
Graphs and Trees Binary Search Trees AVL-Trees (a,b)-Trees Splay-Trees

Search Trees

Tobias Lieber

April 14, 2008

Tobias Lieber Search Trees April 14, 2008 1 / 57



Graphs and Trees Binary Search Trees AVL-Trees (a,b)-Trees Splay-Trees

Graphs and Trees

Binary Search Trees

AVL-Trees

(a,b)-Trees

Splay-Trees

Tobias Lieber Search Trees April 14, 2008 2 / 57



Graphs and Trees Binary Search Trees AVL-Trees (a,b)-Trees Splay-Trees

Definition
An (undirected) graph G = (V ,E ) is defined by a set of nodes V and a
set of edges E .

E ⊆
(

V

2

)
:= {X : X ⊆ V , |X | = 2}

A directed graph G = (V ,E ) is given by a set of nodes and a set of
directed edges:

E ⊆ V × V

Definition
The neigborhood of node x is given by:

N(x) = {y : x ∈ V , {x , y} ∈ E}
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Special Graphs

Path:

P2: P4:

Circle:

C3: C5:

Complete graph/ Clique:

K5:
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Definition
A graph G = (V ,E ) is called connected, if there is a path from each node
x to each other node y .

Definition
A graph H = (W ,F ) is called subgraph of G = (V ,E ) if

W ⊆ V and F ⊆ E .

Definition
An acylic graph G = (V ,E ) does not contain any circle as a subgraph.
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Definition
A graph G = (V ,E ) is called a tree if it is connected and acyclic.

Definition
A rooted binary tree G = (V ,E ) is a tree with one root node r .

|N(r)| < 3 r ∈ V

1 ≤ |N(x)| ≤ 3 ∀x ∈ V \ {r}

Definition
The height of a tree G = (V ,E ) with root r ∈ V is defined as

h = max
x∈V

{distance from r to x}
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Theorem
The following definitions of a tree G = (V ,E ) are equivalent

I G is connected and acyclic.

I G is connected and |V | = |E |+ 1.

I G is acyclic and |V | = |E |+ 1.

I When adding a new edge to G the resulting graph will contain a
circle.

I When removing an edge from G the resulting graph is not connected
anymore.

I For all two nodes x , y ∈ V and x 6= y there is exactly one path from
x to y.
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Definition
A tree H = (W ,F ) is called a spanning tree of a graph G = (V ,E ) if
W = V and F ⊆ E .

Definition
The function σ(x) returns the subtree, which is rooted in x :

σ(x)

x
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Problem:
For a set of items x1, ..., xn where each dataset consists of a key and a
value, we want to minimize the total access time on an arbitrary sequence
of operations.
One operation can perform

I a test if a key is stored in the data structure (IsElement),

I the insertion of an item in the data structure (Insert)

I or a deletion of a key in the data structure (Delete).
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I An internal search tree stores all keys in internal nodes. The leaves
contain no further information. Accordingly there is no need to store
them and they can be represented by NIL-pointers.

I In an external search tree, all keys are stored at the leaves. The
internal nodes only contain information for managing the data
structure.

Tobias Lieber Search Trees April 14, 2008 10 / 57



Graphs and Trees Binary Search Trees AVL-Trees (a,b)-Trees Splay-Trees

A binary search tree is a binary tree, whose internal nodes contain the keys
k = x .key ∀x ∈ S . For each node x the following equation must hold if
node y is in the left subtree of x and node z is in the right subtree of node
x :

y .key < x .key < z .key

8

4

1 6

10

9
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For making algorithms more understandable, here are more definitions.
A node v of a search tree stores several values:

I key – key of the stored item

I leftChild, rightChild which are pointers to left/right child (only if it is
a binary tree)

I children, the number of children

The items are accessible in pseudocode as follows:

8

4

1 6

10

9

k=v . key // s t o r e s 8 i n k i f v i s the r oo t
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I sE l emen t (T, k )
{

v :=T. r oo t
wh i l e ( v!=NIL )
{

i f ( v . key==k )
r e t u r n v

e l s e i f ( v . key>k )
v=v . l e f t C h i l d

e l s e
v=v . r i g h t C h i l d

}
r e t u r n v

}
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I n s e r t (T, k )
{

v=I sE l emen t (T, k )
i f ( v==NIL )
{

// I n s e r t s a node , update s p o i n t e r s
add a node w wi th w. key=k
v=w

}
}
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De l e t e (T, k )
{

v=i sE l emen t (T, k )
i f ( v==NIL )

r e t u r n
e l s e

r e p l a c e v by a InOrder−p r e d e c e s s o r / s u c c e s s o r
}
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There are sequences of operations, such that each operation requires Θ(n)
operations, if n is the number of nodes in the tree.
Thus the worst-case complexity of a binary search tree is

Θ(n)

1

2

n-1

n
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AVL-trees have been invented in 1962 and are internal binary search trees.
They are named after their inventors: Georgy Adelson-Velsky and Yevgeniy
Landis.
The main idea of AVL-trees is to keep the tree height balanced. This
means

|height(σ(v.leftchild))− height(σ(v.rightChild))| ≤ 1

has to be valid for every node v in an AVL-tree.
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4

3

1

6

5 8

9

... is an AVL tree.
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4

6

5 7

12

10

9 11

14

13 15

16

... is not an AVL tree.
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Theorem
An internal binary search tree with height h contains at most 2h − 1 nodes.

