Course "Trees - the ubiquitous structure in computer science and mathematics", JASS'08

Minimum Spanning Trees

Maximilian Schlund

Fakultät für Informatik
TU München

April 20, 2008

Preliminaries
Simple Algorithms
Dijkstra-Jarnik-Prim Algorithm (DJP)
Kruskal's Algorithm
Borůvka's Algorithm

Advanced Algorithms
MST Verification
Randomized Linear-Time Algorithm for MST
Optimal MST Algorithm

Summary

Definition 1
Given a Graph $G=(V, E)$, together with a weight function $w: E \rightarrow \mathbb{R}$. A spanning acyclic Subgraph F with minimum total weight is called a minimum spanning forest (MSF). If F is connected (thus a tree) it is called minimum spanning tree (MST)

Definition 1

Given a Graph $G=(V, E)$, together with a weight function $w: E \rightarrow \mathbb{R}$. A spanning acyclic Subgraph F with minimum total weight is called a minimum spanning forest (MSF). If F is connected (thus a tree) it is called minimum spanning tree (MST)

Definition 2

- $F(a, b)$ denotes the path (if exists) in the graph F from node a to node b.
- by default we set $m:=|E|$ and $n:=|V|$

For simplicity, we assume that all weights in the Graph G are distinct, therefore the MST of G is unique.

Theorem 3 (Cut property)
Let $C=\left(V_{1}, V_{2}\right)$ be a cut in G, then the lightest edge e crossing the cut belongs to the MST of G.

Theorem 3 (Cut property)
Let $C=\left(V_{1}, V_{2}\right)$ be a cut in G, then the lightest edge e crossing the cut belongs to the MST of G.

Theorem 4 (Cycle property)
For any cycle C in G the heaviest edge e in C does not belong to the MST of G

1) Assume $e \notin \operatorname{MST}(G)$. Let T be the MST and e be the lightest edge crossing the cut. Then $T \cup e$ yields a circle that includes at least two edges e and g crossing the cut. Exchanging e for g gives a MST with lower weight - contradiction!
2) Assume $e \in M S T$. Deleting $e=(v, w)$ splits the Tree in two parts which can be reconnected using an edge from the circle. This edge is lighter than e and so is the resulting spanning tree - contradiction!

Dijkstra-Jarnik-Prim Algorithm (DJP) Grows a tree T, one edge per step, starting with a tree consisting of one arbitrary vertex. Augment T by choosing an edge incident to T having the least weight. By the cut property this edge belongs to the MST of the Graph.

$$
\begin{aligned}
& V(T):=\{v\} ; E(T)=\emptyset \\
& \text { for } n-1 \text { times } \\
& \quad \text { choose lightest edge }(x, y) \text { indicent to } T \\
& \quad \text { with } x \in T \text { and } y \notin T \\
& \quad V(T):=V(T) \cup\{y\} ; E(T):=E(T) \cup(x, y) \\
& \text { end }
\end{aligned}
$$

Runtime: $\mathcal{O}(m+n \log n)$ if implemented using Fibonacci-Heaps

Simple Algorithms
00
000

Advanced Algorithms

Simple Algorithms

000

Advanced Algorithms

Simple Algorithms
0
000

Advanced Algorithms

Simple Algorithms

00

000

Advanced Algorithms

Simple Algorithms
0
000

Advanced Algorithms

Simple Algorithms

00
000

Advanced Algorithms

Simple Algorithms
$\circ \cdot$
000

Advanced Algorithms

Kruskal's Algorithm:

- Sort all edges according to their weight in ascending order.
- Include edges successively in the MSF if they do not complete a circle.
Correctness follows directly from cut and cycle properties.

