Course "Trees - The Ubiquitous Structure in Computer Science and Mathematics", JASS'08

The Number of Spanning Trees in a Graph

Konstantin Pieper
Fakultät für Mathematik
TU München

April 28, 2008

Definition 1

Let $G=(V, E)$ with $V=\{1, \ldots, n\}$ and $E=\left\{e_{1}, \ldots, e_{m}\right\}$ be a directed graph. Then the incidence matrix $S_{G} \in M(n, m)$ of G is defined as:

$$
\left(S_{G}\right)_{i, j}:=\left\{\begin{array}{cl}
1 & \text { if } e_{j} \text { ends in } i \\
-1 & \text { if } e_{j} \text { starts in } i \\
0 & \text { else }
\end{array}\right.
$$

Definition 1

Let $G=(V, E)$ with $V=\{1, \ldots, n\}$ and $E=\left\{e_{1}, \ldots, e_{m}\right\}$ be a directed graph. Then the incidence matrix $S_{G} \in M(n, m)$ of G is defined as:

$$
\left(S_{G}\right)_{i, j}:=\left\{\begin{array}{cl}
1 & \text { if } e_{j} \text { ends in } i \\
-1 & \text { if } e_{j} \text { starts in } i \\
0 & \text { else }
\end{array}\right.
$$

Remark 1

For an undirected graph G every $S_{\bar{G}}$ of some arbitrarily oriented directed variant \bar{G} of G can be taken as the incidence matrix.

Example 2

$$
S_{G}=\left(\begin{array}{ccccc}
1 & 0 & 0 & 1 & 0 \\
-1 & -1 & 0 & 0 & 1 \\
0 & 1 & -1 & 0 & 0 \\
0 & 0 & 1 & -1 & -1
\end{array}\right)
$$

Theorem 3
The rank of the incidence matrix of a graph on n vertices is:

Theorem 3
The rank of the incidence matrix of a graph on n vertices is:

$$
\operatorname{rank}\left(S_{G}\right)=n-\mid \text { "weakly" connected components of } G \mid
$$

Theorem 3
The rank of the incidence matrix of a graph on n vertices is:

$$
\operatorname{rank}\left(S_{G}\right)=n-\mid \text { "weakly" connected components of } G \mid
$$

Proof.
Reorder the edges and vertices so that:

$$
S_{G}=\left(\begin{array}{cccc}
S_{G_{1}} & & \ldots & 0 \\
& S_{G_{2}} & & \vdots \\
\vdots & & \ddots & \\
0 & \ldots & & S_{G_{r}}
\end{array}\right)
$$

Remark 2
Since $(1, \ldots, 1) \cdot S_{G}=0$, we can remove an arbitrary row from S_{G} without losing information.

Remark 2
Since $(1, \ldots, 1) \cdot S_{G}=0$, we can remove an arbitrary row from S_{G} without losing information.

Definition 4
For every $A \in M(n, m)$ define $\tilde{A} \in M(n-1, m)$ as A without the n-th row.

Example 5

$\tilde{S}_{G} \cdot \tilde{S}_{G}^{T}=$

Example 5

$\tilde{S}_{G} \cdot \tilde{S}_{G}^{T}=$

$$
\left(\begin{array}{ccccc}
-1 & 0 & 0 & 1 & 0 \\
1 & -1 & 0 & 0 & 1 \\
0 & 1 & -1 & 0 & 0
\end{array}\right) \cdot\left(\begin{array}{ccc}
-1 & 1 & 0 \\
0 & -1 & 1 \\
0 & 0 & -1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)=\left(\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 3 & -1 \\
0 & -1 & 2
\end{array}\right)
$$

Theorem 6 (Kirchhoff)
The number of spanning trees of a graph G can be calculated as:

$$
\operatorname{det}\left(D_{G}\right) \text { where } D_{G}=\tilde{S}_{G} \cdot \tilde{s}_{G}^{T}
$$