Proof.

h−1∑
i=0

2i = 2h − 1
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Theorem
An AVL-tree with height h consists at least of Fh+2 − 1 internal nodes.

Proof.
How could an AVL-tree Th with height h and a minimal number of nodes
be constructed?
AVL-condition: height(σ(r.leftchild))− height(σ(r.rightchild)) = 1
Height should be h ⇒
height(σ(r.leftChild)) = h − 1,height(σ(r.rightChild)) = h − 2
⇒ n(Th) = 1 + n(Th−1) + n(Th−2)

n(T1) = 1 =2− 1 = F3 − 1
n(T2) = 2 =3− 1 = F4 − 1
n(T3) = 4 =5− 1 = F5 − 1
n(Th) =1 + n(Th−1) + n(Th−2) = 1 + Fh+1 − 1 + Fh − 1 = Fh+2 − 1
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We know:

n ≥ 1√
5

(
1 +

√
5

2

)h+2

h ≤ log n

log
“

1+
√

5
2

” − log
(

1√
5

)
− 2

≈ 1.44 log n + 1.1
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Single rotation:

- -

-

h-2

h-1

h-2 rotate right

0

0

h-1 h-2 h-2
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Double rotation:

- -

+

-

h-1

h-2h-1

h-1

double rotation

0

0 +

h-1

h-2

h-1h-1
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Definition
An external search tree is an (a, b)-tree if it applies to the following
conditions:

I All leaves appear on the same level.

I Every node, except of the root, has ≥ a children.

I The root has at least two children.

I Every node has at most b children.

I Every node with k children contains k − 1 keys.

I b ≥ 2a− 1
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A (2, 4)-tree:

6, 13

2, 5

2 5 6

8, 10

8 10 13

23, 40

23 40 42
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Theorem
Every (a, b)-Tree with height h has

2ah−1 ≤ n ≤ bh

leaves.

Proof.

1. In an (a, b)-tree which branching factor is as small as possible, the
root has two children and every other node has a children.

2. If we choose the branching factor as high as possible, every node has
b children.

logbn ≤ h ≤ loga
n

2
+ 1
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I sE l emen t (T, k )
{

v=T. r oo t
wh i l e ( not v . l e a f )
{

i=min{ s ; 1 ≤ s ≤ v . c h i l d r e n+1 and k ≤ key no. s}
// d e f i n e key no . v . c h i l d r e n+1 = ∞
v=c h i l d no . i

}
r e t u r n v

}
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I n s e r t (T, k )
{

w=I sE l emen t (T, k )
v=pa r en t (w)
i f (w . key !=k )
{

i f ( k< max key ( v ) )
i n s e r t k l e f t o f w

e l s e
i n s e r t k r i g h t o f w

i f ( v . c h i l d r e n > b )
r e b a l a n c e ( v )

}
}
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r e b a l a n c e (T, l )
{

w=pa r en t n ( l ) // r e t u r n s an new root , i f w==T. r oo t
r=new node wi th nodes (dm

2 e ... m )
w. add node (Km

2
, r )

i f (w . c h i l d r e n >b )
r e b a l a n c e (w)

}
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6 ,13

2,5

2 5 6

8,9,10,12

8 9 10 12 13

23,40

23 40 42
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6,10,13

2,5

2 5 6

8,9

8 9 10

12

12 13

23,40

23 40 42
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De l e t e (T, k )
{

w=I sE l emen t (T, k )
v=pa r en t (w)
i f ( k=w. key )

remove (w)
i f ( v . c h i l d r e n < a )

r e b a l a n c e d e l e t e (T, v )
}

Tobias Lieber Search Trees April 14, 2008 33 / 57



Graphs and Trees Binary Search Trees AVL-Trees (a,b)-Trees Splay-Trees

r e b a l a n c e d e l e t e (T, v )
{

w=p r e v i o u s / n e x t s i b l i n g ( v )
r=j o i n ( v ,w)
i f ( r . c h i l d r e n >b )
{

r e b a l a n c e d e l e t e ( r )
}

}
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An alternative way for rebalancing is the idea of overflow.
Test if a sibling can adopt a child of an overfull node.

6 ,13

2,5

2 5 6

8,9,10,12

8 9 10 12 13

23,40

23 40 42
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6 ,12

2,5

2 5 6

8,9,10

8 9 10 12

13,23,40

13 23 40 42
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Definition
A B*-tree with order b is defined as follows:

I All leaves appear on the same level

I Every node except when the root has at most b children

I Every node except when the root has at least (2b − 1)/3 children

I The root has at least two and at most 2b(2m − 2)/3c+ 1

I Every internal node with k children contains k − 1 keys
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Splay trees are self-organizing internal binary search trees.
Basic idea: Self-adjusting linear list with the move to front rule.

