# Lowest Common Ancestor(LCA) <br> a.k.a <br> Nearest Common Ancestor(NCA) 

Fayssal El Moufatich

Technische Universität München<br>St. Petersburg

JASS 2008

## Outline

- Introduction
- Definitions
- Applications
- Algorithms
(1) Harel-Tarjan's Algorithm and its variants
(2) LCA and DRS
(3) RMQ
(9) Bender-Farach's Algorithm
(5) Space-economic algorithm for Bender-Farach's Algorithm


## Introduction

- One of the most fundamental algorithmic problems on trees is how to find the Least Common Ancestor of a pair of nodes.
- Studied intensively because:
- It is inherently algorithmically beautifull.
- Fast algorithms for the LCA problem can be used to solve other algorithmic problems.


## Definitions

- Let there be a rooted tree $T(E, V)$.


## Definitions

- Let there be a rooted tree $T(E, V)$.
- A node $x \in T$ is an ancestor of a node $y \in T$ if the path from the root of T to y goes through x .


## Definitions

- Let there be a rooted tree $T(E, V)$.
- A node $x \in T$ is an ancestor of a node $y \in T$ if the path from the root of T to y goes through x .
- A node $v \in T$ is a common ancestor of $x$ and $y$ if it is an ancestor of both $x$ and $y$.


## Definitions

- Let there be a rooted tree $T(E, V)$.
- A node $x \in T$ is an ancestor of a node $y \in T$ if the path from the root of T to y goes through x .
- A node $v \in T$ is a common ancestor of $x$ and $y$ if it is an ancestor of both x and y .
- The Nearest/Lowest Common Ancestor, NCA or LCA, of two nodes $x, y$ is the common ancestor of $x$ and $y$ whose distance to $x$ (and to $y$ ) smaller than the distance to $x$ of any common ancestor of $x$ and $y$.


## Definitions

- Let there be a rooted tree $T(E, V)$.
- A node $x \in T$ is an ancestor of a node $y \in T$ if the path from the root of T to y goes through x .
- A node $v \in T$ is a common ancestor of $x$ and $y$ if it is an ancestor of both x and y .
- The Nearest/Lowest Common Ancestor, NCA or LCA, of two nodes $x, y$ is the common ancestor of $x$ and $y$ whose distance to $x$ (and to $y$ ) smaller than the distance to $x$ of any common ancestor of $x$ and $y$.
- We denote the NCA of $x$ and $y$ as $n c a(x, y)$.


## Definitions

- Let there be a rooted tree $T(E, V)$.
- A node $x \in T$ is an ancestor of a node $y \in T$ if the path from the root of T to y goes through x .
- A node $v \in T$ is a common ancestor of $x$ and $y$ if it is an ancestor of both x and y .
- The Nearest/Lowest Common Ancestor, NCA or LCA, of two nodes $x, y$ is the common ancestor of $x$ and $y$ whose distance to $x$ (and to $y$ ) smaller than the distance to $x$ of any common ancestor of $x$ and $y$.
- We denote the NCA of $x$ and $y$ as $n c a(x, y)$.
- Efficiently computing NCAs has been studied extensively for the last 3 decades in online and offline settings.


## Definitions

- Let there be a rooted tree $T(E, V)$.
- A node $x \in T$ is an ancestor of a node $y \in T$ if the path from the root of T to y goes through x .
- A node $v \in T$ is a common ancestor of $x$ and $y$ if it is an ancestor of both x and y .
- The Nearest/Lowest Common Ancestor, NCA or LCA, of two nodes $x, y$ is the common ancestor of $x$ and $y$ whose distance to $x$ (and to $y$ ) smaller than the distance to $x$ of any common ancestor of $x$ and $y$.
- We denote the NCA of $x$ and $y$ as $n c a(x, y)$.
- Efficiently computing NCAs has been studied extensively for the last 3 decades in online and offline settings.


## Example



## Applications

- A procedure solving the NCA problem is used by algorithms for:
- Finding the maximum weighted matching in a graph.
- Finding a minimum spanning tree in a graph.
- Finding a dominator tree in a graph in a directed flow-graph.
- Several string algorithms.
- Dynamic planarity testing.
- In network routing.
- Solving various geometric problems including range searching.
- Finding evolutionary trees.
- And in bounded tree-width algorithms.
- ....


## Survey of Algorithms

- One of the most fundamental results on computing NCAS is that of Harel and Tarjan [Harel, 1980], [Harel \& Tarjan, 1984].


## Survey of Algorithms

- One of the most fundamental results on computing NCAS is that of Harel and Tarjan [Harel, 1980], [Harel \& Tarjan, 1984].
- They describe a linear time algorithm to preprocess a tree and build a data structure that allows subsequent NCA queries to be answered in constant time!.


## Survey of Algorithms

- One of the most fundamental results on computing NCAS is that of Harel and Tarjan [Harel, 1980], [Harel \& Tarjan, 1984].
- They describe a linear time algorithm to preprocess a tree and build a data structure that allows subsequent NCA queries to be answered in constant time!.
- Several simpler algorithms with essentially the same properties but better constant factors were proposed afterwards.


## Survey of Algorithms

- One of the most fundamental results on computing NCAS is that of Harel and Tarjan [Harel, 1980], [Harel \& Tarjan, 1984].
- They describe a linear time algorithm to preprocess a tree and build a data structure that allows subsequent NCA queries to be answered in constant time!.
- Several simpler algorithms with essentially the same properties but better constant factors were proposed afterwards.
- They all use the observation that it is rather easy to solve the problem when the input tree is a complete binary tree.


## Survey of Algorithms

- One of the most fundamental results on computing NCAS is that of Harel and Tarjan [Harel, 1980], [Harel \& Tarjan, 1984].
- They describe a linear time algorithm to preprocess a tree and build a data structure that allows subsequent NCA queries to be answered in constant time!.
- Several simpler algorithms with essentially the same properties but better constant factors were proposed afterwards.
- They all use the observation that it is rather easy to solve the problem when the input tree is a complete binary tree.


## How do we do it?

- Label the nodes by their index in an inorder traversal of the complete binary tree.


## How do we do it?

- Label the nodes by their index in an inorder traversal of the complete binary tree.
- If the tree has n nodes, each such number occupies $\ell=\lfloor\log (n)\rfloor$ bits.


## How do we do it?

- Label the nodes by their index in an inorder traversal of the complete binary tree.
- If the tree has n nodes, each such number occupies $\ell=\lfloor\log (n)\rfloor$ bits.
- Assume the LSB is the rightmost and its index is 0 .


## How do we do it?

- Label the nodes by their index in an inorder traversal of the complete binary tree.
- If the tree has n nodes, each such number occupies $\ell=\lfloor\log (n)\rfloor$ bits.
- Assume the LSB is the rightmost and its index is 0 .
- Let inorder $(x)$ and inorder $(y)$ be the inorder indexes of $x$ and $y$.


## How do we do it?

- Label the nodes by their index in an inorder traversal of the complete binary tree.
- If the tree has n nodes, each such number occupies $\ell=\lfloor\log (n)\rfloor$ bits.
- Assume the LSB is the rightmost and its index is 0 .
- Let $\operatorname{inorder}(x)$ and inorder $(y)$ be the inorder indexes of x and y .
- Let $i=\max ((1),(2),(3))$ where:


## How do we do it?

- Label the nodes by their index in an inorder traversal of the complete binary tree.
- If the tree has n nodes, each such number occupies $\ell=\lfloor\log (n)\rfloor$ bits.
- Assume the LSB is the rightmost and its index is 0 .
- Let $\operatorname{inorder}(x)$ and inorder $(y)$ be the inorder indexes of x and y .
- Let $i=\max ((1),(2),(3))$ where:
(1) index of the leftmost bit in which inorder $(x)$ and $\operatorname{inorder}(y)$ differ.


