)$ is equal to

$$
\sum_{\substack{H \subset G \\ V(H)=V(G)}}(x-1)^{k(H)-k(G)}(y-1)^{e(H)-v(G)+k(H)}
$$

Now it is evident that

$$
\begin{gathered}
T_{G}(1,1)=\sum_{\substack{H \subset G \\
V(H)=V(G)}} 0^{k(H)-k(G)} 0^{e(H)-v(G)+k(H)}= \\
\#\left\{H \subset G:\left\{\begin{array}{l}
k(H)-k(G)=0 \\
e(H)-v(G)+k(H)=0
\end{array}\right\}=\right.
\end{gathered}
$$

Special values

Let G be connected. By
Definition 2 Tutte polynomial $T_{G}(x, y)$ is equal to

$$
\sum_{\substack{H \subset G \\(H)=V(G)}}(x-1)^{k(H)-k(G)}(y-1)^{e(H)-v(G)+k(H)}
$$

Now it is evident that

$$
\begin{gathered}
T_{G}(1,1)=\sum_{\substack{H \subset G \\
V(H)=V(G)}} 0^{k(H)-k(G)} 0^{e(H)-v(G)+k(H)}= \\
\#\left\{H \subset G:\left\{\begin{array}{l}
k(H)-k(G)=0 \\
e(H)-v(G)+k(H)=0
\end{array}\right\}=\right.
\end{gathered}
$$

$\#\{H$ is spanning tree $\}$.

Special values

So

$$
T_{G}(1,1)=\sum_{\substack{H \subset G \\ V(H)=V(G)}} 0^{k(H)-k(G)} 0^{e(H)-v(G)+k(H)}
$$

is equal to number of spanning trees.

Special values

$$
T_{G}(1,2)=\sum_{\substack{H \subset G \\ V(H)=V(G)}} 0^{k(H)-k(G)} 1^{e(H)-v(G)+k(H)}
$$

$$
=
$$

Special values

$$
T_{G}(1,2)=\sum_{\substack{H \subset G \\ V(H)=V(G)}} 0^{k(H)-k(G)} e^{e(H)-v(G)+k(H)}
$$

$$
=
$$

$$
\sum_{\substack{H \subseteq G \\ V(H)=V(G)}} 0^{k(H)-k(G)}
$$

Special values

$$
T_{G}(1,2)=\sum_{\substack{H \subset G \\ V(H)=V(G)}} 0^{k(H)-k(G)} e^{e(H)-v(G)+k(H)}
$$

$$
=
$$

$$
\sum_{\substack{H \subseteq G \\ V(H)=V(G)}} 0^{k(H)-k(G)}
$$

is equal to number of connected subgraphs

Special values

$$
T_{G}(2,1)=\sum_{\substack{H \subset G \\ V(H)=V(G)}} 1^{k(H)-k(G)} 0^{e(H)-v(G)+k(H)}
$$

$$
=
$$

Special values

$$
=
$$

$$
\begin{aligned}
T_{G}(2,1)= & \sum_{\substack{H \subset G \\
V(H)=V(G)}} 1^{k(H)-k(G)} 0^{e(H)-v(G)+k(H)} \\
& \sum_{\substack{H \subset G \\
V(H)=V(G)}} 0^{e(H)-v(G)+k(H)}
\end{aligned}
$$

is equal to number of subforests.

"Exercises" (joke)

"Exercises" (joke)

We can consider well-known problems as problems about Tutte polynomial, so it has a lot of properties, doesn't follow from it definition easy way.

"Exercises" (joke)

We can consider well-known problems as problems about Tutte polynomial, so it has a lot of properties, doesn't follow from it definition easy way.
E.g.

- Let translate any evident statement about coloring of graph (for example that if $s_{1} \geq s_{2}$ implies $C\left(G, s_{1}\right) \geq C\left(G, s_{2}\right)$) into terms of Tutte polynomial and try to prove it.

