Course "Trees – The Ubiquitous Structure in Computer Science and Mathematics", JASS'08

The Number of Spanning Trees in a Graph

Konstantin Pieper

Fakultät für Mathematik TU München

April 28, 2008

Definition 1 Let G = (V, E) with $V = \{1, ..., n\}$ and $E = \{e_1, ..., e_m\}$ be a directed graph. Then the incidence matrix $S_G \in M(n, m)$ of G is defined as:

$$(S_G)_{i,j} := \begin{cases} 1 & \text{if } e_j \text{ ends in } i \\ -1 & \text{if } e_j \text{ starts in } i \\ 0 & \text{else} \end{cases}$$

Definition 1 Let G = (V, E) with $V = \{1, ..., n\}$ and $E = \{e_1, ..., e_m\}$ be a directed graph. Then the incidence matrix $S_G \in M(n, m)$ of G is defined as:

$$(S_G)_{i,j} := \begin{cases} 1 & \text{if } e_j \text{ ends in } i \\ -1 & \text{if } e_j \text{ starts in } i \\ 0 & \text{else} \end{cases}$$

Remark 1

For an undirected graph G every $S_{\overline{G}}$ of some arbitrarily oriented directed variant \overline{G} of G can be taken as the incidence matrix.

Example 2

Theorem 3 The rank of the incidence matrix of a graph on n vertices is:

Theorem 3 The rank of the incidence matrix of a graph on n vertices is:

 $rank(S_G) = n - |$ "weakly" connected components of G|

Theorem 3 The rank of the incidence matrix of a graph on n vertices is:

 $rank(S_G) = n - |$ "weakly" connected components of G|

Proof.

Reorder the edges and vertices so that:

$$S_{G} = \begin{pmatrix} S_{G_{1}} & \dots & 0 \\ & S_{G_{2}} & & \vdots \\ \vdots & & \ddots & \\ 0 & \dots & & S_{G_{r}} \end{pmatrix}$$

Remark 2

Since $(1, ..., 1) \cdot S_G = 0$, we can remove an arbitrary row from S_G without losing information.

Remark 2

Since $(1, ..., 1) \cdot S_G = 0$, we can remove an arbitrary row from S_G without losing information.

Definition 4

For every $A \in M(n,m)$ define $\tilde{A} \in M(n-1,m)$ as A without the *n*-th row.

Example 5

 $\tilde{S}_G \cdot \tilde{S}_G^T =$

$$\begin{split} \tilde{S}_G \cdot \tilde{S}_G^T = \\ \begin{pmatrix} -1 & 0 & 0 & 1 & 0 \\ 1 & -1 & 0 & 0 & 1 \\ 0 & 1 & -1 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} -1 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & -1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 2 & -1 & 0 \\ -1 & 3 & -1 \\ 0 & -1 & 2 \end{pmatrix} \end{split}$$

Theorem 6 (Kirchhoff)

The number of spanning trees of a graph G can be calculated as:

 $\det(D_G)$ where $D_G = \tilde{S}_G \cdot \tilde{S}_G^T$

Theorem 6 (Kirchhoff)

The number of spanning trees of a graph G can be calculated as:

$$\det(D_G)$$
 where $D_G = \tilde{S}_G \cdot \tilde{S}_G^T$

Remark 3

$$(D_G)_{i,j} = \left\{ egin{array}{cc} \deg(i) & ext{if } i=j \ -1 & ext{if } \{i,j\} \in E \ 0 & ext{else} \end{array}
ight.$$

Let T = (V, E) be a directed tree that is rooted at n. We can order E so that e_i ends in i.

Let T = (V, E) be a directed tree that is rooted at n. We can order E so that e_i ends in i.

Proof.

Take $e_i := (p(i), i)$, where p(i) is the parent of *i*.

Let T = (V, E) be a directed tree that is rooted at n. We can order E so that e_i ends in i.