## How do we do it?

- Label the nodes by their index in an inorder traversal of the complete binary tree.
- If the tree has n nodes, each such number occupies $\ell=\lfloor\log (n)\rfloor$ bits.
- Assume the LSB is the rightmost and its index is 0 .
- Let inorder( $x$ ) and inorder ( $y$ ) be the inorder indexes of x and y .
- Let $i=\max ((1),(2),(3))$ where:
(1) index of the leftmost bit in which inorder $(x)$ and inorder $(y)$ differ.
(2) index of the rightmost 1 in inorder $(x)$.


## How do we do it?

- Label the nodes by their index in an inorder traversal of the complete binary tree.
- If the tree has n nodes, each such number occupies $\ell=\lfloor\log (n)\rfloor$ bits.
- Assume the LSB is the rightmost and its index is 0 .
- Let inorder( $x$ ) and inorder ( $y$ ) be the inorder indexes of x and y .
- Let $i=\max ((1),(2),(3))$ where:
(1) index of the leftmost bit in which inorder $(x)$ and inorder $(y)$ differ.
(2) index of the rightmost 1 in inorder $(x)$.
(3) index of the rightmost 1 in inorder $(y)$.


## How do we do it?

- Label the nodes by their index in an inorder traversal of the complete binary tree.
- If the tree has n nodes, each such number occupies $\ell=\lfloor\log (n)\rfloor$ bits.
- Assume the LSB is the rightmost and its index is 0 .
- Let inorder $(x)$ and inorder $(y)$ be the inorder indexes of x and y .
- Let $i=\max ((1),(2),(3))$ where:
(1) index of the leftmost bit in which inorder $(x)$ and inorder $(y)$ differ.
(2) index of the rightmost 1 in inorder $(x)$.
(3) index of the rightmost 1 in inorder (y).
- It can be proved by induction that:


## Lemma:[Shieber \& Vishkin, 1987]

the inorder $(n c a(x, y))$ consists of the leftmost $\ell-i$ bits of inorder ( $x$ ) (or inorder $(y)$ if the max was (3)) followed by a 1 and $i$ zeros.

## How do we do it?

- Label the nodes by their index in an inorder traversal of the complete binary tree.
- If the tree has n nodes, each such number occupies $\ell=\lfloor\log (n)\rfloor$ bits.
- Assume the LSB is the rightmost and its index is 0 .
- Let inorder $(x)$ and inorder $(y)$ be the inorder indexes of x and y .
- Let $i=\max ((1),(2),(3))$ where:
(1) index of the leftmost bit in which inorder $(x)$ and inorder $(y)$ differ.
(2) index of the rightmost 1 in inorder $(x)$.
(3) index of the rightmost 1 in inorder (y).
- It can be proved by induction that:


## Lemma:[Shieber \& Vishkin, 1987]

the inorder $(n c a(x, y))$ consists of the leftmost $\ell-i$ bits of inorder ( $x$ ) (or inorder $(y)$ if the max was (3)) followed by a 1 and $i$ zeros.

## Example

## Basic idea

construct the inorder $(n c a(x, y))$ from inorder(x) and inorder $(y)$ alone and without accessing the original tree or any other global data structure $\Rightarrow$ constant time!

## Example

## Basic idea

construct the inorder $(n c a(x, y))$ from inorder(x) and inorder $(y)$ alone and without accessing the original tree or any other global data structure $\Rightarrow$ constant time!


## Example

## Basic idea

construct the inorder $(n c a(x, y))$ from inorder(x) and inorder $(y)$ alone and without accessing the original tree or any other global data structure $\Rightarrow$ constant time!


## So what if the input tree is not a completely balanced binary tree?

- Simply do a mapping to a completely binary balanced tree!


## So what if the input tree is not a completely balanced binary tree?

- Simply do a mapping to a completely binary balanced tree!
- Different algorithms differ by the way they do the mapping.


## So what if the input tree is not a completely balanced binary tree?

- Simply do a mapping to a completely binary balanced tree!
- Different algorithms differ by the way they do the mapping.
- All algorithms have to use some precomputed auxilliary data structures and the labels of the nodes to compute the NCAS :(.


## So what if the input tree is not a completely balanced binary tree?

- Simply do a mapping to a completely binary balanced tree!
- Different algorithms differ by the way they do the mapping.
- All algorithms have to use some precomputed auxilliary data structures and the labels of the nodes to compute the NCAS :(.
- $\Rightarrow$ Most of algorithms for general trees do not allow to compute a unique identifier of nca $(x, y)$ from short labels associated with $x$ and $y$ alone.


## So what if the input tree is not a completely balanced binary tree?

- Simply do a mapping to a completely binary balanced tree!
- Different algorithms differ by the way they do the mapping.
- All algorithms have to use some precomputed auxilliary data structures and the labels of the nodes to compute the NCAS :(.
- $\Rightarrow$ Most of algorithms for general trees do not allow to compute a unique identifier of nca $(x, y)$ from short labels associated with $x$ and $y$ alone.
- However, ...


## So what if the input tree is not a completely balanced binary tree?

- Simply do a mapping to a completely binary balanced tree!
- Different algorithms differ by the way they do the mapping.
- All algorithms have to use some precomputed auxilliary data structures and the labels of the nodes to compute the NCAS :(.
- $\Rightarrow$ Most of algorithms for general trees do not allow to compute a unique identifier of nca $(x, y)$ from short labels associated with $x$ and $y$ alone.
- However, ...


## Cont.

- One can prove the following:


## Cont.

- One can prove the following:


## Theorem

There is a linear time algorithm that labels the $n$ nodes of a rooted tree $T$ with labels of length $\mathcal{O}(\log n)$ bits such that from the labels of nodes $x, y$ in $T$ alone, one can compute the label of $n c a(x, y)$ in constant time.

## Cont.

- One can prove the following:


## Theorem

There is a linear time algorithm that labels the $n$ nodes of a rooted tree $T$ with labels of length $\mathcal{O}(\log n)$ bits such that from the labels of nodes $x, y$ in $T$ alone, one can compute the label of $n c a(x, y)$ in constant time.

## Proof:[Kaplan et al., 2002]

- Use lexigraphic sorting the sequence of intergers or binary strings.
- Use results from Gilbert and Moore on alphabetic coding of sequences of integers $\langle b\rangle_{k}\left(\left|b_{i}\right|<\log n-\log y_{i}+\mathcal{O}(1)\right.$ for all i).
- use labeling along HPs, Heavy Paths.


## Cont.

- One can prove the following:


## Theorem

There is a linear time algorithm that labels the $n$ nodes of a rooted tree $T$ with labels of length $\mathcal{O}(\log n)$ bits such that from the labels of nodes $x, y$ in $T$ alone, one can compute the label of $n c a(x, y)$ in constant time.

## Proof:[Kaplan et al., 2002]

- Use lexigraphic sorting the sequence of intergers or binary strings.
- Use results from Gilbert and Moore on alphabetic coding of sequences of integers $\langle b\rangle_{k}\left(\left|b_{i}\right|<\log n-\log y_{i}+\mathcal{O}(1)\right.$ for all i).
- use labeling along HPs, Heavy Paths.


## NCA and Discrete Range Searching (DRS)

- Gabow, Bentley and Tarjan observed that one-dimensional DRS problem is equivalent to NCA problem.
- DRS used by most of simple NCA algorithms.


## DRS Problem

Given a sequence of real numbers $x_{1}, x_{2}, \ldots x_{n}$, preprocess the sequence so that one can answer efficiently subsequent queries of the form: given a pair of indices $(i, j)$, what is the maximum element among $x_{i}, \ldots, x_{j}$ or $\max (i, j)$.