"Exercises" (joke)

We can consider well-known problems as problems about Tutte polynomial, so it has a lot of properties, doesn't follow from it definition easy way.
E.g.

- Let translate any evident statement about coloring of graph (for example that if $s_{1} \geq s_{2}$ implies $C\left(G, s_{1}\right) \geq C\left(G, s_{2}\right)$) into terms of Tutte polynomial and try to prove it.
- Try to do it with Brooks theorem

"Exercises" (joke)

We can consider well-known problems as problems about Tutte polynomial, so it has a lot of properties, doesn't follow from it definition easy way.
E.g.

- Let translate any evident statement about coloring of graph (for example that if $s_{1} \geq s_{2}$ implies $C\left(G, s_{1}\right) \geq C\left(G, s_{2}\right)$) into terms of Tutte polynomial and try to prove it.
- Try to do it with Brooks theorem
- Try to find sum of coefficients Tutte polynomial for K_{n}

"Exercises" (joke)

We can consider well-known problems as problems about Tutte polynomial, so it has a lot of properties, doesn't follow from it definition easy way.
E.g.

- Let translate any evident statement about coloring of graph (for example that if $s_{1} \geq s_{2}$ implies $C\left(G, s_{1}\right) \geq C\left(G, s_{2}\right)$) into terms of Tutte polynomial and try to prove it.
- Try to do it with Brooks theorem
- Try to find sum of coefficients Tutte polynomial for K_{n} Note: it is value in $(1,1)$ equals to number of spanning trees equals to n^{n-2} as we know.

No magic

No magic

We have seen that all over the word can be expressed from Tutte polynomial, so it save a lot of information about graph.

No magic

We have seen that all over the word can be expressed from Tutte polynomial, so it save a lot of information about graph.
And, for example, chromatic polynomial can lose almost all information about graph if it has a loop.

No magic

We have seen that all over the word can be expressed from Tutte polynomial, so it save a lot of information about graph.
And, for example, chromatic polynomial can lose almost all information about graph if it has a loop.
It can be explained very easy.

Universal polynomial

Let introduce universal polynomial $U(G, x, y, \alpha, \sigma, \tau)$ such that

- $U\left(\overline{K_{n}}\right)=\alpha^{n}$

Universal polynomial

Let introduce universal polynomial $U(G, x, y, \alpha, \sigma, \tau)$ such that

- $U\left(\overline{K_{n}}\right)=\alpha^{n}$

$$
U(G)= \begin{cases}x U(G-e) & \text { if } e \text { is a bridge } \\ y U(G / e) & \text { if } e \text { is a loop } \\ \sigma U(G-e)+\tau U(G / e) & \text { else }\end{cases}
$$

Universal polynomial

Let introduce universal polynomial $U(G, x, y, \alpha, \sigma, \tau)$ such that

- $U\left(\overline{K_{n}}\right)=\alpha^{n}$

$$
\text { - } U(G)= \begin{cases}x U(G-e) & \text { if } e \text { is a bridge } \\ y U(G / e) & \text { if } e \text { is a loop } \\ \sigma U(G-e)+\tau U(G / e) & \text { else }\end{cases}
$$

It is evident that $A(G), B(G), C(G), R(G), T(G)$ and other are particular cases of $U(G)$.

Universal polynomial

Let introduce universal polynomial $U(G, x, y, \alpha, \sigma, \tau)$ such that

- $U\left(\overline{K_{n}}\right)=\alpha^{n}$

$$
\text { - } U(G)= \begin{cases}x U(G-e) & \text { if } e \text { is a bridge } \\ y U(G / e) & \text { if } e \text { is a loop } \\ \sigma U(G-e)+\tau U(G / e) & \text { else }\end{cases}
$$

It is evident that $A(G), B(G), C(G), R(G), T(G)$ and other are particular cases of $U(G)$.
And U can be expressed from T !