Simple Algorithms
\circ
000

Advanced Algorithms

Simple Algorithms
\bigcirc
000

Advanced Algorithms

Simple Algorithms

Borůvka's Algorithm

```
make every vertex a singleton red tree
repeat until there is one red tree
    for each red tree
    select minimum weight edge incident to it
    color all selected edges red
```

Each inner execution of the loop is called a Borůvka step. Each step reduces the number of vertices by at least 2 and takes $\mathcal{O}(m)$ time, therefore the total running time is in $\mathcal{O}(m \log n)$

Simple Algorithms

00

Advanced Algorithms

Simple Algorithms

-0

Advanced Algorithms

Simple Algorithms

-0

Advanced Algorithms

MST Verification

Theorem 5
A spanning tree is a MST iff the weight of each nontree edge (u, v) is at least the weight of the heaviest edge in the path in the tree between u and v.

Definition 6

Tree path problem: finding the heaviest edges in the paths between certain pairs of nodes ("query paths").
Solved by Komlòs in 1984; algorithm requires linear comparisons but nonlinear overhead!

King [Kin97] presented a simpler algorithm using Komlòs' algorithm on a full branching tree B which gives linear runtime (on a unit cost RAM)!
Theorem 7
If T is a spanning tree then there is an $\mathcal{O}(n)$ algorithm that constructs a full branching tree B s.t.

- B has not more than $2 n$ nodes
- For any pair of nodes x and y in T, the weight of the heaviest edge in $T(x, y)$ equals the weight of the heaviest edge in $B(x, y)$

Construction of B : We run Borůvka's algorithm on a tree T

- for each node v in V we create a leaf $f(v)$ for B
- let $A=\{v \in V \mid v$ contracted into t by Borůvka step $\}$. Add new node $f(t)$ to B add $\{(f(a), f(t)) \mid \forall a \in A\}$ to the set of edges in B

Construction of B : We run Borůvka's algorithm on a tree T

- for each node v in V we create a leaf $f(v)$ for B
- let $A=\{v \in V \mid v$ contracted into t by Borůvka step $\}$. Add new node $f(t)$ to B add $\{(f(a), f(t)) \mid \forall a \in A\}$ to the set of edges in B
The runtime of a Borůvka step is proportional to the number of "uncolored " edges. This number drops by a factor of 2 after each step (because T is a tree) \Rightarrow runtime is in $\mathcal{O}(n)$.

Komlòs algorithm on full branching trees:

- Goal: Find the heaviest edge between every pair of leaves
- Idea: Break each path in two half-paths, from leaf to the lowest common ancestor. Then find heaviest edge in each half-path
- Finding the heaviest edge in a query path then requieres one additional comparison

Definition 8

- $A(v)$ denotes the set of paths which contain v and are restricted to the "interval" [root, v]
- $A(v \mid a)$ denotes the set of restrictions of each path in $A(v)$ to the interval [root, a]
- $H(p)$ denotes the weight of the heaviest edge in a path p

Example:

- $A(v)=\{(v, a),(v, a, b),(v, a, b, c),(v, a, b, c, r o o t)\}$
- $A(v \mid a)=\{(a, b),(a, b, c),(a, b, c$, root $)\}$
- length $(s)>$ length $(t) \Rightarrow H(s) \geq H(t)$ for any two paths s, t in $A(v)$ therefore the order of $H(A(v))$ is determined by length of paths.

Algorithm:

- Starting with the root descend the Tree level by level
- At each node v, the heaviest edge in the Set $A(v)$ is determined:
- Let p be the parent of v and assume we know $H(A(p))$.
- Then $H(A(v))$ can be found by comparing v, p to each weight in $H(A(p)$ using binary search.
Komlòs showed, that
$\sum_{v \in T} \log |A(v)| \in \mathcal{O}(n \log ((m+n) / n)) \subset \mathcal{O}(m)$, which is an upper bound on the number of comparisons needed to find the heaviest edge in all half-paths.

$$
\begin{aligned}
& A(r)=\emptyset \\
& A(c)=\{(c, r)\} \\
& A(b)=\{(b, c),(b, c, r)\} \\
& A(a)=\{(a, b),(a, b, c),(a, b, c, r)\} \\
& A(v)=\{(v, a),(v, a, b),(v, a, b, c),(v, a, b, c, r)\} \\
& H(A(c))=\{4\} \\
& H(A(b))=\{6,6\} \\
& H(A(a))=\{3,6,6\} \\
& H(A(v))=\{5,5,6,6\}
\end{aligned}
$$