## NCA and Discrete Range Searching (DRS)

- Gabow, Bentley and Tarjan observed that one-dimensional DRS problem is equivalent to NCA problem.
- DRS used by most of simple NCA algorithms.


## DRS Problem

Given a sequence of real numbers $x_{1}, x_{2}, \ldots x_{n}$, preprocess the sequence so that one can answer efficiently subsequent queries of the form: given a pair of indices $(i, j)$, what is the maximum element among $x_{i}, \ldots, x_{j}$ or $\max (i, j)$.

- DRS problem is a fundamental geometric searching problem.


## NCA and Discrete Range Searching (DRS)

- Gabow, Bentley and Tarjan observed that one-dimensional DRS problem is equivalent to NCA problem.
- DRS used by most of simple NCA algorithms.


## DRS Problem

Given a sequence of real numbers $x_{1}, x_{2}, \ldots x_{n}$, preprocess the sequence so that one can answer efficiently subsequent queries of the form: given a pair of indices $(i, j)$, what is the maximum element among $x_{i}, \ldots, x_{j}$ or $\max (i, j)$.

- DRS problem is a fundamental geometric searching problem.
- DRS can be reduced to NCA by constructing a Cartesian tree for the sequence $x_{1}, \ldots, x_{n}$ [Gabow et al., 1984].


## NCA and Discrete Range Searching (DRS)

- Gabow, Bentley and Tarjan observed that one-dimensional DRS problem is equivalent to NCA problem.
- DRS used by most of simple NCA algorithms.


## DRS Problem

Given a sequence of real numbers $x_{1}, x_{2}, \ldots x_{n}$, preprocess the sequence so that one can answer efficiently subsequent queries of the form: given a pair of indices $(i, j)$, what is the maximum element among $x_{i}, \ldots, x_{j}$ or $\max (i, j)$.

- DRS problem is a fundamental geometric searching problem.
- DRS can be reduced to NCA by constructing a Cartesian tree for the sequence $x_{1}, \ldots, x_{n}$ [Gabow et al., 1984].


## What is a Cartesian tree?

## Cartesian Tree

The Cartesian tree of the sequence $x_{1}, \ldots, x_{n}$ is a binary tree with $n$ nodes each containing a number $x_{i}$ and the following properties:

## What is a Cartesian tree?

## Cartesian Tree

The Cartesian tree of the sequence $x_{1}, \ldots, x_{n}$ is a binary tree with $n$ nodes each containing a number $x_{i}$ and the following properties:
Let $x_{j}=\max \left(x_{1}, \ldots, x_{n}\right)$

## What is a Cartesian tree?

## Cartesian Tree

The Cartesian tree of the sequence $x_{1}, \ldots, x_{n}$ is a binary tree with $n$ nodes each containing a number $x_{i}$ and the following properties:
Let $x_{j}=\max \left(x_{1}, \ldots, x_{n}\right)$
(1) The root of the Cartesian tree contains $x_{j}$.

## What is a Cartesian tree?

## Cartesian Tree

The Cartesian tree of the sequence $x_{1}, \ldots, x_{n}$ is a binary tree with $n$ nodes each containing a number $x_{i}$ and the following properties:
Let $x_{j}=\max \left(x_{1}, \ldots, x_{n}\right)$
(1) The root of the Cartesian tree contains $x_{j}$.
(2) The left subtree of the root is a Cartesian tree for $x_{1}, \ldots, x_{j-1}$.

## What is a Cartesian tree?

## Cartesian Tree

The Cartesian tree of the sequence $x_{1}, \ldots, x_{n}$ is a binary tree with $n$ nodes each containing a number $x_{i}$ and the following properties:
Let $x_{j}=\max \left(x_{1}, \ldots, x_{n}\right)$
(1) The root of the Cartesian tree contains $x_{j}$.
(2) The left subtree of the root is a Cartesian tree for $x_{1}, \ldots, x_{j-1}$.
(3) The right subtree of the root is a Cartesian tree for $x_{j+1}, \ldots, x_{n}$.

## What is a Cartesian tree?

## Cartesian Tree

The Cartesian tree of the sequence $x_{1}, \ldots, x_{n}$ is a binary tree with $n$ nodes each containing a number $x_{i}$ and the following properties:
Let $x_{j}=\max \left(x_{1}, \ldots, x_{n}\right)$
(1) The root of the Cartesian tree contains $x_{j}$.
(2) The left subtree of the root is a Cartesian tree for $x_{1}, \ldots, x_{j-1}$.
(3) The right subtree of the root is a Cartesian tree for $x_{j+1}, \ldots, x_{n}$.

## Remarks

- The Cartesian tree for $x_{1}, \ldots, x_{n}$ can be constructed in $\mathcal{O}(n)$ [Vuillemin, 1980].


## What is a Cartesian tree?

## Cartesian Tree

The Cartesian tree of the sequence $x_{1}, \ldots, x_{n}$ is a binary tree with $n$ nodes each containing a number $x_{i}$ and the following properties:
Let $x_{j}=\max \left(x_{1}, \ldots, x_{n}\right)$
(1) The root of the Cartesian tree contains $x_{j}$.
(2) The left subtree of the root is a Cartesian tree for $x_{1}, \ldots, x_{j-1}$.
(3) The right subtree of the root is a Cartesian tree for $x_{j+1}, \ldots, x_{n}$.

## Remarks

- The Cartesian tree for $x_{1}, \ldots, x_{n}$ can be constructed in $\mathcal{O}(n)$ [Vuillemin, 1980].
- The maximum among $x_{i}, \ldots, x_{j}$ corresponds to just the NCA of the node containing $x_{i}$ and the node containing $x_{j}$.


## What is a Cartesian tree?

## Cartesian Tree

The Cartesian tree of the sequence $x_{1}, \ldots, x_{n}$ is a binary tree with $n$ nodes each containing a number $x_{i}$ and the following properties:
Let $x_{j}=\max \left(x_{1}, \ldots, x_{n}\right)$
(1) The root of the Cartesian tree contains $x_{j}$.
(2) The left subtree of the root is a Cartesian tree for $x_{1}, \ldots, x_{j-1}$.
(3) The right subtree of the root is a Cartesian tree for $x_{j+1}, \ldots, x_{n}$.

## Remarks

- The Cartesian tree for $x_{1}, \ldots, x_{n}$ can be constructed in $\mathcal{O}(n)$ [Vuillemin, 1980].
- The maximum among $x_{i}, \ldots, x_{j}$ corresponds to just the NCA of the node containing $x_{i}$ and the node containing $x_{j}$.


## What about NCA as DRS?

- Gabow et al. also show how to reduce the NCA problem to the DRS problem.
- Given a tree, we first construct a sequence of its nodes by doing a depth first traversal.


## What about NCA as DRS?

- Gabow et al. also show how to reduce the NCA problem to the DRS problem.
- Given a tree, we first construct a sequence of its nodes by doing a depth first traversal.
- Each time we visit a node, we add it to the end of the sequence so that each node appears in the sequence as many times as its degree.[a prefix of the Euler tour of the tree]


## What about NCA as DRS?

- Gabow et al. also show how to reduce the NCA problem to the DRS problem.
- Given a tree, we first construct a sequence of its nodes by doing a depth first traversal.
- Each time we visit a node, we add it to the end of the sequence so that each node appears in the sequence as many times as its degree.[a prefix of the Euler tour of the tree]
- Let depth $(x)$ be the depth of a node x .


## What about NCA as DRS?

- Gabow et al. also show how to reduce the NCA problem to the DRS problem.
- Given a tree, we first construct a sequence of its nodes by doing a depth first traversal.
- Each time we visit a node, we add it to the end of the sequence so that each node appears in the sequence as many times as its degree.[a prefix of the Euler tour of the tree]
- Let depth $(x)$ be the depth of a node x .
- Replace each node x in the sequence by -depth( $x$ ).