Universal polynomial's construction

$$
U(G)=\alpha^{k(G)} \sigma^{e(G)-v(G)+k(G)} \tau^{v(G)-k(G)} T\left(G, \frac{\alpha x}{\tau}, \frac{y}{\sigma}\right)
$$

Many formulae from that presentation can be obtained from it.

Universal polynomial's construction

$$
U(G)=\alpha^{k(G)} \sigma^{e(G)-v(G)+k(G)} \tau^{v(G)-k(G)} T\left(G, \frac{\alpha x}{\tau}, \frac{y}{\sigma}\right)
$$

Many formulae from that presentation can be obtained from it. E.g. our first expression for $C(G)$ is following from trivial

Universal polynomial's construction

$$
U(G)=\alpha^{k(G)} \sigma^{e(G)-v(G)+k(G)} \tau^{v(G)-k(G)} T\left(G, \frac{\alpha x}{\tau}, \frac{y}{\sigma}\right)
$$

Many formulae from that presentation can be obtained from it. E.g. our first expression for $C(G)$ is following from trivial

$$
C(G, s)=U(G, 1,0, s, 1-1)
$$

Another proof of Tutte polynomial's existence

Another proof of Tutte polynomial's existence

Let consider auxiliary polynomial

$$
Z(G, q, v)=\sum_{\substack{H \subset G \\ V(H)=V(G)}} q^{k(H)} v^{e(H)}
$$

Another proof of Tutte polynomial's existence

Let consider auxiliary polynomial

$$
Z(G, q, v)=\sum_{\substack{H \subset G \\ V(H)=V(G)}} q^{k(H)} v^{e(H)}
$$

It isn't constriction with physics meaning!!

And for it there is a relation, similar we have earlier: for $e \in E(G)$

$$
Z(G, q, v)=\sum_{\substack{H \subset G \\ V(H)=V(G)}} q^{k(H)} v^{e(H)}=
$$

And for it there is a relation, similar we have earlier: for $e \in E(G)$

$$
Z(G, q, v)=\sum_{\substack{H \subset G \\ V(H)=V(G)}} q^{k(H)} v^{e(H)}=
$$

And for it there is a relation, similar we have earlier: for $e \in E(G)$

$$
\begin{aligned}
& Z(G, q, v)=\sum_{\substack{H \subset G \\
V(H)=V(G)}} q^{k(H)} v^{e(H)}= \\
& \sum_{\substack{H \subset G \\
(H)=V(G) \\
e \notin E(H)}} q^{k(H)} v^{e(H)}+\sum_{\substack{H \subset G \\
V(H)=V(G) \\
e \in E(H)}} q^{k(H)} v^{e(H)}= \\
& Z(G-e, q, v)+ \\
& \sum_{\substack{H \subset G \\
V(H)=V(G) \\
e \in E(H)}} q^{k(H)} v^{e(H)}
\end{aligned}
$$

And for it there is a relation, similar we have earlier: for $e \in E(G)$

$$
\begin{aligned}
& Z(G, q, v)=\sum_{\substack{H \subset G \\
V(H)=V(G)}} q^{k(H)} v^{e(H)}= \\
& \sum_{\substack{H \subset G \\
(H)=V(G) \\
e \notin E(H)}} q^{k(H)} v^{e(H)}+\sum_{\substack{H \subset G \\
V(H)=V(G) \\
e \in E(H)}} q^{k(H)} v^{e(H)}= \\
& Z(G-e, q, v)+ \\
& \sum_{\substack{H \subset G \\
V(H)=V(G) \\
e \in E(H)}} q^{k(H)} v^{e(H)}
\end{aligned}
$$