Theorem 6 (Kirchhoff)
The number of spanning trees of a graph G can be calculated as:

$$
\operatorname{det}\left(D_{G}\right) \text { where } D_{G}=\tilde{S}_{G} \cdot \tilde{s}_{G}^{T}
$$

Remark 3

$$
\left(D_{G}\right)_{i, j}=\left\{\begin{array}{cl}
\operatorname{deg}(i) & \text { if } i=j \\
-1 & \text { if }\{i, j\} \in E \\
0 & \text { else }
\end{array}\right.
$$

Lemma 7

Let $T=(V, E)$ be a directed tree that is rooted at n. We can order E so that e_{i} ends in i.

Lemma 7

Let $T=(V, E)$ be a directed tree that is rooted at n. We can order E so that e_{i} ends in i.

Proof.
Take $e_{i}:=(p(i), i)$, where $p(i)$ is the parent of i.

Lemma 7

Let $T=(V, E)$ be a directed tree that is rooted at n. We can order E so that e_{i} ends in i.

Proof.
Take $e_{i}:=(p(i), i)$, where $p(i)$ is the parent of i.

Remark 4

Every undirected tree on V has exactly one undirected variant that is rooted at n . So for constructing/counting spanning trees we only have to consider graphs with $i \in e_{i}$.

Lemma 8

Let $G=(V, E)$ with $|E|=n-1$ be a directed graph which is not a tree.
Then $\operatorname{det}\left(\tilde{S}_{G}\right)=0$.

Lemma 8

Let $G=(V, E)$ with $|E|=n-1$ be a directed graph which is not a tree.
Then $\operatorname{det}\left(\tilde{S}_{G}\right)=0$.
Proof.
Since $|E|=n-1, G$ is not "weakly" connected.
So $\operatorname{rank}\left(\tilde{S}_{G}\right)=\operatorname{rank}\left(S_{G}\right) \leq n-2$.

Lemma 9

Let $T=(V, E)$ be a tree with $e_{i} \in E$ ending in $i \in V$.

Lemma 9

Let $T=(V, E)$ be a tree with $e_{i} \in E$ ending in $i \in V$. Then $\operatorname{det}\left(\tilde{S}_{T}\right)=1$.

Lemma 9

Let $T=(V, E)$ be a tree with $e_{i} \in E$ ending in $i \in V$.
Then $\operatorname{det}\left(\tilde{S}_{T}\right)=1$.

Proof.

Order the vertices (and edges simultaneously - e_{i} has to end in i) so that $p(i)>i$. Then,

$$
\tilde{S}_{T}=\left(\begin{array}{cccc}
1 & * & \ldots & * \\
0 & 1 & \ddots & \vdots \\
\vdots & \ddots & \ddots & * \\
0 & \ldots & 0 & 1
\end{array}\right)
$$

Proof of Kirchhoff's theorem.
We observe that the i-th column of D_{G} is the sum of "incidence vectors" that correspond to edges in G that have endpoints in the i-th vertex.

Figure: First column of D_{G}

$$
D_{., 1}=\left(\begin{array}{c}
3 \\
-1 \\
-1
\end{array}\right)=\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right)+\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right)+\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)
$$

Proof of Kirchhoff's theorem.

We observe that the i-th column of D_{G} is the sum of "incidence vectors" that correspond to edges in G that have endpoints in the i-th vertex. If we now use the linearity of the determinant in every column we obtain:

Figure: Expansion of the determinant

$$
\begin{gathered}
\operatorname{det}(D)=\left|\begin{array}{ccc}
3 & -1 & -1 \\
-1 & 4 & -1 \\
-1 & -1 & 4
\end{array}\right| \\
=\left|\begin{array}{ccc}
1 & -1 & -1 \\
-1 & 4 & -1 \\
0 & -1 & 4
\end{array}\right|+\left|\begin{array}{ccc}
1 & -1 & -1 \\
0 & 4 & -1 \\
-1 & -1 & 4
\end{array}\right|+\left|\begin{array}{ccc}
1 & -1 & -1 \\
0 & 4 & -1 \\
0 & -1 & 4
\end{array}\right|=\ldots
\end{gathered}
$$

Proof of Kirchhoff's theorem.