Summary Verify that T is a MST

- generate full-branching tree B via Borůvka algorithm applied to T
- precompute the heaviest edge of all half-paths in B
- precompute all lowest common ancestors in B for the leaves x and y that form a non-tree edge (x, y) in T
- for every non-tree edge $e=(x, y)$ in T compare $w(e)$ to heaviest edge in half-paths $B(x, / c a)$ and $B(I c a, y)$
Remark: the LCA of all pairs can be computed in $\mathcal{O}(m+n)$, therefore the total running time of the algorithm is in $\mathcal{O}(m)$

A Randomized Linear-Time Algorithm for MST[DRK95]

Definition 9
Let G be a weighted graph and F be a forest in G.

- $w_{F}(x, y)$ denotes the maximum weight of an edge on $F(x, y)$
- An edge (x, y) is called F-heavy if $w(x, y)>w_{F}(x, y)$ and F-light otherwise

Note:

- All edges of F are F-light
- For any forest F, no F-heavy edge can be in the MSF of G by the cycle property.

Algorithm

Step(1) Apply two Borůvka steps to the graph, reducing the number of vertices by at least a factor of 4
Step(2) In the contracted graph choose a subgraph H by selecting each edge with probability $1 / 2$. Apply the algorithm recursively on H, to get a MSF F of H. Find all the F-heavy edges (both those in H and not in H) and delete them.
Step(3) Apply the algorithm recursively to the remaining graph to compute a spanning forest F^{\prime}. Return the edges contracted in Step(1) together with the edges of F^{\prime}

Algorithm

Step(1) Apply two Borůvka steps to the graph, reducing the number of vertices by at least a factor of 4

Step(2) In the contracted graph choose a subgraph H by selecting each edge with probability $1 / 2$. Apply the algorithm recursively on H, to get a MSF F of H. Find all the F-heavy edges (both those in H and not in H) and delete them.
Step(3) Apply the algorithm recursively to the remaining graph to compute a spanning forest F^{\prime}. Return the edges contracted in Step(1) together with the edges of F^{\prime}

Remarks:

- all edges in $H-F$ are F-Heavy, but there may be more in the rest of G
- only the edges that are in F appear in both recursions

Correctness is proved by induction and cycle property (every edge that is deleted in Step(2) cannot be in the MSF)

Analysis:

Step(1) takes time $\mathcal{O}(m)$ (2 Borůvka steps).
Step(2) finding F-heavy edges takes time $\mathcal{O}(m)$ using Komlòs algorithm as described in [Kin97]
so for some constant c we can describe the runtime as:

$$
T(n, m)=c m+\underbrace{T\left(n_{2}, m_{2}\right)}_{\text {recursion in Step }(2)}+\underbrace{T\left(n_{3}, m_{3}\right)}_{\text {recursion in Step }(3)}
$$

- imagine recursion tree: left child of a node is seen as the recursion in Step(2), right child as the recursion in Step(3)

Theorem 10
Wort-case Runtime of the algorithm is in $\mathcal{O}\left(\min \left\{n^{2}, m \log n\right\}\right)$
Proof.

- consider subproblem in depth d : num. of nodes $\leq n / 4^{d} \Rightarrow$ num. of edges $\leq\left(n / 4^{d}\right)^{2} / 2$
- sum over all subproblems: total num. of edges

$$
\leq \sum_{d=0}^{\infty} 2^{d} \frac{n^{2}}{2 \cdot 4^{2 d}} \leq \frac{n^{2}}{2} \sum_{d=0}^{\infty} \frac{2^{d}}{2^{2 d}}=n^{2}
$$

Proof (continued).