In second summand we can contract e

$$
Z(G-e, q, v)+\sum_{\substack{H \subset G \\ V(H)=V(G) \\ e \in E(H)}} q^{k(H)} v^{e(H)}=
$$

$$
Z(G-e, q, v)+\sum_{\substack{H^{\prime} \subset G / e \\ V\left(H^{\prime}\right)=V(G / e) \\ e \in E\left(H^{\prime}\right)}}^{\substack{V(H)=V(G) \\ e \in E(H)}} q^{k\left(H^{\prime}\right)} v^{e\left(H^{\prime}\right)+1}=
$$

$$
\begin{aligned}
& Z(G-e, q, v)+\sum_{\substack{H \subset G \\
V(H)=V(G) \\
e \in E(H)}} q^{k(H)} v^{e(H)}= \\
& Z(G-e, q, v)+\sum_{\substack{H^{\prime} \subset G / e \\
V\left(H^{\prime}\right)=V(G / e) \\
e \in E\left(H^{\prime}\right)}} q^{k\left(H^{\prime}\right)} v^{e\left(H^{\prime}\right)+1}= \\
& Z(G-e, q, v)+v Z(G / e, q, v)
\end{aligned}
$$

$$
\begin{gathered}
Z(G, q, v)=\sum_{\substack{H \subset G \\
V(H)=V(G)}} q^{k(H)} v^{e(H)} \\
Z(G-e, q, v)+v Z(G / e, q, v)
\end{gathered}
$$

$$
\begin{gathered}
Z(G, q, v)=\sum_{\substack{H \subset G \\
V(H)=V(G)}} q^{k(H)} v^{e(H)} \\
Z(G-e, q, v)+v Z(G / e, q, v)
\end{gathered}
$$

if e is a bridge, $Z(G-e, q, v)=q Z(G / e, q, v)$

$$
\begin{gathered}
Z(G, q, v)=\sum_{\substack{H \subset G \\
V(H)=V(G)}} q^{k(H)} v^{e(H)} \\
Z(G-e, q, v)+v Z(G / e, q, v)
\end{gathered}
$$

if e is a bridge, $Z(G-e, q, v)=q Z(G / e, q, v)$
if e is a bridge we have

$$
Z(G, q, v)=(q+v) Z(G / e, q, v)
$$

$$
\begin{gathered}
Z(G, q, v)=\sum_{\substack{H \subset G \\
V(H)=V(G)}} q^{k(H)} v^{e(H)} \\
Z(G-e, q, v)+v Z(G / e, q, v)
\end{gathered}
$$

if e is a bridge, $Z(G-e, q, v)=q Z(G / e, q, v)$
if e is a bridge we have

$$
Z(G, q, v)=(q+v) Z(G / e, q, v)
$$

Definition 3:

$$
T(G)=\frac{1}{(x-1)^{k(G)}(y-1)^{v(G)}} Z(G,(x-1)(y-1), y-1)
$$

$$
\begin{gathered}
Z(G, q, v)=\sum_{\substack{H \subset G \\
V(H)=V(G)}} q^{k(H)} v^{e(H)} \\
Z(G-e, q, v)+v Z(G / e, q, v)
\end{gathered}
$$

if e is a bridge, $Z(G-e, q, v)=q Z(G / e, q, v)$
if e is a bridge we have

$$
Z(G, q, v)=(q+v) Z(G / e, q, v)
$$

Definition 3:

$$
T(G)=\frac{1}{(x-1)^{k(G)}(y-1)^{v(G)}} Z(G,(x-1)(y-1), y-1)
$$

It can be an exercise - to check that it statement satisfies properties of Tutte polynomial.

We said that $Z(G)$ is polynomial with physical meaning.

We said that $Z(G)$ is polynomial with physical meaning. Why?

We said that $Z(G)$ is polynomial with physical meaning. Why? Let consider such graph model of crystal: vertices correspond to atoms and adjacent vertices correspond to adjacent atoms.

We said that $Z(G)$ is polynomial with physical meaning. Why? Let consider such graph model of crystal: vertices correspond to atoms and adjacent vertices correspond to adjacent atoms. Every atom can be in one of q states.