## What about NCA as DRS?

- Gabow et al. also show how to reduce the NCA problem to the DRS problem.
- Given a tree, we first construct a sequence of its nodes by doing a depth first traversal.
- Each time we visit a node, we add it to the end of the sequence so that each node appears in the sequence as many times as its degree.[a prefix of the Euler tour of the tree]
- Let depth $(x)$ be the depth of a node x .
- Replace each node x in the sequence by -depth( $x$ ).
- To compute $n c a(x, y)$, we pick arbirary 2 elements $x_{i}$ and $x_{j}$ representing x and y , and compute the maximum among $x_{i}, \ldots, x_{j}$.


## What about NCA as DRS?

- Gabow et al. also show how to reduce the NCA problem to the DRS problem.
- Given a tree, we first construct a sequence of its nodes by doing a depth first traversal.
- Each time we visit a node, we add it to the end of the sequence so that each node appears in the sequence as many times as its degree.[a prefix of the Euler tour of the tree]
- Let depth $(x)$ be the depth of a node x .
- Replace each node x in the sequence by -depth( $x$ ).
- To compute $n c a(x, y)$, we pick arbirary 2 elements $x_{i}$ and $x_{j}$ representing x and y , and compute the maximum among $x_{i}, \ldots, x_{j}$.
- The node corresponding to the maximum element is $n c a(x, y)$ !


## What about NCA as DRS?

- Gabow et al. also show how to reduce the NCA problem to the DRS problem.
- Given a tree, we first construct a sequence of its nodes by doing a depth first traversal.
- Each time we visit a node, we add it to the end of the sequence so that each node appears in the sequence as many times as its degree.[a prefix of the Euler tour of the tree]
- Let depth $(x)$ be the depth of a node x .
- Replace each node x in the sequence by -depth( $x$ ).
- To compute $n c a(x, y)$, we pick arbirary 2 elements $x_{i}$ and $x_{j}$ representing x and y , and compute the maximum among $x_{i}, \ldots, x_{j}$.
- The node corresponding to the maximum element is $n c a(x, y)$ !


## Euler tour of a tree



## Euler tour of the tree on the left

## 0121210121210 <br>  <br> Query Interval

## What is the LCA of given two nodes then?

- Simply the node of the least depth (i.e. Closest to the root) that lies between the nodes in the Euler tour.


## What is the LCA of given two nodes then?

- Simply the node of the least depth (i.e. Closest to the root) that lies between the nodes in the Euler tour.
- Hence, finding specific node in the tree $\Leftrightarrow$ finding minimum element in the proper interval in the array of numbers.


## What is the LCA of given two nodes then?

- Simply the node of the least depth (i.e. Closest to the root) that lies between the nodes in the Euler tour.
- Hence, finding specific node in the tree $\Leftrightarrow$ finding minimum element in the proper interval in the array of numbers.
- Latter problem can be solved by min-range queries.


## What is the LCA of given two nodes then?

- Simply the node of the least depth (i.e. Closest to the root) that lies between the nodes in the Euler tour.
- Hence, finding specific node in the tree $\Leftrightarrow$ finding minimum element in the proper interval in the array of numbers.
- Latter problem can be solved by min-range queries.


## Range Minimum Query (RMQ) Problem

## Definition of RMQ Problem

- Same as the DSR problem but outputs the minimum instead.
- Structure to Preprocess: an array of numbers of length $n$.


## Range Minimum Query (RMQ) Problem

## Definition of RMQ Problem

- Same as the DSR problem but outputs the minimum instead.
- Structure to Preprocess: an array of numbers of length $n$.
- Query: for indices $i$ and $j$ and $n$, query $\operatorname{RMQ}(x, y)$ returns the index of the smallest element in the subarray $A[i \ldots j]$.


## Range Minimum Query (RMQ) Problem

## Definition of RMQ Problem

- Same as the DSR problem but outputs the minimum instead.
- Structure to Preprocess: an array of numbers of length $n$.
- Query: for indices $i$ and $j$ and $n$, query $\operatorname{RMQ}(x, y)$ returns the index of the smallest element in the subarray $A[i \ldots j]$.


## Remark

As with the DSR algorithm, LCA can be reduced to an RMQ problem.[Bender-Farach, 2000]

## Range Minimum Query (RMQ) Problem

## Definition of RMQ Problem

- Same as the DSR problem but outputs the minimum instead.
- Structure to Preprocess: an array of numbers of length $n$.
- Query: for indices $i$ and $j$ and $n$, query $\operatorname{RMQ}(x, y)$ returns the index of the smallest element in the subarray $A[i \ldots j]$.


## Remark

As with the DSR algorithm, LCA can be reduced to an RMQ problem.[Bender-Farach, 2000]

## Range Minimum Query (RMQ) Problem

## Definition of RMQ Problem

- Same as the DSR problem but outputs the minimum instead.
- Structure to Preprocess: an array of numbers of length $n$.
- Query: for indices $i$ and $j$ and $n$, query $\operatorname{RMQ}(x, y)$ returns the index of the smallest element in the subarray $A[i \ldots j]$.


## Remark

As with the DSR algorithm, LCA can be reduced to an RMQ problem.[Bender-Farach, 2000]

$$
\mathrm{RMQ}_{\mathrm{A}}(2,7)=3
$$

| $A[0]$ | $A[1]$ | $A[2]$ | $A[3]$ | $A[4]$ | $A[5]$ | $A[6]$ | $A[7]$ | $A[8]$ | $A[9]$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 4 | 3 | 1 | 6 | 7 | 8 | 9 | 1 | 7 |

## Isn't that a loop in our reduction?

- We started by reducing the range-min/DSR problem to an LCA problem


## Isn't that a loop in our reduction?

- We started by reducing the range-min/DSR problem to an LCA problem
- Answer is no!


## Isn't that a loop in our reduction?

- We started by reducing the range-min/DSR problem to an LCA problem
- Answer is no!
- The constructed array of numbers has a special property known as $\mp 1$ property:


## Isn't that a loop in our reduction?

- We started by reducing the range-min/DSR problem to an LCA problem
- Answer is no!
- The constructed array of numbers has a special property known as $\mp 1$ property:


## $\mp 1$ property

Each number differs by exactly one from its preceding number.

## Isn't that a loop in our reduction?

- We started by reducing the range-min/DSR problem to an LCA problem
- Answer is no!
- The constructed array of numbers has a special property known as $\mp 1$ property:


## $\mp 1$ property

Each number differs by exactly one from its preceding number.

- Hence, our reduction is a special case of the range-min query problem that can be solved without further reductions.


## Isn't that a loop in our reduction?

- We started by reducing the range-min/DSR problem to an LCA problem
- Answer is no!
- The constructed array of numbers has a special property known as $\mp 1$ property:


## $\mp 1$ property

Each number differs by exactly one from its preceding number.

- Hence, our reduction is a special case of the range-min query problem that can be solved without further reductions.


## Cont.

- Our goal then is to solve the following problem:


## Cont.

- Our goal then is to solve the following problem:


## Problem

Preprocess an array of $n$ numbers satisfying the $\mp 1$ property such that given two indices i and j in the array, determine the index of the minimum element within the given range $[i, j], \mathcal{O}(1)$ time and $\mathcal{O}(n)$ space.

## Cont.

- Our goal then is to solve the following problem:


## Problem

Preprocess an array of $n$ numbers satisfying the $\mp 1$ property such that given two indices i and j in the array, determine the index of the minimum element within the given range $[i, j], \mathcal{O}(1)$ time and $\mathcal{O}(n)$ space.