- Parent problem with v vertices. Edges of F are in both subproblems, edges revomed in Step(1) are in none. All other edges are in exactly one subproblem.
- After Step(1) there are $v^{\prime} \leq v / 4$ nodes left in $G \Rightarrow F$ has $\leq v^{\prime}-1 \leq v / 4$ edges. But at least $v / 2$ edges are removed in Step(1) therefore the total number of edges in both subproblems does not increase.
- \Rightarrow Number of edges in all subproblems at depth d in recursion tree is $\leq m \Rightarrow$ as the recursion tree has depth $\mathcal{O}(\log n)$ the runtime is in $\mathcal{O}(m \log n)$

Theorem 11

The expected runtime of the algorithm is in $\mathcal{O}(m)$
Proof.

- $X:=$ number of edges in parent problem
- $Y:=$ number of edges in left subproblem

In Step(2) each edge that was not removed in Step(1) is included with probability $1 / 2 \Rightarrow$

$$
E[Y \mid X=k] \leq k / 2 \Rightarrow E[Y \mid X] \leq X / 2 \Rightarrow E[Y] \leq E[X] / 2
$$

$$
\begin{aligned}
& T(n, m)=c m+\underbrace{T\left(n_{2}, m_{2}\right)}_{\text {recursion in Step }(2)}+\underbrace{T\left(n_{3}, m_{3}\right)}_{\text {recursion in Step }(3)} \\
& T(n, m) \leq c m+T(n / 4, m / 2)+T(n / 4, \underbrace{n / 2)}_{\text {by Lemma } 12}
\end{aligned}
$$

$$
\Rightarrow T(n, m) \in \mathcal{O}(m+n) \subset \mathcal{O}(m)
$$

Lemma 12
Let H be a subgraph of G obtained by including each edge independently with probability p and let F be the MSF of H. Then the expected number of F-light edges in G is $\leq n / p$.

Proof.
Using the mean of the negative binomial distribution. see [DRK95]

An Optimal MST Algorithm:

- Pettie and Ramachandran[SP01], asymptotically optimal on a pointer machine
- Uses precomputed optimal decision trees (unknown depth \Rightarrow exact runtime not known!)
- Fredman and Tarjan [MLF87] showed how to compute the MST in time $\mathcal{O}(m \beta(n, m))$ with $\beta(n, m)=\min \left\{i \mid \log ^{(i)} n<n / m\right\}$
\Rightarrow For graphs with density $\Omega\left(\log ^{(3)} n\right)$ this yields a linear-time algorithm \rightsquigarrow DenseCase algorithm.

Central datastructure used is the Soft Heap [Cha00]

- approximate priority queue with fixed error rate
- upports all heap operations (Insert, FindMin, Delete, Union) in constant armotized time except for Insert which takes time $\mathcal{O}\left(\log \left(\frac{1}{\epsilon}\right)\right.$
- Items are grouped together sharing the same key. Items can adopt larger keys from other items corrupting the item.
This is shown in [Cha00]:
Lemma 13
For any $0<\epsilon \leq 1 / 2$, a soft heap with error rate ϵ supports each operation in constant amortized time, except for insert, which takes $\mathcal{O}\left(\log \left(\frac{1}{\epsilon}\right)\right)$ time. The data structure never contains more than ϵn corrupted items at any given time.

Lemma 14 (DJP Lemma)
Let T be a tree formed after some number of steps of the DJP algorithm. Let e and f be two arbitrary edges with exactly one endpoint in T and let g be the maximum weight edge on the path from e to f in T. Then g cannot be heavier than both e and f.

Lemma 14 (DJP Lemma)

Let T be a tree formed after some number of steps of the DJP algorithm. Let e and f be two arbitrary edges with exactly one endpoint in T and let g be the maximum weight edge on the path from e to f in T. Then g cannot be heavier than both e and f.

Proof.

Let \mathcal{P} be the path connecting e and f, assume the contrary, that g is the heaviest edge in $\mathcal{P} \cup\{e, f\}$. At the moment g is selected by DJP there are two edges eligible one of which is g. If the other edge is in \mathcal{P} then it must be lighter than g. If it is either e or f then by the assumption it must be lighter than g. In both cases g could not be chosen next by DJP so we have a contradiction.