We observe that the i-th column of D_{G} is the sum of "incidence vectors" that correspond to edges in G that have endpoints in the i-th vertex. If we now use the linearity of the determinant in every column we obtain:

$$
\operatorname{det}\left(D_{G}\right)=\sum_{H \in \mathcal{H}} \operatorname{det}\left(\tilde{S}_{H}\right)
$$

where \mathcal{H} is the set of all subgraphs of G which correspond to a selection of $n-1$ edges, with e_{i} ending in i.

Proof of Kirchhoff's theorem.

We observe that the i-th column of D_{G} is the sum of "incidence vectors" that correspond to edges in G that have endpoints in the i-th vertex. If we now use the linearity of the determinant in every column we obtain:

$$
\operatorname{det}\left(D_{G}\right)=\sum_{H \in \mathcal{H}} \operatorname{det}\left(\tilde{S}_{H}\right)
$$

where \mathcal{H} is the set of all subgraphs of G which correspond to a selection of $n-1$ edges, with e_{i} ending in i.
To prove the theorem it is now sufficient to use the preceding lemmata.

Definition 10
For a weighted graph G with edge weights $w_{i, k}$ let $S_{G}(x)$ be the incidence matrix S_{G} with every column corresponding to $(i, k) \in E$ rescaled by $x^{w_{i, k}}$.

Definition 10

For a weighted graph G with edge weights $w_{i, k}$ let $S_{G}(x)$ be the incidence matrix S_{G} with every column corresponding to $(i, k) \in E$ rescaled by $x^{w_{i, k}}$.

$$
\left(S_{G}(x)\right)_{i, j}=\left\{\begin{array}{cl}
x^{w_{k, i}} & \text { if } e_{j}=(k, i) \\
-x^{w_{i, k}} & \text { if } e_{j}=(i, k) \\
0 & \text { else }
\end{array}\right.
$$

Example 11 (Toy graph H)

$$
S_{G}(x)=\left(\begin{array}{ccccccc}
-x^{2} & -x^{2} & -x^{4} & 0 & 0 & 0 & 0 \\
x^{2} & 0 & 0 & -x & -x & 0 & 0 \\
0 & 0 & 0 & x & 0 & -x & 0 \\
0 & x^{2} & 0 & 0 & x & x & -x^{3} \\
0 & 0 & x^{4} & 0 & 0 & 0 & x^{3}
\end{array}\right)
$$

Theorem 12 (Matrix-Tree Theorem for weighted graphs)
The generating function of the number of spanning trees by weight w is the determinant of

$$
D_{G}(x)=\tilde{S}_{G}(x) \cdot \tilde{S}_{G}^{T}
$$

where $\tilde{S}_{G}(x)$ and \tilde{S}_{G} are defined as above.

Theorem 12 (Matrix-Tree Theorem for weighted graphs)
The generating function of the number of spanning trees by weight w is the determinant of

$$
D_{G}(x)=\tilde{S}_{G}(x) \cdot \tilde{S}_{G}^{T}
$$

where $\tilde{S}_{G}(x)$ and \tilde{S}_{G} are defined as above.
In other words:

$$
\operatorname{det}\left(D_{G}(x)\right)=\sum_{w=0}^{\infty} \mid S T \text { by weight } w \mid \cdot x^{w}
$$

Example 13

$$
\begin{aligned}
D_{G}(x)= & \left(\begin{array}{cccc}
x^{4}+2 x^{2} & -x^{2} & 0 & -x^{2} \\
-x^{2} & x^{2}+2 x & -x & -x \\
0 & -x & 2 x & -x \\
-x^{2} & -x & -x & x^{3}+x^{2}+2 x
\end{array}\right) \\
& \operatorname{det}\left(D_{G}(x)\right)=2 x^{10}+5 x^{9}+8 x^{8}+6 x^{7}
\end{aligned}
$$

Remark 5

It is easy to check that we can also write down $D_{G}(x)$ for any given graph G directly:

$$
\left(D_{G}(x)\right)_{i, j}=\left\{\begin{array}{cl}
\sum_{\{i, k\} \in E} x^{w_{i, k}} & \text { if } i=j \\
-x^{w_{i, j}} & \text { if }\{i, j\} \in E \\
0 & \text { else }
\end{array}\right.
$$

Proof.