We said that $Z(G)$ is polynomial with physical meaning. Why? Let consider such graph model of crystal: vertices correspond to atoms and adjacent vertices correspond to adjacent atoms. Every atom can be in one of q states.
Let σ is system's state; $\sigma(e)$ is equal to one if vertices, incident e have same states and 0 in other cases.
Then potential energy (in model) is equal to

$$
\Pi(\sigma)=\sum_{e \in E} J_{e} \sigma(e)
$$

We said that $Z(G)$ is polynomial with physical meaning. Why? Let consider such graph model of crystal: vertices correspond to atoms and adjacent vertices correspond to adjacent atoms. Every atom can be in one of q states.
Let σ is system's state; $\sigma(e)$ is equal to one if vertices, incident e have same states and 0 in other cases.
Then potential energy (in model) is equal to

$$
\Pi(\sigma)=\sum_{e \in E} J_{e} \sigma(e)
$$

Let $J_{e}=J$ for every e.

We said that $Z(G)$ is polynomial with physical meaning. Why? Let consider such graph model of crystal: vertices correspond to atoms and adjacent vertices correspond to adjacent atoms.
Every atom can be in one of q states.
Let σ is system's state; $\sigma(e)$ is equal to one if vertices, incident e have same states and 0 in other cases.
Then potential energy (in model) is equal to

$$
\Pi(\sigma)=\sum_{e \in E} J_{e} \sigma(e)
$$

Let $J_{e}=J$ for every e.
According to Boltzmann postulate, probability of having state σ_{0} is proportional to $\exp \left(-\frac{1}{k T} \Pi\left(\sigma_{0}\right)\right)$ and therefore is equal to

We said that $Z(G)$ is polynomial with physical meaning. Why? Let consider such graph model of crystal: vertices correspond to atoms and adjacent vertices correspond to adjacent atoms.
Every atom can be in one of q states.
Let σ is system's state; $\sigma(e)$ is equal to one if vertices, incident e have same states and 0 in other cases.
Then potential energy (in model) is equal to

$$
\Pi(\sigma)=\sum_{e \in E} J_{e} \sigma(e)
$$

Let $J_{e}=J$ for every e.
According to Boltzmann postulate, probability of having state σ_{0} is proportional to $\exp \left(-\frac{1}{k T} \Pi\left(\sigma_{0}\right)\right)$ and therefore is equal to

$$
\frac{\exp \left(-\frac{1}{k T} \Pi\left(\sigma_{0}\right)\right)}{\sum_{\sigma} \exp \left(-\frac{1}{k T} \Pi(\sigma)\right)}
$$

Let consider the denominator:
$\sum_{\sigma} \exp \left(-\frac{1}{k T} \Pi(\sigma)\right)=$

Let consider the denominator:
$\sum_{\sigma} \exp \left(-\frac{1}{k T} \Pi(\sigma)\right)=$
$\sum_{\sigma}^{\sigma} \exp \left(-\frac{1}{k T} \sum_{e \in E} J \sigma(e)\right)=$

Let consider the denominator:
$\sum_{\sigma} \exp \left(-\frac{1}{k T} \Pi(\sigma)\right)=$
$\sum_{\sigma} \exp \left(-\frac{1}{k T} \sum_{e \in E} J \sigma(e)\right)=$
$\sum_{\sigma} \prod_{e \in E} \exp \left(-\frac{1}{k T} J \sigma(e)\right)=$

Let consider the denominator:
$\sum_{\sigma} \exp \left(-\frac{1}{k T} \Pi(\sigma)\right)=$
$\sum_{\sigma}^{\sigma} \exp \left(-\frac{1}{k T} \sum_{e \in E} J \sigma(e)\right)=$
$\sum_{\sigma} \prod_{e \in E} \exp \left(-\frac{1}{k T} J \sigma(e)\right)=$
$\sum_{\sigma} \prod_{e \in E}\left(1+\left(\exp \left(-\frac{1}{k T} J \sigma(e)-1\right)\right)=\right.$

