
JASS 2008 Course 1 - Trees

JASS 2008
Course 1 - Trees

Suffix Trees

Caroline Löbhard

Institut für Mathematik
TU München

St. Petersburg, 9.3. - 19.3. 2008

Caroline Löbhard JASS 2008 Course 1 - Trees

JASS 2008 Course 1 - Trees

Contents

1 Introduction to suffix trees
Basics
Getting a first feeling for the nice structure of suffix trees

2 Suffix tree algorithms
Historical Overview of Algorithms
Ukkonen’s on-line space-economic linear-time algorithm
Farach’s linear-time algorithm for strings over an arbitrary
alphabet

3 Applications of suffix trees

Caroline Löbhard JASS 2008 Course 1 - Trees

JASS 2008 Course 1 - Trees

Introduction to suffix trees

Basics

Some denotations for strings

Σ - fixed alphabet,

x , y , ... ∈ Σ - single characters,

P,S , ..., α, σ, τ, ...Σ∗ - strings over Σ,

T , I... - trees

u, v , ... ∈ V - inner nodes of trees

S [i , j] - substring of S from position i to j

S [i] - single character at position i

Caroline Löbhard JASS 2008 Course 1 - Trees

JASS 2008 Course 1 - Trees

Introduction to suffix trees

Basics

Definition and a first example

Definition

Given a string S of length |S | = m over a fixed alphabet Σ, the
suffix tree TS of S is a rooted directed tree with

edges labelled with nonempty strings and

exactly m leaves labelled with the integers from 1 to m,

such that

each internal node other than root has at least two children

no two edges out of one node have edge labels beginning with
the same character and

for any leaf i , the concatenation of the path-labels from root
to leaf i is S [i ,m].

Caroline Löbhard JASS 2008 Course 1 - Trees

JASS 2008 Course 1 - Trees

Introduction to suffix trees

Basics

Definition and a first example

Definition

Given a string S of length |S | = m over a fixed alphabet Σ, the
suffix tree TS of S is a rooted directed tree with

edges labelled with nonempty strings and

exactly m leaves labelled with the integers from 1 to m,

such that

each internal node other than root has at least two children

no two edges out of one node have edge labels beginning with
the same character and

for any leaf i , the concatenation of the path-labels from root
to leaf i is S [i ,m].

Caroline Löbhard JASS 2008 Course 1 - Trees

JASS 2008 Course 1 - Trees

Introduction to suffix trees

Basics

Definition and a first example

Definition

Given a string S of length |S | = m over a fixed alphabet Σ, the
suffix tree TS of S is a rooted directed tree with

edges labelled with nonempty strings and

exactly m leaves labelled with the integers from 1 to m,

such that

each internal node other than root has at least two children

no two edges out of one node have edge labels beginning with
the same character and

for any leaf i , the concatenation of the path-labels from root
to leaf i is S [i ,m].

Caroline Löbhard JASS 2008 Course 1 - Trees

JASS 2008 Course 1 - Trees

Introduction to suffix trees

Basics

Definition and a first example

Definition

Given a string S of length |S | = m over a fixed alphabet Σ, the
suffix tree TS of S is a rooted directed tree with

edges labelled with nonempty strings and

exactly m leaves labelled with the integers from 1 to m,

such that

each internal node other than root has at least two children

no two edges out of one node have edge labels beginning with
the same character and

for any leaf i , the concatenation of the path-labels from root
to leaf i is S [i ,m].

Caroline Löbhard JASS 2008 Course 1 - Trees

JASS 2008 Course 1 - Trees

Introduction to suffix trees

Basics

A few more notions walking trough trees

The label of a path in T is the concatenation of the labels of
edges passed when following the path.

A path does not need to end in a node and it does not need
to start at root.

For a node u in a Tree T path(T , u) is the unique path in the
tree from root to the node u

string-depth(u) = |path(T , u)|
node-depth(u) = number of nodes passed when walking from
root to u.

Caroline Löbhard JASS 2008 Course 1 - Trees

JASS 2008 Course 1 - Trees

Introduction to suffix trees

Basics

Try to build the suffix tree for S = banana

Problem:

Let S [k, |S |] be the suffix of a String S and let
i , j ∈ {1, ..., |S | − 1} be Indices such that S [k, |S |] = S [i , j].
Then the path S [i , j] does not end in a leaf.