## Bender-Farach Algorithm for LCA

- Reengineered from existing complicated LCA algorithms. (PRAM from Berkman et al.)


## Bender-Farach Algorithm for LCA

- Reengineered from existing complicated LCA algorithms. (PRAM from Berkman et al.)
- Reduces the LCA problem to an RMQ problem and considers RMQ solutions rather.


## Bender-Farach Algorithm for LCA

- Reengineered from existing complicated LCA algorithms. (PRAM from Berkman et al.)
- Reduces the LCA problem to an RMQ problem and considers RMQ solutions rather.


## Naïve Attempt

- RMQ has a simple solution with complexity $\left\langle\mathcal{O}\left(n^{2}\right), \mathcal{O}(1)\right\rangle$ :


## Naïve Attempt

- RMQ has a simple solution with complexity $\left\langle\mathcal{O}\left(n^{2}\right), \mathcal{O}(1)\right\rangle$ :
- Build a lookup table storing answers to all the $n^{2}$ possible queries.


## Naïve Attempt

- RMQ has a simple solution with complexity $\left\langle\mathcal{O}\left(n^{2}\right), \mathcal{O}(1)\right\rangle$ :
- Build a lookup table storing answers to all the $n^{2}$ possible queries.
- To achieve $\mathcal{O}\left(n^{2}\right)$ preprocessing rather than $\mathcal{O}\left(n^{3}\right)$, we use a trivial dynamic program.


## Naïve Attempt

- RMQ has a simple solution with complexity $\left\langle\mathcal{O}\left(n^{2}\right), \mathcal{O}(1)\right\rangle$ :
- Build a lookup table storing answers to all the $n^{2}$ possible queries.
- To achieve $\mathcal{O}\left(n^{2}\right)$ preprocessing rather than $\mathcal{O}\left(n^{3}\right)$, we use a trivial dynamic program.


## A Faster RMQ Algorithm

- Idea: precompute each query whose length is a power of 2.


## A Faster RMQ Algorithm

- Idea: precompute each query whose length is a power of 2 .
- i.e. for each i in $[1, n]$ and every j in $[1, \log n]$, find the minimum of the block starting at i and has length $2^{j}$


## A Faster RMQ Algorithm

- Idea: precompute each query whose length is a power of 2 .
- i.e. for each i in $[1, n]$ and every j in $[1, \log n]$, find the minimum of the block starting at i and has length $2^{j}$
- i.e.
(1)

$$
M[i, j]=\operatorname{argmin}_{k=i \ldots i+2^{j}-1} A[k]
$$

## A Faster RMQ Algorithm

- Idea: precompute each query whose length is a power of 2 .
- i.e. for each i in $[1, n]$ and every j in $[1, \log n]$, find the minimum of the block starting at i and has length $2^{j}$
- i.e.
(1)

$$
M[i, j]=\operatorname{argmin}_{k=i \ldots . .+2^{j}-1} A[k]
$$

- Table M has size $\mathcal{O}(n \log n)$


## A Faster RMQ Algorithm

- Idea: precompute each query whose length is a power of 2 .
- i.e. for each i in $[1, n]$ and every j in $[1, \log n]$, find the minimum of the block starting at i and has length $2^{j}$
- i.e.
(1)

$$
M[i, j]=\operatorname{argmin}_{k=i \ldots i+2^{j}-1} A[k]
$$

- Table M has size $\mathcal{O}(n \log n)$
- We fill it in using dynamic programming.


## A Faster RMQ Algorithm

- Idea: precompute each query whose length is a power of 2.
- i.e. for each i in $[1, n]$ and every j in $[1, \log n]$, find the minimum of the block starting at i and has length $2^{j}$
- i.e.
(1)

$$
M[i, j]=\operatorname{argmin}_{k=i \ldots i+2^{j}-1} A[k]
$$

- Table M has size $\mathcal{O}(n \log n)$
- We fill it in using dynamic programming.
- Find the minimum in a block of size $2^{j}$ by comparing the two minima of its constituent blocks of size $2^{j-1}$.


## A Faster RMQ Algorithm

- Idea: precompute each query whose length is a power of 2.
- i.e. for each i in $[1, n]$ and every j in $[1, \log n]$, find the minimum of the block starting at $i$ and has length $2^{j}$
- i.e.
(1)

$$
M[i, j]=\operatorname{argmin}_{k=i \ldots . .+2^{j}-1} A[k]
$$

- Table M has size $\mathcal{O}(n \log n)$
- We fill it in using dynamic programming.
- Find the minimum in a block of size $2^{j}$ by comparing the two minima of its constituent blocks of size $2^{j-1}$.
- Formally speaking,
(2) $M[i, j]=M[i, j-1]$ if $A[M[i, j-1]] \leq A\left[M\left[i+2^{j-1}, j-1\right]\right]$ and

$$
\begin{equation*}
M[i, j]=M\left[i+2^{j-1}, j-1\right] \text { otherwise } \tag{3}
\end{equation*}
$$

## A Faster RMQ Algorithm

- Idea: precompute each query whose length is a power of 2.
- i.e. for each i in $[1, n]$ and every j in $[1, \log n]$, find the minimum of the block starting at $i$ and has length $2^{j}$
- i.e.
(1)

$$
M[i, j]=\operatorname{argmin}_{k=i \ldots . .+2^{j}-1} A[k]
$$

- Table M has size $\mathcal{O}(n \log n)$
- We fill it in using dynamic programming.
- Find the minimum in a block of size $2^{j}$ by comparing the two minima of its constituent blocks of size $2^{j-1}$.
- Formally speaking,
(2) $M[i, j]=M[i, j-1]$ if $A[M[i, j-1]] \leq A\left[M\left[i+2^{j-1}, j-1\right]\right]$ and

$$
\begin{equation*}
M[i, j]=M\left[i+2^{j-1}, j-1\right] \text { otherwise } \tag{3}
\end{equation*}
$$

## How do we use blocks to compute an arbitrary RMQ $(\mathrm{i}, \mathrm{j})$ ?

- Select 2 overlapping blocks that entirely cover the subrange.


## How do we use blocks to compute an arbitrary RMQ(i,j)?

- Select 2 overlapping blocks that entirely cover the subrange.
- Let $2^{k}$ be the size of the largest block that fits into the range from i to j, i.e. $k=\lfloor\log (j-i)\rfloor$.


## How do we use blocks to compute an arbitrary RMQ $(\mathrm{i}, \mathrm{j})$ ?

- Select 2 overlapping blocks that entirely cover the subrange.
- Let $2^{k}$ be the size of the largest block that fits into the range from i to j , i.e. $k=\lfloor\log (j-i)\rfloor$.
- $R M Q(i, j)$ can be computed by comparing the minima of the 2 blocks: i to $i+2^{k}-1(M(i, k))$ and $j-2^{k}+1$ to $j\left(M\left(j-2^{k}+1, k\right)\right)$.


## How do we use blocks to compute an arbitrary RMQ $(\mathrm{i}, \mathrm{j})$ ?

- Select 2 overlapping blocks that entirely cover the subrange.
- Let $2^{k}$ be the size of the largest block that fits into the range from i to j, i.e. $k=\lfloor\log (j-i)\rfloor$.
- $R M Q(i, j)$ can be computed by comparing the minima of the 2 blocks: i to $i+2^{k}-1(M(i, k))$ and $j-2^{k}+1$ to $j\left(M\left(j-2^{k}+1, k\right)\right)$.
- Already computed values $\Rightarrow$ we can find RMQ in constant time!