I Simple algorithm

I Good run time in an amortized sense

The splay operation moves a node x with respect to the properties of a
search tree to the root of a binary tree T .
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join(T1,T2):

+
splay(T1,max T1)

+
join

split(T ,k):

splay(T ,k) split
+ or +
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insert(T ,k):

+
split(T ,k)

+ +
insert

delete(T ,k):

splay(T ,k) delete
+

join
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Splay(T ,x) uses single and double rotations for transporting node x to the
root of a splay tree T .

y

x

A B

C

splay(x)

splay(y)

x

y

A

B C
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z

y

x D

C

BA

splay(x)

splay(z)

x

y

zA

B

C D

z
y

x

A

B C

D splay(x)

x
y z

A B C D

splay(x)

y

z

x
A

B C

D
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splay(T,x):

x

case 3

x
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splay(T,x):

x

case 2

x
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splay(T,x):

x

case 1

x
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In amortized analysis of algorithms we investigate the costs of m
operations.

ai = ti + Φi − Φi−1

m∑
i=1

ti =
m∑

i=1

(ai + Φi−1 − Φi ) =
m∑

i=1

ai + Φ0 − Φm

For the following analysis, we define:

I A weight w(i) for each node i

I The size of node x : s(x) =
∑

i∈σ(x) w(i)

I The rank of node x : r(x) = log s(x)

I The potential of a tree T : Φ =
∑

i∈T r(i)
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Theorem
Splay(T,x) needs at most

3(r(v)− r(x)) + 1 = O(log

(
s(v)

s(x)

)
)

amortized time, where v is the root of T .

We can divide the splay operation in the rotations which are the influential
operations in splay. Thus we consider the number of the rotations.
Just one more notation:
Let r(x) be the rank of x before the rotation and R(x) the rank after the
rotation. Let s(x) be the size of x before the rotation and S(x) the size
after the rotation.
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Case 1:
y

x

A B

C

splay(x)

splay(y)

x

y

A

B C

1 + R(x) + R(y)− r(x)− r(y)

≤ 1 + R(x)− r(x) since R(y) ≤ r(y)

≤ 1 + 3(R(x)− r(x)) since r(x) ≤ R(x)
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Case 2:
z

y

x D

C

BA

splay(x)

splay(z)

x

y

zA

B

C D

2 + R(x) + R(y) + R(z)− r(x)− r(y)− r(z)

= 2 + R(y) + R(z)− r(x)− r(y) since R(X ) = r(z)

≤ 2 + R(x) + R(z)− 2r(x) since R(y) ≤ R(x)

and r(x) ≤ r(y)
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Claim:

2 + R(x) + R(z)− 2r(x) ≤ 3(R(x)− r(x))

2 ≤ 2R(x)− r(x)− R(z)

−2 ≥ log(
s(x)

S(x)
) + log(

S(z)

S(x)
)

s(x) + S(z) ≤ S(x)

s(x)

S(x)
+

S(z)

S(x)
≤ 1
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The log-function is strictly increasing. Thus the maximum of
f (x , y) = log x + log y is given by x , y with y = 1− x .
For maximization we receive the function g(x) = loga x + loga(1− x).

g ′(x) = 1
ln a( 1

x −
1

1−x )

g ′′(x) = 1
ln a( 1

x2 + 1
(1−x)2

)

This leads us to x = 1
2 . Since g ′′(1

2) is negative we can be sure that x = 1
2

is a local maximum. Because g(1
2) = −2 equation

−2 ≥ log(
s(x)

S(x)
) + log(

S(z)

S(x)
)

holds.
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Case 3:
z

y

x

A

B C

D splay(x)

x
y z

A B C D

splay(x)

y

z

x
A

B C

D

2 + R(x) + R(y) + R(z)− r(x)− r(y)− r(z)

= 2 + R(y) + R(z)− r(x)− r(y) since R(x) = r(z)

≤ 2 + R(y) + R(z)− 2r(x) since r(x)− r(y)
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Proof.
By adding all rotations used for splay(T , x) we receive a telescope sum,
which yields us the amortized time
≤ 3(R(x)− r(x)) + 1 = 3(r(t)− r(x)) + 1.
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If the weights w(i) are constant, −Φm(x) for a sequence of m splay has
the upper bound:

n∑
i=1

log W − log w(i) =
n∑

i=1

W

w(i)

with

W =
n∑

i=1

w(i)

Tobias Lieber Search Trees April 14, 2008 54 / 57



Graphs and Trees Binary Search Trees AVL-Trees (a,b)-Trees Splay-Trees

Theorem
The costs of m access operations in a splay tree are

O((m + n) log n + m)

Proof.
Choose w(i) = 1

n .
Because W = 1 it follows, ai ≤ 1 + 3 log n.
−Φm =

∑n
i=1 log W

w(i) =
∑n

i=1 log n = n log n

Thus t = a− Φm = m(1 + 3 log n) + n log n
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Summary

I Graph theory

I Binary search trees

I AVL-trees

I (a, b)-trees

I Splay trees
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End

Thank you for your attention
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