Solution:

Instead of constructing the suffix tree for S we will construct the
suffix tree for S$, where $ 6∈ Σ.

Caroline Löbhard JASS 2008 Course 1 - Trees

JASS 2008 Course 1 - Trees

Introduction to suffix trees

Basics

Try to build the suffix tree for S = banana

Problem:

Let S [k, |S |] be the suffix of a String S and let
i , j ∈ {1, ..., |S | − 1} be Indices such that S [k, |S |] = S [i , j].
Then the path S [i , j] does not end in a leaf.

Solution:

Instead of constructing the suffix tree for S we will construct the
suffix tree for S$, where $ 6∈ Σ.

Caroline Löbhard JASS 2008 Course 1 - Trees

JASS 2008 Course 1 - Trees

Introduction to suffix trees

Basics

Try to build the suffix tree for S = banana

Problem:

Let S [k, |S |] be the suffix of a String S and let
i , j ∈ {1, ..., |S | − 1} be Indices such that S [k, |S |] = S [i , j].
Then the path S [i , j] does not end in a leaf.

Solution:

Instead of constructing the suffix tree for S we will construct the
suffix tree for S$, where $ 6∈ Σ.

Caroline Löbhard JASS 2008 Course 1 - Trees

JASS 2008 Course 1 - Trees

Introduction to suffix trees

Getting a first feeling for the nice structure of suffix trees

Solution of the substring problem

Theorem

Let TP be the suffix tree of a string P and let S be another string.

S matches a path in TP from root ⇔ S occurs in P

S occurs in P exactly at the positions numbered with the
labels of all leaves of the subtree below the point of the last
match in TP .

Example

P = banana$
S = an

Caroline Löbhard JASS 2008 Course 1 - Trees

JASS 2008 Course 1 - Trees

Introduction to suffix trees

Getting a first feeling for the nice structure of suffix trees

Solution of the substring problem

Theorem

Let TP be the suffix tree of a string P and let S be another string.

S matches a path in TP from root ⇔ S occurs in P

S occurs in P exactly at the positions numbered with the
labels of all leaves of the subtree below the point of the last
match in TP .

Example

P = banana$
S = an

Caroline Löbhard JASS 2008 Course 1 - Trees

JASS 2008 Course 1 - Trees

Introduction to suffix trees

Getting a first feeling for the nice structure of suffix trees

Solution of the substring problem

Theorem

Let TP be the suffix tree of a string P and let S be another string.

S matches a path in TP from root ⇔ S occurs in P

S occurs in P exactly at the positions numbered with the
labels of all leaves of the subtree below the point of the last
match in TP .

Example

P = banana$
S = an

Caroline Löbhard JASS 2008 Course 1 - Trees

JASS 2008 Course 1 - Trees

Introduction to suffix trees

Getting a first feeling for the nice structure of suffix trees

Proof.

S matches the beginning a path ∈ T ⇔ S is a prefix of all
suffixes of P that end in the leaves below the end of that path.

∀ i ∈ {1, ..., |S |} : P[i , |S |] = path(T , i)

Define M to be the set of all leaf-labels below the end of the
path that matches S .

S is prefix of the suffixes {P[i ,m] | i ∈ M} of P.

This means: S occurs in P exactly at the positions M.

In particular, S does not occur in P if and only if it matches no
path in TP and therefore, M = ∅.

Caroline Löbhard JASS 2008 Course 1 - Trees

JASS 2008 Course 1 - Trees

Introduction to suffix trees

Getting a first feeling for the nice structure of suffix trees

suffix links

Theorem

Suppose that:
- S ∈ Σ∗ is a string over the alphabet Σ,
- T is the suffix tree for S$,
- v is a node in the suffix tree
and that there are x ∈ Σ, α ∈ Σ∗, such that

path(T , v) = xα

⇒ ∃ (exactly one) node u with

path(T , u) = α.

Caroline Löbhard JASS 2008 Course 1 - Trees

JASS 2008 Course 1 - Trees

Introduction to suffix trees

Getting a first feeling for the nice structure of suffix trees

Proof.

∃ i , j ∈ {1, ..., |S |} with i 6= j and σ, τ ∈ Σ∗ such that

P[i ,m] = xασ, P[j ,m] = xατ and σ[1] 6= τ [1](∗).

T contains paths from root to a leaf for
P[i + 1,m] = ασ and
P[j + 1,m] = ατ

(∗)⇒ We have a node u with path(T , u) = α.