Proof.

```
Take e_i := (p(i), i), where p(i) is the parent of i.
```

Remark 4

Every undirected tree on V has exactly one undirected variant that is rooted at n. So for constructing/counting spanning trees we only have to consider graphs with $i \in e_i$.

Lemma 8 Let G = (V, E) with |E| = n - 1 be a directed graph which is not a tree. Then $det(\tilde{S}_G) = 0$.

Let G = (V, E) with |E| = n - 1 be a directed graph which is not a tree. Then $det(\tilde{S}_G) = 0$.

Proof.

Since |E| = n - 1, G is not "weakly" connected. So rank $(\tilde{S}_G) = \operatorname{rank}(S_G) \le n - 2$.

Lemma 9 Let T = (V, E) be a tree with $e_i \in E$ ending in $i \in V$.

Lemma 9 Let T = (V, E) be a tree with $e_i \in E$ ending in $i \in V$. Then $det(\tilde{S}_T) = 1$.

Lemma 9 Let T = (V, E) be a tree with $e_i \in E$ ending in $i \in V$. Then $det(\tilde{S}_T) = 1$.

Proof.

Order the vertices (and edges simultaneously $-e_i$ has to end in i) so that p(i) > i. Then,

$$ilde{S}_{\mathcal{T}} = \left(egin{array}{ccccccccc} 1 & * & \ldots & * \ 0 & 1 & \ddots & dots \ dots & \ddots & \ddots & top \ dots & \ddots & \ddots & top \ 0 & \ldots & 0 & 1 \end{array}
ight)$$

We observe that the *i*-th column of D_G is the sum of "incidence vectors" that correspond to edges in G that have endpoints in the *i*-th vertex.

Figure: First column of D_G

$$D_{.,1} = \begin{pmatrix} 3\\ -1\\ -1 \end{pmatrix} = \begin{pmatrix} 1\\ -1\\ 0 \end{pmatrix} + \begin{pmatrix} 1\\ 0\\ -1 \end{pmatrix} + \begin{pmatrix} 1\\ 0\\ 0 \end{pmatrix}$$

We observe that the *i*-th column of D_G is the sum of "incidence vectors" that correspond to edges in G that have endpoints in the *i*-th vertex. If we now use the linearity of the determinant in every column we obtain:

Figure: Expansion of the determinant

$$\det(D) = \begin{vmatrix} 3 & -1 & -1 \\ -1 & 4 & -1 \\ -1 & -1 & -1 \end{vmatrix}$$
$$= \begin{vmatrix} 1 & -1 & -1 \\ -1 & 4 & -1 \\ 0 & -1 & 4 \end{vmatrix} + \begin{vmatrix} 1 & -1 & -1 \\ 0 & 4 & -1 \\ -1 & -1 & 4 \end{vmatrix} + \begin{vmatrix} 1 & -1 & -1 \\ 0 & 4 & -1 \\ 0 & -1 & 4 \end{vmatrix} = \dots$$

We observe that the *i*-th column of D_G is the sum of "incidence vectors" that correspond to edges in G that have endpoints in the *i*-th vertex. If we now use the linearity of the determinant in every column we obtain:

$$\det(D_G) = \sum_{H \in \mathcal{H}} \det(\widetilde{S}_H)$$

where \mathcal{H} is the set of all subgraphs of G which correspond to a selection of n-1 edges, with e_i ending in i.

We observe that the *i*-th column of D_G is the sum of "incidence vectors" that correspond to edges in G that have endpoints in the *i*-th vertex. If we now use the linearity of the determinant in every column we obtain:

$$\det(D_G) = \sum_{H \in \mathcal{H}} \det(\tilde{S}_H)$$

where \mathcal{H} is the set of all subgraphs of G which correspond to a selection of n-1 edges, with e_i ending in i. To prove the theorem it is now sufficient to use the preceding lemmata.