## How do we use blocks to compute an arbitrary RMQ $(\mathrm{i}, \mathrm{j})$ ?

- Select 2 overlapping blocks that entirely cover the subrange.
- Let $2^{k}$ be the size of the largest block that fits into the range from i to j, i.e. $k=\lfloor\log (j-i)\rfloor$.
- $R M Q(i, j)$ can be computed by comparing the minima of the 2 blocks: i to $i+2^{k}-1(M(i, k))$ and $j-2^{k}+1$ to $j\left(M\left(j-2^{k}+1, k\right)\right)$.
- Already computed values $\Rightarrow$ we can find RMQ in constant time!


## Remarks

- This gives the Sparse Table(TS) algorithm for RMQ with complexity $\langle\mathcal{O}(n \log n), \mathcal{O}(1)\rangle$.


## Remarks

- This gives the Sparse Table(TS) algorithm for RMQ with complexity $\langle\mathcal{O}(n \log n), \mathcal{O}(1)\rangle$.
- Total computation to answer an RMQ query is 3 additions, 4 array reference and a minimum, and 2 ops: log and floor.


## Remarks

- This gives the Sparse Table(TS) algorithm for RMQ with complexity $\langle\mathcal{O}(n \log n), \mathcal{O}(1)\rangle$.
- Total computation to answer an RMQ query is 3 additions, 4 array reference and a minimum, and 2 ops: log and floor.
- Can be seen as problem of finding the MSB of a word.


## Remarks

- This gives the Sparse Table(TS) algorithm for RMQ with complexity $\langle\mathcal{O}(n \log n), \mathcal{O}(1)\rangle$.
- Total computation to answer an RMQ query is 3 additions, 4 array reference and a minimum, and 2 ops: log and floor.
- Can be seen as problem of finding the MSB of a word.
- LCA problem shown to have $\Omega(\log \log n)$ on a pointer machine by Harel and Tarjan.


## Remarks

- This gives the Sparse Table(TS) algorithm for RMQ with complexity $\langle\mathcal{O}(n \log n), \mathcal{O}(1)\rangle$.
- Total computation to answer an RMQ query is 3 additions, 4 array reference and a minimum, and 2 ops: log and floor.
- Can be seen as problem of finding the MSB of a word.
- LCA problem shown to have $\Omega(\log \log n)$ on a pointer machine by Harel and Tarjan.


## An $\langle\mathcal{O}(n), \mathcal{O}(1)\rangle$ algorithm for $\mp \mathrm{RMQ}$

- Faster algorithm for $\mp R M Q$ !


## An $\langle\mathcal{O}(n), \mathcal{O}(1)\rangle$ algorithm for $\mp \mathrm{RMQ}$

- Faster algorithm for $\mp R M Q$ !
- Suppose we have array A with $\mp$ restriction.


## An $\langle\mathcal{O}(n), \mathcal{O}(1)\rangle$ algorithm for $\mp \mathrm{RMQ}$

- Faster algorithm for $\mp R M Q$ !
- Suppose we have array A with $\mp$ restriction.
- Use lookup-table to precompute answers for small subarrays? $\Rightarrow$ remove log factor from preprocessing!


## An $\langle\mathcal{O}(n), \mathcal{O}(1)\rangle$ algorithm for $\mp \mathrm{RMQ}$

- Faster algorithm for $\mp R M Q$ !
- Suppose we have array A with $\mp$ restriction.
- Use lookup-table to precompute answers for small subarrays? $\Rightarrow$ remove log factor from preprocessing!
- Partition A into blocks of size $\frac{\log n}{2}$.


## An $\langle\mathcal{O}(n), \mathcal{O}(1)\rangle$ algorithm for $\mp \mathrm{RMQ}$

- Faster algorithm for $\mp R M Q$ !
- Suppose we have array A with $\mp$ restriction.
- Use lookup-table to precompute answers for small subarrays? $\Rightarrow$ remove log factor from preprocessing!
- Partition A into blocks of size $\frac{\log n}{2}$.
- Define an array $A^{\prime}\left[1, \ldots, \frac{2 n}{\log n}\right]$ where $A^{\prime}[i]$ is the minimum of the ith block of A.


## An $\langle\mathcal{O}(n), \mathcal{O}(1)\rangle$ algorithm for $\mp \mathrm{RMQ}$

- Faster algorithm for $\mp R M Q$ !
- Suppose we have array A with $\mp$ restriction.
- Use lookup-table to precompute answers for small subarrays? $\Rightarrow$ remove log factor from preprocessing!
- Partition A into blocks of size $\frac{\log n}{2}$.
- Define an array $A^{\prime}\left[1, \ldots, \frac{2 n}{\log n}\right]$ where $A^{\prime}[i]$ is the minimum of the ith block of A.
- Define an equal size array $B$ where $B[i]$ is a position in the ith block in which $\mathrm{A}[\mathrm{i}]$ occurs.


## An $\langle\mathcal{O}(n), \mathcal{O}(1)\rangle$ algorithm for $\mp \mathrm{RMQ}$

- Faster algorithm for $\mp R M Q$ !
- Suppose we have array A with $\mp$ restriction.
- Use lookup-table to precompute answers for small subarrays? $\Rightarrow$ remove log factor from preprocessing!
- Partition A into blocks of size $\frac{\log n}{2}$.
- Define an array $A^{\prime}\left[1, \ldots, \frac{2 n}{\log n}\right]$ where $A^{\prime}[i]$ is the minimum of the ith block of A.
- Define an equal size array $B$ where $B[i]$ is a position in the ith block in which $\mathrm{A}[\mathrm{i}]$ occurs.
- B used to keep track of where the minima of A came from.


## An $\langle\mathcal{O}(n), \mathcal{O}(1)\rangle$ algorithm for $\mp \mathrm{RMQ}$

- Faster algorithm for $\mp R M Q$ !
- Suppose we have array A with $\mp$ restriction.
- Use lookup-table to precompute answers for small subarrays? $\Rightarrow$ remove log factor from preprocessing!
- Partition A into blocks of size $\frac{\log n}{2}$.
- Define an array $A^{\prime}\left[1, \ldots, \frac{2 n}{\log n}\right]$ where $A^{\prime}[i]$ is the minimum of the ith block of A.
- Define an equal size array $B$ where $B[i]$ is a position in the ith block in which $\mathrm{A}[\mathrm{i}]$ occurs.
- B used to keep track of where the minima of A came from.


## Cont.

- ST algorithm runs on A in time $\langle\mathcal{O}(n), \mathcal{O}(1)\rangle$.


## Cont.

- ST algorithm runs on A in time $\langle\mathcal{O}(n), \mathcal{O}(1)\rangle$.
- Consider RMQ( $i, j$ ) in $A$ :
- i and j can be in same block? $\Rightarrow$ process each block to answer RMQ queries.


## Cont.

- ST algorithm runs on A in time $\langle\mathcal{O}(n), \mathcal{O}(1)\rangle$.
- Consider RMQ( $i, j$ ) in $A$ :
- i and j can be in same block? $\Rightarrow$ process each block to answer RMQ queries.
- $i<j$ :


## Cont.

- ST algorithm runs on A in time $\langle\mathcal{O}(n), \mathcal{O}(1)\rangle$.
- Consider RMQ( $i, j$ ) in $A$ :
- $i$ and $j$ can be in same block? $\Rightarrow$ process each block to answer RMQ queries.
- $i<j$ :
- Minimum from i forward to end of its block.


## Cont.

- ST algorithm runs on A in time $\langle\mathcal{O}(n), \mathcal{O}(1)\rangle$.
- Consider RMQ(i,j) in A:
- i and j can be in same block? $\Rightarrow$ process each block to answer RMQ queries.
- $i<j$ :
- Minimum from i forward to end of its block.
- Minimum of all blocks btw. is block and js block.