Definition 15

Let F be a subgraph of G. $G \backslash F$ denotes the graph that results from G by contracting all connected components formed by F.

Definition 16
Let M and C be Subgraphs of G.

- $G \Uparrow M$ the graph obtained from G when raising the weight of every edge in M by an arbitrary amount (these edges are corrupted)
- M_{C} is the set of edges in M with exactly one endpoint in C
- C is said to be DJP-contractable if after some steps of the DJP algorithm with start in C the resulting tree is a MST of C

Lemma 17 (Contraction lemma)

Let M be a set of edges in a graph G. If C is a subgraph of G that is DJP-contractable w.r.t. $G \Uparrow M$, then

$$
\operatorname{MSF}(G) \subset \operatorname{MSF}(C) \cup \operatorname{MSF}\left(G \backslash C-M_{C}\right) \cup M_{C}
$$

Lemma 17 (Contraction lemma)

Let M be a set of edges in a graph G. If C is a subgraph of G that is DJP-contractable w.r.t. $G \Uparrow M$, then

$$
\operatorname{MSF}(G) \subset \operatorname{MSF}(C) \cup \operatorname{MSF}\left(G \backslash C-M_{C}\right) \cup M_{C}
$$

Proof [SP01].

We prove $\operatorname{MSF}(G)^{C} \supset \underbrace{\operatorname{MSF}(C)^{C}} \cap \operatorname{MSF}\left(G \backslash C-M_{C}\right)^{C} \cap M_{C}^{C}$
(1)
where A^{C} denotes the complement of the set A (concerning the edges, so $\left.\operatorname{MSF}(C)^{C}=C-\operatorname{MSF}(C)\right)$

Lemma 17 (Contraction lemma)

Let M be a set of edges in a graph G. If C is a subgraph of G that is DJP-contractable w.r.t. $G \Uparrow M$, then

$$
\operatorname{MSF}(G) \subset \operatorname{MSF}(C) \cup \operatorname{MSF}\left(G \backslash C-M_{C}\right) \cup M_{C}
$$

Proof [SP01].
We prove $\operatorname{MSF}(G)^{C} \supset \underbrace{\operatorname{MSF}(C)^{C}} \cap \operatorname{MSF}\left(G \backslash C-M_{C}\right)^{C} \cap M_{C}^{C}$
(1)
where A^{C} denotes the complement of the set A (concerning the edges, so $\left.\operatorname{MSF}(C)^{C}=C-\operatorname{MSF}(C)\right)$
(1) Every edge in C that is not in $\operatorname{MSF}(C)$ is the heaviest edge on a cycle in C (because C has a MST). This cycle exists in G as well, so this edge is also not in the MSF of G.

Proof cont.

It remains to show that $\operatorname{MSF}(G)^{C} \supset \operatorname{MSF}\left(G \backslash C-M_{C}\right)^{C} \cap M_{C}^{C}$. Set $H:=G \backslash C-M_{C}$. Then we are left with

$$
\operatorname{MSF}(G)^{C} \supset H-\operatorname{MSF}(H) \cap \underbrace{G \backslash C-M_{C}}_{=H}=H-\operatorname{MSF}(H)
$$

Let $e \in H-\operatorname{MSF}(H)$, then e is the heaviest edge on some cycle χ in H.

Proof cont.

It remains to show that $\operatorname{MSF}(G)^{C} \supset \operatorname{MSF}\left(G \backslash C-M_{C}\right)^{C} \cap M_{C}^{C}$. Set $H:=G \backslash C-M_{C}$. Then we are left with

$$
\operatorname{MSF}(G)^{C} \supset H-\operatorname{MSF}(H) \cap \underbrace{G \backslash C-M_{C}}_{=H}=H-\operatorname{MSF}(H)
$$

Let $e \in H-\operatorname{MSF}(H)$, then e is the heaviest edge on some cycle χ in H.