Definition 10

For a weighted graph G with edge weights $w_{i,k}$ let $S_G(x)$ be the incidence matrix S_G with every column corresponding to $(i, k) \in E$ rescaled by $x^{w_{i,k}}$.

Definition 10

For a weighted graph G with edge weights $w_{i,k}$ let $S_G(x)$ be the incidence matrix S_G with every column corresponding to $(i, k) \in E$ rescaled by $x^{w_{i,k}}$.

$$(S_G(x))_{i,j} = \begin{cases} x^{w_{k,i}} & \text{if } e_j = (k,i) \\ -x^{w_{i,k}} & \text{if } e_j = (i,k) \\ 0 & \text{else} \end{cases}$$

Example 11 (Toy graph H)

Theorem 12 (Matrix-Tree Theorem for weighted graphs) The generating function of the number of spanning trees by weight w is the determinant of

$$D_G(x) = \tilde{S}_G(x) \cdot \tilde{S}_G^T$$

where $\tilde{S}_G(x)$ and \tilde{S}_G are defined as above.

Theorem 12 (Matrix-Tree Theorem for weighted graphs) The generating function of the number of spanning trees by weight w is the determinant of

$$D_G(x) = \tilde{S}_G(x) \cdot \tilde{S}_G^T$$

where $\tilde{S}_G(x)$ and \tilde{S}_G are defined as above. In other words:

$$\det\left(D_G(x)
ight) = \sum_{w=0}^{\infty} |ST \; by \; weight \; w| \cdot x^w$$

Example 13

Remark 5

It is easy to check that we can also write down $D_G(x)$ for any given graph G directly:

$$(D_G(x))_{i,j} = \begin{cases} \sum_{\{i,k\} \in E} x^{w_{i,k}} & \text{if } i = j \\ -x^{w_{i,j}} & \text{if } \{i,j\} \in E \\ 0 & \text{else} \end{cases}$$

Proof.

As above.

Here each spanning tree by weight w contributes x^w to the determinant of $D_G(x)$.

Should we try to calculate $det(D_G(x))$?

- Should we try to calculate $det(D_G(x))$?
- Consider the following graph on 2*n* vertices:

- Should we try to calculate $det(D_G(x))$?
- Consider the following graph on 2*n* vertices:

• det $(D_G(x))$ can have $\Omega(2^n)$ coefficients

 Compute only the number of minimal spanning trees (the coefficient of the minimum degree monomial).

- Compute only the number of minimal spanning trees (the coefficient of the minimum degree monomial).
- ► If w_{min} is the minimal weight for a spanning tree, clearly x^{w_{min}} must divide det(D_G(x))

- Compute only the number of minimal spanning trees (the coefficient of the minimum degree monomial).
- ► If w_{min} is the minimal weight for a spanning tree, clearly x^{w_{min}} must divide det(D_G(x))
- Try to factor out the minimum degree monomial of each column and use the linearity of the determinant.

$$\begin{vmatrix} x^4 + 2x^2 & -x^2 & 0 & -x^2 \\ -x^2 & x^2 + 2x & -x & -x \\ 0 & -x & 2x & -x \\ -x^2 & -x & -x & x^3 + x^2 + 2x \end{vmatrix} = x^5 \cdot \begin{vmatrix} x^2 + 2 & -x & 0 & -x \\ -1 & x + 2 & -1 & -1 \\ 0 & -1 & 2 & -1 \\ -1 & -1 & -1 & x^2 + x + 2 \end{vmatrix}$$

Example 14 (Factor det $(D_G(x))$)

 $\det(D_G(x)) =$

$$\begin{vmatrix} x^4 + 2x^2 & -x^2 & 0 & -x^2 \\ -x^2 & x^2 + 2x & -x & -x \\ 0 & -x & 2x & -x \\ -x^2 & -x & -x & x^3 + x^2 + 2x \end{vmatrix} = x^5 \cdot \begin{vmatrix} x^2 + 2 & -x & 0 & -x \\ -1 & x + 2 & -1 & -1 \\ 0 & -1 & 2 & -1 \\ -1 & -1 & -1 & x^2 + x + 2 \end{vmatrix}$$

The entries of the *i*'th column of $D_G(x)$ correspond to edges in the cut $(i, \mathcal{N}(i))$:

The entries of the *i*'th column of $D_G(x)$ correspond to edges in the cut $(i, \mathcal{N}(i))$:

Change the cuts?