As above.
Here each spanning tree by weight w contributes x^{w} to the determinant of $D_{G}(x)$.

- Should we try to calculate $\operatorname{det}\left(D_{G}(x)\right)$?
- Should we try to calculate $\operatorname{det}\left(D_{G}(x)\right)$?
- Consider the following graph on $2 n$ vertices:

- Should we try to calculate $\operatorname{det}\left(D_{G}(x)\right)$?
- Consider the following graph on $2 n$ vertices:

- $\operatorname{det}\left(D_{G}(x)\right)$ can have $\Omega\left(2^{n}\right)$ coefficients
- Compute only the number of minimal spanning trees (the coefficient of the minimum degree monomial).
- Compute only the number of minimal spanning trees (the coefficient of the minimum degree monomial).
- If $w_{\text {min }}$ is the minimal weight for a spanning tree, clearly $x^{w_{\text {min }}}$ must divide $\operatorname{det}\left(D_{G}(x)\right)$
- Compute only the number of minimal spanning trees (the coefficient of the minimum degree monomial).
- If $w_{\text {min }}$ is the minimal weight for a spanning tree, clearly $x^{w_{\text {min }}}$ must divide $\operatorname{det}\left(D_{G}(x)\right)$
- Try to factor out the minimum degree monomial of each column and use the linearity of the determinant.

$$
\begin{aligned}
& \operatorname{det}\left(D_{G}(x)\right)= \\
& \left|\begin{array}{cccc}
x^{4}+2 x^{2} & -x^{2} & 0 & -x^{2} \\
-x^{2} & x^{2}+2 x & -x & -x \\
0 & -x & 2 x & -x \\
-x^{2} & -x & -x & x^{3}+x^{2}+2 x
\end{array}\right|=x^{5} \cdot\left|\begin{array}{cccc}
x^{2}+2 & -x & 0 & -x \\
-1 & x+2 & -1 & -1 \\
0 & -1 & 2 & -1 \\
-1 & -1 & -1 & x^{2}+x+2
\end{array}\right|
\end{aligned}
$$

Example 14 (Factor $\operatorname{det}\left(D_{G}(x)\right)$)

$\operatorname{det}\left(D_{G}(x)\right)=$

$$
\left|\begin{array}{cccc}
x^{4}+2 x^{2} & -x^{2} & 0 & -x^{2} \\
-x^{2} & x^{2}+2 x & -x & -x \\
0 & -x & 2 x & -x \\
-x^{2} & -x & -x & x^{3}+x^{2}+2 x
\end{array}\right|=x^{5} \cdot\left|\begin{array}{cccc}
x^{2}+2 & -x & 0 & -x \\
-1 & x+2 & -1 & -1 \\
0 & -1 & 2 & -1 \\
-1 & -1 & -1 & x^{2}+x+2
\end{array}\right|
$$

The entries of the i 'th column of $D_{G}(x)$ correspond to edges in the cut ($i, \mathcal{N}(i))$:

The entries of the i 'th column of $D_{G}(x)$ correspond to edges in the cut ($i, \mathcal{N}(i))$:

Change the cuts?

Theorem 15
If we have a minimal spanning tree T of G, we can modify $D_{G}(x)$ (without changing the determinant) so that the product of the minimum degree monomials of each column is $w_{\text {min }}$.

Theorem 15

If we have a minimal spanning tree T of G, we can modify $D_{G}(x)$ (without changing the determinant) so that the product of the minimum degree monomials of each column is $w_{\text {min }}$.