Caroline Löbhard JASS 2008 Course 1 - Trees

JASS 2008 Course 1 - Trees

Introduction to suffix trees

Getting a first feeling for the nice structure of suffix trees

Theorem

path(T , v) = xα
⇒ ∃ (exactly one) node u with path(T , u) = α.

V = set of internal nodes in T , the Theorem leads to

Definition

Let s : V → V ∪ {root} be the map with

∀ v ∈ V : path(T , s(v)) = path(T , v)[2, |path(T , v)|]

s is called suffix link,
the pairs (v , s(v)) are called suffix links

Example

Caroline Löbhard JASS 2008 Course 1 - Trees

JASS 2008 Course 1 - Trees

Introduction to suffix trees

Getting a first feeling for the nice structure of suffix trees

edge label compression

Theorem

If the edge labels in a suffix trees T are written explicitly on the
edges, then it is not possible to give a linear-time algorithm that
constructs that tree for any String over a fixed or arbitrary
alphabet containing at least two characters.

 Use a pair of indices (i , j) to represent the edge-labels in the
way that the pair (i , j) stands for the substring P[i , j] of P.
For example most of the work done in Ukkonen’s algorithm, the
explicit characters are not even used.

Caroline Löbhard JASS 2008 Course 1 - Trees

JASS 2008 Course 1 - Trees

Suffix tree algorithms

Historical Overview of Algorithms

A historical overview of algorithms

1973 First linear-time algorithm for constructing suffix trees of
strings over a fixed alphabet given by Weiner

1976 McCreight suggested a more space-economic version of
Weiner’s algorithm

1995 Ukkonen gave linear-time on-line algorithm with McCreight’s
time- and space-efficiency

1995 Delcher and Kosaraju published an algorithm that seemed to
solve the still open problem of constructing suffix trees of
strings P over an arbitrary alphabet in O(|P|) time
(time-analysis was incorrect)

1997 Farach closed the gap in giving an algorithm constructing
suffix trees of strings P over an arbitrary alphabet in O(|P|)
time

Caroline Löbhard JASS 2008 Course 1 - Trees

JASS 2008 Course 1 - Trees

Suffix tree algorithms

Ukkonen’s on-line space-economic linear-time algorithm

Ukkonen’s algorithm ...how to use suffix links

Definition

An implicit suffix tree of String S is the tree obtained from the
suffix tree of S$ by

removing the $-symbols from the edge-labels,

afterwards removing all edges without label

and at last removing all nodes with less than two children.

Given a string S over a fixed alphabet Σ let Ii be the implicit
suffix tree for the prefix S [1, i] of S .

To construct the true suffix tree from the implicit one let the
algorithm continue with S$ and afterwards give the right labels to
the leaves.

Caroline Löbhard JASS 2008 Course 1 - Trees

JASS 2008 Course 1 - Trees

Suffix tree algorithms

Ukkonen’s on-line space-economic linear-time algorithm

High-level Description ...to be improved

Input: S ∈ Σ∗

Ukkonen’s algorithm runs in

m = |S | phases

In phase 1, I1 is constructed

In phase i + 1, tree Ii+1 is constructed from Ii

Each phase i + 1 is further divided into i + 1 extensions, one
for each of the i + 1 suffixes of P[1..i + 1].

In extension j of phase i + 1, the suffix P[1..j] is fit into the
tree.

Procedurally, the algorithm is as follows:

Caroline Löbhard JASS 2008 Course 1 - Trees

JASS 2008 Course 1 - Trees

Suffix tree algorithms

Ukkonen’s on-line space-economic linear-time algorithm

Construct tree I1

for i from 1 to m − 1 do
for j from 1 to i + 1 do

Find the end of path with label S [j , i]
if a© ∃ path with label S [j , i + 1] in Ii then

- nothing to do -
else if b© P[j , i] ends at a leaf then

Append P[i + 1] to the leaf-edge
else if c© P[i , j] ends at u ∈ V then

Add edge labelled P[i + 1] and leaf labelled j to u
else if d© P[i , j] ends in the middle of an edge-label then

Add a node to the end-position
Add an edge labelled P[i + 1] and a leaf labelled j to

end if
end for

end for

Caroline Löbhard JASS 2008 Course 1 - Trees

JASS 2008 Course 1 - Trees

Suffix tree algorithms

Ukkonen’s on-line space-economic linear-time algorithm

Using suffix links

First extension of each phase:

The path labelled P[1, i] ends in leaf 1,
 append P[i + 1] to the leaf-edge due to case b© (constant time)

Extension j ≥ 2 of phase i + 1

Assume that extension j − 1 of phase i + 1 is just finished, that
means:

The implicate suffix tree Ii is constructed

∀ k ∈ {1, ..., j − 1} S [k, i + 1] is already inserted

Most recently, we inserted S [j − 1, i + 1]

and now, we want to insert S [j , i + 1]

Caroline Löbhard JASS 2008 Course 1 - Trees

JASS 2008 Course 1 - Trees

Suffix tree algorithms

Ukkonen’s on-line space-economic linear-time algorithm

Single extension algorithm

1 Take the largest k ∈ {j − 1, ..., i} and v ∈ V ∪ {root} with
path(I, v) = S [j − 1, k] walking up at most one edge.

2 If v ∈ V , traverse suffix link from v to s(v)
If v = root, stay there

3 Walk down S [k, i]

4 Insert S [i + 1] due to the rules a©, b©, c©
5 If a new internal node was created, create the corresponding

suffix link

Caroline Löbhard JASS 2008 Course 1 - Trees

JASS 2008 Course 1 - Trees

Suffix tree algorithms

Ukkonen’s on-line space-economic linear-time algorithm

Example

Further improvement of worst case time bound can be achieved
with

skip&count trick: Since S [k, i] has to be included in the
current tree, just match the first character, and if the length
of the corresponding edge-label is smaller than i − k, jump to
the next node.

edge label compression

once case a©, rest of phase case a©, since in case a©, the path
labelled with S [j .i] continues with S [i + 1] and so do the
paths labelled S [g , i] (g ∈ {j + 1, ..., i + 1})
once a leaf, always a leaf (just have a look at the algorithm: It
never extends a leaf-edge beyond its current leaf)

Caroline Löbhard JASS 2008 Course 1 - Trees

JASS 2008 Course 1 - Trees

Suffix tree algorithms

Farach’s linear-time algorithm for strings over an arbitrary alphabet

High-level Description

Problems for integer alphabet

A lower time-bound for building the suffix tree of a String S ∈ Σ is
Ω(|S | log(|Σ|)) since it is at least as large as sorting characters.

The algorithms of Weiner, McCreight and Ukkonen achieve this
time bound, but this is not worth anything for large alphabets.
So let’s take a look at Farach’s algorithm.

Build the suffix tree To of all suffixes beginning at odd
positions in S

Using To , build the suffix tree of all suffixes beginning at even
positions in S

Merge the Trees to get the suffix tree TS of S

Caroline Löbhard JASS 2008 Course 1 - Trees

JASS 2008 Course 1 - Trees

Suffix tree algorithms

Farach’s linear-time algorithm for strings over an arbitrary alphabet

High-level Description

Problems for integer alphabet

A lower time-bound for building the suffix tree of a String S ∈ Σ is
Ω(|S | log(|Σ|)) since it is at least as large as sorting characters.

The algorithms of Weiner, McCreight and Ukkonen achieve this
time bound, but this is not worth anything for large alphabets.
So let’s take a look at Farach’s algorithm.

Build the suffix tree To of all suffixes beginning at odd
positions in S

Using To , build the suffix tree of all suffixes beginning at even
positions in S

Merge the Trees to get the suffix tree TS of S

Caroline Löbhard JASS 2008 Course 1 - Trees

JASS 2008 Course 1 - Trees

Applications of suffix trees

Substring Problem

look for information in DNA

or in a database of DNA-Strings

...

Lowest Common Ancestor Problem

lca problem is equivalent to the Longest Common Prefix Problem,
which is easily solved with the help of suffix trees.

Caroline Löbhard JASS 2008 Course 1 - Trees

JASS 2008 Course 1 - Trees

Applications of suffix trees

thanks for listening!

Caroline Löbhard JASS 2008 Course 1 - Trees

	Introduction to suffix trees
	Basics
	Getting a first feeling for the nice structure of suffix trees

	Suffix tree algorithms
	Historical Overview of Algorithms
	Ukkonen's on-line space-economic linear-time algorithm
	Farach's linear-time algorithm for strings over an arbitrary alphabet

	Applications of suffix trees