Let consider the denominator:
$\sum_{\sigma} \exp \left(-\frac{1}{k T} \Pi(\sigma)\right)=$
$\sum_{\sigma} \exp \left(-\frac{1}{k T} \sum_{e \in E} J \sigma(e)\right)=$
$\sum_{\sigma} \prod_{e \in E} \exp \left(-\frac{1}{k T} J \sigma(e)\right)=$
$\sum_{\sigma} \prod_{e \in E}\left(1+\left(\exp \left(-\frac{1}{k T} J \sigma(e)-1\right)\right)=\right.$
$\sum_{\sigma} \sum_{F \subset E} \prod_{e \in F}\left(\exp \left(-\frac{1}{k T} J \sigma(e)\right)-1\right)=$

Let consider the denominator:
$\sum_{\sigma} \exp \left(-\frac{1}{k T} \Pi(\sigma)\right)=$
$\sum_{\sigma}^{\sigma} \exp \left(-\frac{1}{k T} \sum_{e \in E} J \sigma(e)\right)=$
$\sum_{\sigma} \prod_{e \in E} \exp \left(-\frac{1}{k T} J \sigma(e)\right)=$
$\sum_{\sigma} \prod_{e \in E}\left(1+\left(\exp \left(-\frac{1}{k T} J \sigma(e)-1\right)\right)=\right.$
$\sum_{\sigma} \sum_{F \subset E} \prod_{e \in F}\left(\exp \left(-\frac{1}{k T} J \sigma(e)\right)-1\right)=$
$\sum_{F \subset E} \sum_{\sigma} \prod_{e \in F}\left(\exp \left(-\frac{1}{k T} J \sigma(e)\right)-1\right)$

$$
\sum_{F \subset E} \sum_{\sigma} \prod_{e \in F}\left(\exp \left(-\frac{1}{k T} J \sigma(e)\right)-1\right)
$$

$\sum_{F \subset E} \sum_{\sigma} \prod_{e \in F}\left(\exp \left(-\frac{1}{k T} J \sigma(e)\right)-1\right)$
[Let $v=\exp \left(-\frac{1}{k T} J\right)-1$]
If σ is a constant on connectivity components F then
$\prod_{e \in F}\left(\exp \left(-\frac{1}{k T} J \sigma(e)\right)-1\right)=v^{e(F)}$
else it is equal to 0
$\sum_{F \subset E} \sum_{\sigma} \prod_{e \in F}\left(\exp \left(-\frac{1}{k T} J \sigma(e)\right)-1\right)$
[Let $v=\exp \left(-\frac{1}{k T} J\right)-1$]
If σ is a constant on connectivity components F then
$\prod_{e \in F}\left(\exp \left(-\frac{1}{k T} J \sigma(e)\right)-1\right)=v^{e(F)}$
else it is equal to 0
It's trivial that for any F there are $q^{k(F)}$ constant on connectively components states.
$\sum_{F \subset E} \sum_{\sigma} \prod_{e \in F}\left(\exp \left(-\frac{1}{k T} J \sigma(e)\right)-1\right)$
[Let $v=\exp \left(-\frac{1}{k T} J\right)-1$]
If σ is a constant on connectivity components F then
$\prod_{e \in F}\left(\exp \left(-\frac{1}{k T} J \sigma(e)\right)-1\right)=v^{e(F)}$
else it is equal to 0
It's trivial that for any F there are $q^{k(F)}$ constant on connectively components states.
$\sum_{F \subset E} \sum_{\sigma} \prod_{e \in F}\left(\exp \left(-\frac{1}{k T} J \sigma(e)\right)-1\right)=\sum_{F \subset E} q^{k(F)} e^{e(F)}$

So denominator is equal to $Z(G, q, v)$

[^0]: Definition: coloring of graph's vertices is regular if adjacent vertices have different colors.