Algorithm A: Modify $D_{G}(x)$

$T:=\operatorname{mst}(G)$
$D^{\prime}(x):=D_{G}(x)$
while $T \neq\{ \}$ do
i := arbitrary leaf of T with $i \neq n$
p := parent of i
add the i-th column in D^{\prime} to the p-th column $T:=T \backslash\{i\}$
od

Example 16 (MST of H and corresponding $\sigma(i)$)

$\operatorname{det}\left(D^{\prime}(x)\right)=$

$$
\left|\begin{array}{cccc}
x^{4}+2 x^{2} & x^{4}+x^{2} & 0 & x^{4} \\
-x^{2} & x & -x & 0 \\
0 & x & 2 x & 0 \\
-x^{2} & -x^{2}-2 x & -x & x^{3}
\end{array}\right|=x^{7} \cdot\left|\begin{array}{cccc}
x^{2}+2 & x^{3}+x & 0 & x \\
-1 & 1 & -1 & 0 \\
0 & 1 & 2 & 0 \\
-1 & -x-2 & -1 & 1
\end{array}\right|
$$

Lemma 17

The i-th column of $D^{\prime}(x)$ contains the sum of the columns in $D_{G}(x)$ corresponding to $\sigma(i)$.

Lemma 17

The i-th column of $D^{\prime}(x)$ contains the sum of the columns in $D_{G}(x)$ corresponding to $\sigma(i)$.
Writing out the entries of $D^{\prime}(x)$ we get:
For $i \notin \sigma(j)$

$$
D_{i, j}^{\prime}(x)=-\sum_{\{i, k\} \in E: k \in \sigma(j)} x^{w_{k, i}}
$$

Lemma 17

The i-th column of $D^{\prime}(x)$ contains the sum of the columns in $D_{G}(x)$ corresponding to $\sigma(i)$.
Writing out the entries of $D^{\prime}(x)$ we get:
For $i \notin \sigma(j)$

$$
D_{i, j}^{\prime}(x)=-\sum_{\{i, k\} \in E: k \in \sigma(j)} x^{w_{k, i}}
$$

For $i \in \sigma(j)$ the above cancels with $D_{i, i}$

$$
D_{i, j}^{\prime}(x)=\sum_{\{i, k\} \in E: k \notin \sigma(j)} x^{w_{k, i}}
$$

Proof.

So the j^{\prime} th column of D^{\prime} contains only terms corresponding to edges in the cut $(\sigma(j), V \backslash \sigma(j))$.

Proof.

So the j^{\prime} th column of D^{\prime} contains only terms corresponding to edges in the cut $(\sigma(j), V \backslash \sigma(j))$.
The only edge of T in the j 'th cut is $(p(j), j)$.

Proof.

So the j^{\prime} th column of D^{\prime} contains only terms corresponding to edges in the cut $(\sigma(j), V \backslash \sigma(j))$.
The only edge of T in the j 'th cut is $(p(j), j)$.
All the other edges from the cut must have higher weight because T is minimal.

Proof.

So the j^{\prime} th column of D^{\prime} contains only terms corresponding to edges in the cut $(\sigma(j), V \backslash \sigma(j))$.
The only edge of T in the j 'th cut is $(p(j), j)$.
All the other edges from the cut must have higher weight because T is minimal.

$$
\prod_{i=1}^{n-1} w_{p(i), i}=w_{\min }
$$

The runtime of our implementation so far is $O(m n+M(n))$ where $M(n)$ is the time required to multiply two $n \times n$ matrices. $O(M(n))$ can be thought of as " $O\left(n^{2+\epsilon}\right)$ ".

The runtime of our implementation so far is $O(m n+M(n))$ where $M(n)$ is the time required to multiply two $n \times n$ matrices.
$O(M(n))$ can be thought of as " $O\left(n^{2+\epsilon}\right)$ ". We can further optimize the $O(m n)$ part by

- only calculating the minimum degree monomials for each entry.