Theorem 15

If we have a minimal spanning tree T of G, we can modify $D_G(x)$ (without changing the determinant) so that the product of the minimum degree monomials of each column is w_{min} .

Theorem 15

If we have a minimal spanning tree T of G, we can modify $D_G(x)$ (without changing the determinant) so that the product of the minimum degree monomials of each column is w_{min} .

```
Algorithm A: Modify D_G(x)

T := mst(G)

D'(x) := D_G(x)

while T \neq \{\} do

i := arbitrary leaf of <math>T with i \neq n

p := parent of i

add the i-th column in D' to the p-th column

T := T \setminus \{i\}

od
```

Example 16 (MST of H and corresponding $\sigma(i)$)

$$det(D'(x)) = \begin{vmatrix} x^4 + 2x^2 & x^4 + x^2 & 0 & x^4 \\ -x^2 & x & -x & 0 \\ 0 & x & 2x & 0 \\ -x^2 & -x^2 - 2x & -x & x^3 \end{vmatrix} = x^7 \cdot \begin{vmatrix} x^2 + 2 & x^3 + x & 0 & x \\ -1 & 1 & -1 & 0 \\ 0 & 1 & 2 & 0 \\ -1 & -x - 2 & -1 & 1 \end{vmatrix}$$

Lemma 17

The *i*-th column of D'(x) contains the sum of the columns in $D_G(x)$ corresponding to $\sigma(i)$.

Lemma 17

The *i*-th column of D'(x) contains the sum of the columns in $D_G(x)$ corresponding to $\sigma(i)$. Writing out the entries of D'(x) we get: For $i \notin \sigma(j)$

$$D_{i,j}'(x) = -\sum_{\{i,k\}\in E: k\in\sigma(j)} x^{w_{k,i}}$$

Lemma 17

The *i*-th column of D'(x) contains the sum of the columns in $D_G(x)$ corresponding to $\sigma(i)$. Writing out the entries of D'(x) we get: For $i \notin \sigma(j)$

$$D'_{i,j}(x) = -\sum_{\{i,k\}\in E: k\in\sigma(j)} x^{w_{k,i}}$$

For $i \in \sigma(j)$ the above cancels with $D_{i,i}$

$$D'_{i,j}(x) = \sum_{\{i,k\}\in E: k\notin\sigma(j)} x^{w_{k,i}}$$

So the j'th column of D' contains only terms corresponding to edges in the cut $(\sigma(j), V \setminus \sigma(j))$.

So the j'th column of D' contains only terms corresponding to edges in the cut $(\sigma(j), V \setminus \sigma(j))$. The only edge of T in the j'th cut is (p(j), j).

So the *j*'th column of *D*' contains only terms corresponding to edges in the cut $(\sigma(j), V \setminus \sigma(j))$.

The only edge of T in the j'th cut is (p(j), j).

All the other edges from the cut must have higher weight because T is minimal.

So the j'th column of D' contains only terms corresponding to edges in the cut $(\sigma(j), V \setminus \sigma(j))$. The only edge of T in the j'th cut is (p(j), j). All the other edges from the cut must have higher weight because T is minimal.

$$\prod_{i=1}^{n-1} w_{p(i),i} = w_{\min}$$

The runtime of our implementation so far is O(mn + M(n)) where M(n) is the time required to multiply two $n \times n$ matrices. O(M(n)) can be thought of as " $O(n^{2+\epsilon})$ ".