## Cont.

- ST algorithm runs on A in time $\langle\mathcal{O}(n), \mathcal{O}(1)\rangle$.
- Consider RMQ(i,j) in A:
- i and j can be in same block? $\Rightarrow$ process each block to answer RMQ queries.
- $i<j$ :
- Minimum from i forward to end of its block.
- Minimum of all blocks btw. is block and js block.
- Minimum from beginning of js block to j .


## Cont.

- ST algorithm runs on A in time $\langle\mathcal{O}(n), \mathcal{O}(1)\rangle$.
- Consider RMQ(i,j) in A:
- $i$ and $j$ can be in same block? $\Rightarrow$ process each block to answer RMQ queries.
- $i<j$ :
- Minimum from i forward to end of its block.
- Minimum of all blocks btw. is block and js block.
- Minimum from beginning of js block to j .
- 2nd minimum is found in constant time by RMQ on A.


## Cont.

- ST algorithm runs on A in time $\langle\mathcal{O}(n), \mathcal{O}(1)\rangle$.
- Consider RMQ(i,j) in A:
- $i$ and $j$ can be in same block? $\Rightarrow$ process each block to answer RMQ queries.
- $i<j$ :
- Minimum from i forward to end of its block.
- Minimum of all blocks btw. is block and js block.
- Minimum from beginning of js block to j .
- 2nd minimum is found in constant time by RMQ on A.


## How to answer range RMQ queries inside blocks?

- In-block queries needed for 1 st and 3rd values to complete algorithm.


## How to answer range RMQ queries inside blocks?

- In-block queries needed for 1 st and 3rd values to complete algorithm.
- RMQ processing on each block $\Rightarrow$ too much time in processing!


## How to answer range RMQ queries inside blocks?

- In-block queries needed for 1 st and 3rd values to complete algorithm.
- RMQ processing on each block $\Rightarrow$ too much time in processing!
- 2 blocks identical? $\Rightarrow$ share their processing!


## How to answer range RMQ queries inside blocks?

- In-block queries needed for 1 st and 3rd values to complete algorithm.
- RMQ processing on each block $\Rightarrow$ too much time in processing!
- 2 blocks identical? $\Rightarrow$ share their processing!
- Too much hope that blocks would be so repeated!:(


## How to answer range RMQ queries inside blocks?

- In-block queries needed for 1st and 3rd values to complete algorithm.
- RMQ processing on each block $\Rightarrow$ too much time in processing!
- 2 blocks identical? $\Rightarrow$ share their processing!
- Too much hope that blocks would be so repeated!:(


## Observation

If two arrays $\mathrm{X}[1, \ldots, k]$ and $\mathrm{Y}[1, \ldots, k]$ differ by some fixed value at each position, that is, there is a $c$ such that $X[i]=Y[i]+c$ for every $i$, then all RMQ answers will be the same for X and Y .

## How to answer range RMQ queries inside blocks?

- In-block queries needed for 1st and 3rd values to complete algorithm.
- RMQ processing on each block $\Rightarrow$ too much time in processing!
- 2 blocks identical? $\Rightarrow$ share their processing!
- Too much hope that blocks would be so repeated!:(


## Observation

If two arrays $\mathrm{X}[1, \ldots, k]$ and $\mathrm{Y}[1, \ldots, k]$ differ by some fixed value at each position, that is, there is a $c$ such that $X[i]=Y[i]+c$ for every $i$, then all RMQ answers will be the same for X and Y .

## Cont.

- Normalize a block by subtracting its initial offset from every element.


## Cont.

- Normalize a block by subtracting its initial offset from every element.
- Use the $\mp 1$ property to show there very few kinds of normlized blocks:


## Cont.

- Normalize a block by subtracting its initial offset from every element.
- Use the $\mp 1$ property to show there very few kinds of normlized blocks:


## Lemma

There are $\mathcal{O}(\sqrt{n})$ kinds of normalized blocks

## Cont.

- Normalize a block by subtracting its initial offset from every element.
- Use the $\mp 1$ property to show there very few kinds of normlized blocks:


## Lemma

There are $\mathcal{O}(\sqrt{n})$ kinds of normalized blocks

## Proof.

Adjacent elements in normalized blocks differ by +1 or -1 . Thus, normalized blocks are specified by $\mp 1$ vector of length $\frac{1}{2 \log n}-1$. There are $2^{\frac{1}{2 \log n}-1}=\mathcal{O}(\sqrt{n})$ such vectors ([Farach-Bender, 2000])

## Cont.

- Normalize a block by subtracting its initial offset from every element.
- Use the $\mp 1$ property to show there very few kinds of normlized blocks:


## Lemma

There are $\mathcal{O}(\sqrt{n})$ kinds of normalized blocks

## Proof.

Adjacent elements in normalized blocks differ by +1 or -1 . Thus, normalized blocks are specified by $\mp 1$ vector of length $\frac{1}{2 \log n}-1$. There are $2^{\frac{1}{2 \log n}-1}=\mathcal{O}(\sqrt{n})$ such vectors ([Farach-Bender, 2000])

- We are basically done!


## Cont.

- Normalize a block by subtracting its initial offset from every element.
- Use the $\mp 1$ property to show there very few kinds of normlized blocks:


## Lemma

There are $\mathcal{O}(\sqrt{n})$ kinds of normalized blocks

## Proof.

Adjacent elements in normalized blocks differ by +1 or -1 . Thus, normalized blocks are specified by $\mp 1$ vector of length $\frac{1}{2 \log n}-1$. There are $2^{\frac{1}{2 \log n}-1}=\mathcal{O}(\sqrt{n})$ such vectors ([Farach-Bender, 2000])

- We are basically done!
- Create $\mathcal{O}(\sqrt{n})$ tables, one for each possible normalized block.


## Cont.

- Normalize a block by subtracting its initial offset from every element.
- Use the $\mp 1$ property to show there very few kinds of normlized blocks:


## Lemma

There are $\mathcal{O}(\sqrt{n})$ kinds of normalized blocks

## Proof.

Adjacent elements in normalized blocks differ by +1 or -1 . Thus, normalized blocks are specified by $\mp 1$ vector of length $\frac{1}{2 \log n}-1$. There are $2^{\frac{1}{2 \log n}-1}=\mathcal{O}(\sqrt{n})$ such vectors ([Farach-Bender, 2000])

- We are basically done!
- Create $\mathcal{O}(\sqrt{n})$ tables, one for each possible normalized block.
- A total of $\mathcal{O}(\sqrt{n}) \log ^{2} n$ total processing of normalized block tables and $O(1)$ query time.


## Cont.

- Normalize a block by subtracting its initial offset from every element.
- Use the $\mp 1$ property to show there very few kinds of normlized blocks:


## Lemma

There are $\mathcal{O}(\sqrt{n})$ kinds of normalized blocks

## Proof.

Adjacent elements in normalized blocks differ by +1 or -1 . Thus, normalized blocks are specified by $\mp 1$ vector of length $\frac{1}{2 \log n}-1$. There are $2^{\frac{1}{2 \log n}-1}=\mathcal{O}(\sqrt{n})$ such vectors ([Farach-Bender, 2000])

- We are basically done!
- Create $\mathcal{O}(\sqrt{n})$ tables, one for each possible normalized block.
- A total of $\mathcal{O}(\sqrt{n}) \log ^{2} n$ total processing of normalized block tables and $O(1)$ query time.
- Finally compute for each block in A which normalized block table it should use for its RMQ queries.