The runtime of our implementation so far is $O(m n+M(n))$ where $M(n)$ is the time required to multiply two $n \times n$ matrices.
$O(M(n))$ can be thought of as " $O\left(n^{2+\epsilon}\right)$ ". We can further optimize the $O(m n)$ part by

- only calculating the minimum degree monomials for each entry.
- calculating the negative and positive entries separately.

The runtime of our implementation so far is $O(m n+M(n))$ where $M(n)$ is the time required to multiply two $n \times n$ matrices.
$O(M(n))$ can be thought of as " $O\left(n^{2+\epsilon}\right)$ ". We can further optimize the $O(m n)$ part by

- only calculating the minimum degree monomials for each entry.
- calculating the negative and positive entries separately.

In the following E is sorted so that $p(j)>j$.

For $i \notin \sigma(j)$ no entries cancel - the naive approach works.

For $i \notin \sigma(j)$ no entries cancel - the naive approach works.
Algorithm B1: Negative Entries of D^{\prime}
for $j=1$ to $n-1$ do
for $i \notin \sigma(j)$ do
$D_{i, j}^{\prime}:=\min _d\left(D_{G}(x)_{i, j}+\sum_{k \text { child of } j \text { in } T} D_{i, k}^{\prime}\right)$
/* min_d computes the minimum degree monomial */
od
od

For $i \notin \sigma(j)$ no entries cancel - the naive approach works.
Algorithm B1: Negative Entries of D^{\prime}
for $j=1$ to $n-1$ do
for $i \notin \sigma(j)$ do
$D_{i, j}^{\prime}:=\min \mathrm{d}\left(D_{G}(x)_{i, j}+\sum_{k \text { child of } j \text { in } T} D_{i, k}^{\prime}\right)$
/* min_d computes the minimum degree monomial */
od
od
This is $O\left(n^{2}\right)$.

For $i \in \sigma(j)$ we use the explicit formula

$$
D_{i, j}^{\prime}=\sum_{\{i, k\} \in E: k \notin \sigma(j)} x^{w_{k, i}}
$$

and run over the rows first.

For $i \in \sigma(j)$ we use the explicit formula

$$
D_{i, j}^{\prime}=\sum_{\{i, k\} \in E: k \notin \sigma(j)} x^{w_{k, i}}
$$

and run over the rows first.
Algorithm B2: Positive Entries of D^{\prime}
for $i=1$ to $n-1$ do
$L:=\operatorname{sort}(\mathcal{N}(i))$
for $j=1$ to $n-1, i \in \sigma(j)$ do
$L:=L \backslash \sigma(j)$
if $L \neq\{ \}$
k := first_element(L)
$D_{i, j}^{\prime}:=x^{w_{i, k}} \cdot\left|s \in L: w_{i, k}=w_{i, s}\right|$
fi
od
od

For $i \in \sigma(j)$ we use the explicit formula

$$
D_{i, j}^{\prime}=\sum_{\{i, k\} \in E: k \notin \sigma(j)} x^{w_{k, i}}
$$

and run over the rows first.
Algorithm B2: Positive Entries of D^{\prime}
for $i=1$ to $n-1$ do
$L:=\operatorname{sort}(\mathcal{N}(i))$
for $j=1$ to $n-1, i \in \sigma(j)$ do
$L:=L \backslash \sigma(j)$
if $L \neq\{ \}$
k := first_element(L)
$D_{i, j}^{\prime}:=x^{w_{i, k}} \cdot\left|s \in L: w_{i, k}=w_{i, s}\right|$
fi
od
od
This is $O\left(n^{2} \log n\right)$.

Conclusion:

- We could calculate the number of spanning trees by arbitrary weight.

Conclusion:

- We could calculate the number of spanning trees by arbitrary weight.
- We can find the number of minimal spanning trees in $O\left(n^{2}+m \log n+M(n)\right)=O(M(n))$