The runtime of our implementation so far is O(mn + M(n)) where M(n) is the time required to multiply two $n \times n$ matrices. O(M(n)) can be thought of as " $O(n^{2+\epsilon})$ ". We can further optimize the O(mn) part by

 only calculating the minimum degree monomials for each entry. The runtime of our implementation so far is O(mn + M(n)) where M(n) is the time required to multiply two $n \times n$ matrices. O(M(n)) can be thought of as " $O(n^{2+\epsilon})$ ". We can further optimize the O(mn) part by

- only calculating the minimum degree monomials for each entry.
- calculating the negative and positive entries separately.

The runtime of our implementation so far is O(mn + M(n)) where M(n) is the time required to multiply two $n \times n$ matrices. O(M(n)) can be thought of as " $O(n^{2+\epsilon})$ ". We can further optimize the O(mn) part by

- only calculating the minimum degree monomials for each entry.
- calculating the negative and positive entries separately.

In the following E is sorted so that p(j) > j.

For $i \notin \sigma(j)$ no entries cancel – the naive approach works.

For $i \notin \sigma(j)$ no entries cancel – the naive approach works.

Algorithm B1: Negative Entries of
$$D'$$

for $j = 1$ to $n - 1$ do
for $i \notin \sigma(j)$ do
 $D'_{i,j} := \min_d (D_G(x)_{i,j} + \sum_{k \text{ child of } j \text{ in } T} D'_{i,k})$
/* min_d computes the minimum degree monomial */
od

od

For $i \notin \sigma(j)$ no entries cancel – the naive approach works.

Algorithm B1: Negative Entries of D'for j = 1 to n - 1 do for $i \notin \sigma(j)$ do $D'_{i,j} := \min_{d} (D_G(x)_{i,j} + \sum_{k \text{ child of } j \text{ in } T} D'_{i,k})$ /* min_d computes the minimum degree monomial */ od

This is $O(n^2)$.

For $i \in \sigma(j)$ we use the explicit formula

$$D'_{i,j} = \sum_{\{i,k\}\in E: k\notin\sigma(j)} x^{w_{k,i}}$$

and run over the rows first.

For $i \in \sigma(j)$ we use the explicit formula

$$D'_{i,j} = \sum_{\{i,k\}\in E: k\notin\sigma(j)} x^{w_{k,i}}$$

and run over the rows first.

Algorithm B2: Positive Entries of D'

for i = 1 to n - 1 do
L := sort(
$$\mathcal{N}(i)$$
)
for j = 1 to n - 1, i \in \sigma(j) do
L := L \ $\sigma(j)$
if L \neq {}
k := first_element(L)
D'_{i,j} := x^{w_{i,k}} \cdot |s \in L : w_{i,k} = w_{i,s}
fi
od
od

For $i \in \sigma(j)$ we use the explicit formula

$$D'_{i,j} = \sum_{\{i,k\}\in E: k\notin\sigma(j)} x^{w_{k,i}}$$

and run over the rows first.

Algorithm B2: Positive Entries of D'

for
$$i = 1$$
 to $n - 1$ do
 $L := \operatorname{sort}(\mathcal{N}(i))$
for $j = 1$ to $n - 1$, $i \in \sigma(j)$ do
 $L := L \setminus \sigma(j)$
if $L \neq \{\}$
 $k := \operatorname{first_element}(L)$
 $D'_{i,j} := x^{w_{i,k}} \cdot |s \in L : w_{i,k} = w_{i,s}|$
fi
od

od

This is
$$O(n^2 \log n)$$
.

Konstantin Pieper: Counting Spanning Trees

Conclusion:

 We could calculate the number of spanning trees by arbitrary weight.

Conclusion:

- We could calculate the number of spanning trees by arbitrary weight.
- We can find the number of minimal spanning trees in $O(n^2 + m \log n + M(n)) = O(M(n))$