## Cont.

- Normalize a block by subtracting its initial offset from every element.
- Use the $\mp 1$ property to show there very few kinds of normlized blocks:


## Lemma

There are $\mathcal{O}(\sqrt{n})$ kinds of normalized blocks

## Proof.

Adjacent elements in normalized blocks differ by +1 or -1 . Thus, normalized blocks are specified by $\mp 1$ vector of length $\frac{1}{2 \log n}-1$. There are $2^{\frac{1}{2 \log n}-1}=\mathcal{O}(\sqrt{n})$ such vectors ([Farach-Bender, 2000])

- We are basically done!
- Create $\mathcal{O}(\sqrt{n})$ tables, one for each possible normalized block.
- A total of $\mathcal{O}(\sqrt{n}) \log ^{2} n$ total processing of normalized block tables and $O(1)$ query time.
- Finally compute for each block in A which normalized block table it should use for its RMQ queries.


## Wrapping up!

- Started by reducing from LCA problem to RMQ problem given reduction leads to $\mp 1 R M Q$ problem.


## Wrapping up!

- Started by reducing from LCA problem to RMQ problem given reduction leads to $\mp 1 R M Q$ problem.
- Gave a trivial $\left\langle\mathcal{O}\left(n^{2}\right), \mathcal{O}(1)\right\rangle$ time table-lookup algorithm for RMQ and show how to sparsify the table to get $\langle\mathcal{O}(n \log n), \mathcal{O}(1)\rangle$-time table-lookup algorithm.


## Wrapping up!

- Started by reducing from LCA problem to RMQ problem given reduction leads to $\mp 1 R M Q$ problem.
- Gave a trivial $\left\langle\mathcal{O}\left(n^{2}\right), \mathcal{O}(1)\right\rangle$ time table-lookup algorithm for RMQ and show how to sparsify the table to get $\langle\mathcal{O}(n \log n), \mathcal{O}(1)\rangle$-time table-lookup algorithm.
- Used latter algorithm on a smaller summary array A and needed only to process small blocks to finish algorithm.


## Wrapping up!

- Started by reducing from LCA problem to RMQ problem given reduction leads to $\mp 1 R M Q$ problem.
- Gave a trivial $\left\langle\mathcal{O}\left(n^{2}\right), \mathcal{O}(1)\right\rangle$ time table-lookup algorithm for RMQ and show how to sparsify the table to get $\langle\mathcal{O}(n \log n), \mathcal{O}(1)\rangle$-time table-lookup algorithm.
- Used latter algorithm on a smaller summary array A and needed only to process small blocks to finish algorithm.
- Finally, noticed most of these blocks are the same by using the $\mp 1$ assumption from original reduction.(from RMQ problem point of view).


## Wrapping up!

- Started by reducing from LCA problem to RMQ problem given reduction leads to $\mp 1 R M Q$ problem.
- Gave a trivial $\left\langle\mathcal{O}\left(n^{2}\right), \mathcal{O}(1)\right\rangle$ time table-lookup algorithm for RMQ and show how to sparsify the table to get $\langle\mathcal{O}(n \log n), \mathcal{O}(1)\rangle$-time table-lookup algorithm.
- Used latter algorithm on a smaller summary array A and needed only to process small blocks to finish algorithm.
- Finally, noticed most of these blocks are the same by using the $\mp 1$ assumption from original reduction.(from RMQ problem point of view).


## A Fast Algorithm for RMQ!

- We have $\langle\mathcal{O}(n), \mathcal{O}(1)\rangle \mp \mathrm{RMQ}$.


## A Fast Algorithm for RMQ!

- We have $\langle\mathcal{O}(n), \mathcal{O}(1)\rangle \mp \mathrm{RMQ}$.
- General RMQ can be solved in the same complexity!


## A Fast Algorithm for RMQ!

- We have $\langle\mathcal{O}(n), \mathcal{O}(1)\rangle \mp \mathrm{RMQ}$.
- General RMQ can be solved in the same complexity!
- By reducing RMQ problem to LCA problem again!


## A Fast Algorithm for RMQ!

- We have $\langle\mathcal{O}(n), \mathcal{O}(1)\rangle \mp \mathrm{RMQ}$.
- General RMQ can be solved in the same complexity!
- By reducing RMQ problem to LCA problem again!
- To solve a general RMQ problem, one would convert it to an LCA problem and then back to $\mp 1 \mathrm{RMQ}$ problem!


## A Fast Algorithm for RMQ!

- We have $\langle\mathcal{O}(n), \mathcal{O}(1)\rangle \mp \mathrm{RMQ}$.
- General RMQ can be solved in the same complexity!
- By reducing RMQ problem to LCA problem again!
- To solve a general RMQ problem, one would convert it to an LCA problem and then back to $\mp 1 \mathrm{RMQ}$ problem!


## How?

## Lemma

If there is a $\langle\mathcal{O}(n), \mathcal{O}(1)\rangle$ solution for $L C A$, then there is a $\langle\mathcal{O}(n), \mathcal{O}(1)\rangle$ solution for RMQ.

## How?

## Lemma

If there is a $\langle\mathcal{O}(n), \mathcal{O}(1)\rangle$ solution for $L C A$, then there is a $\langle\mathcal{O}(n), \mathcal{O}(1)\rangle$ solution for $R M Q$.

- $\mathcal{O}(n)$ comes from time needed to build Cartesian Tree C of A and $\mathcal{O}(1)$ comes from time needed to convert LCA to an RMQ answer on A.


## How?

## Lemma

If there is a $\langle\mathcal{O}(n), \mathcal{O}(1)\rangle$ solution for $L C A$, then there is a $\langle\mathcal{O}(n), \mathcal{O}(1)\rangle$ solution for RMQ.

- $\mathcal{O}(n)$ comes from time needed to build Cartesian Tree C of A and $\mathcal{O}(1)$ comes from time needed to convert LCA to an RMQ answer on A.
- We can prove that:
(4) $\quad R M Q_{A}(i, j)=L C A_{C}(i, j)$


## How?

## Lemma

If there is a $\langle\mathcal{O}(n), \mathcal{O}(1)\rangle$ solution for $L C A$, then there is a $\langle\mathcal{O}(n), \mathcal{O}(1)\rangle$ solution for RMQ.

- $\mathcal{O}(n)$ comes from time needed to build Cartesian Tree C of A and $\mathcal{O}(1)$ comes from time needed to convert LCA to an RMQ answer on A.
- We can prove that:
(4) $\quad R M Q_{A}(i, j)=L C A_{C}(i, j)$
- Reduction completed!


## How?

## Lemma

If there is a $\langle\mathcal{O}(n), \mathcal{O}(1)\rangle$ solution for $L C A$, then there is a $\langle\mathcal{O}(n), \mathcal{O}(1)\rangle$ solution for RMQ.

- $\mathcal{O}(n)$ comes from time needed to build Cartesian Tree C of A and $\mathcal{O}(1)$ comes from time needed to convert LCA to an RMQ answer on A.
- We can prove that:
(4) $\quad R M Q_{A}(i, j)=L C A_{C}(i, j)$
- Reduction completed!


## Final Remarks

- We can solve the range-min query problem in an array of n numbers with $\mp 1$ property in $\mathcal{O}(1)$ and $\mathcal{O}(n)$ space.


## Final Remarks

- We can solve the range-min query problem in an array of n numbers with $\mp 1$ property in $\mathcal{O}(1)$ and $\mathcal{O}(n)$ space.
- Divide array A into $\mathrm{m}=\frac{2 n}{\log n}$ buckets, each of size $\mathrm{k}=\frac{\log n}{2}$.


## Final Remarks

- We can solve the range-min query problem in an array of n numbers with $\mp 1$ property in $\mathcal{O}(1)$ and $\mathcal{O}(n)$ space.
- Divide array $A$ into $\mathrm{m}=\frac{2 n}{\log n}$ buckets, each of size $\mathrm{k}=\frac{\log n}{2}$.
- Parallel and distributed versions for algorithm exist!


## Thank you for your attention!