1) If χ does not involve the super-node C then G it exists in G as well and $e \notin \operatorname{MSF}(G)$.
2) Otherwise χ includes a path $\mathcal{P}=(x, w, \ldots, z, y)$ in H with $x, y \in C$. Since H includes no corrupted edges with one endpoint in C, the G-weight of the end edges (x, w) and (z, y) is the same as their $(G \Uparrow M)$-weight

Proof cont.

Let T be the spanning tree of $C \Uparrow M$ that was found by the DJP algorithm, \mathcal{Q} be the path in T connecting x and y, and g be the
heaviest edge in \mathcal{Q}.

Then $\mathcal{P} \cup \mathcal{Q}$ forms a circle with e being heavier than both (x, w) and (y, z). By the DJP-Lemma 14 The heavier of these both edges is heavier than the $G \Uparrow M$-weight of g which is an upper bound on the G-weigths of all edges in \mathcal{Q}. So w.r.t. G-weights, e is the heaviest edge on the cycle $\mathcal{P} \cup \mathcal{Q}$ and thus cannot be in $\operatorname{MSF}(G)$

Corollary 18

by applying Lemma 17 i times we get

$$
\operatorname{MSF}(G) \subset \bigcup_{j=1}^{i} \operatorname{MSF}\left(C_{j}\right) \cup \operatorname{MSF}\left(G \backslash \bigcup_{j=1}^{i} C_{j}-\bigcup_{j=1}^{i} M_{C_{j}}\right) \cup \bigcup_{j=1}^{i} M C_{C_{j}}
$$

Overview of the optimal algorithm:

1) find DJP-contractable subgraphs $C_{1}, C_{2}, \ldots, C_{k}$ with their associated sets $M=\bigcup_{i} M_{C_{i}}$, where $M_{C_{i}}$ consists of corrupted edges with exactly one endpoint in C.
2) Find MSF F_{i} of each C_{i} by using precomputed decision trees for edge weight comparisons. Also find the MSF F_{0} of the contracted graph $G \backslash\left(\bigcup_{i} C_{i}\right)-\bigcup_{i} M_{C_{i}}$. By Lemma 17 the MSF of G is contained within $F_{0} \cup \bigcup_{i}\left(F_{i} \cup M_{C_{i}}\right)$.
3) Find some edges of the MSF of G via two Borůvka steps and recurse on the contraced graph

Overview of the optimal algorithm:

1) find DJP-contractable subgraphs $C_{1}, C_{2}, \ldots, C_{k}$ with their associated sets $M=\bigcup_{i} M_{C_{i}}$, where $M_{C_{i}}$ consists of corrupted edges with exactly one endpoint in C.
2) Find MSF F_{i} of each C_{i} by using precomputed decision trees for edge weight comparisons. Also find the MSF F_{0} of the contracted graph $G \backslash\left(\bigcup_{i} C_{i}\right)-\bigcup_{i} M_{C_{i}}$. By Lemma 17 the MSF of G is contained within $F_{0} \cup \bigcup_{i}\left(F_{i} \cup M_{C_{i}}\right)$.
3) Find some edges of the MSF of G via two Borůvka steps and recurse on the contraced graph

Note

- in Step 1) we make sure that each C_{i} is extremely small ($<\log ^{(3)} n$ vertices) so we can apply the decision trees in Step2)
- until Step 3) no edges of the MSF of G have been identified we only have discarded lots of edges.
- F_{0} in Step can be found by the DenseCase algorithm

This procedure finds the DJP-contractable subgraphs and the set M
Partition (G, maxsize, ϵ) returns M, \mathcal{C}

```
All vertices are initially ''live"،
M:=\emptyset; i:=0
While there is a live vertex
    i:=i+1
    Let }\mp@subsup{V}{i}{}:={v}\mathrm{ where v is any live vertex
    Create a Soft Heap consisting of v's edges
    While all vertices in }\mp@subsup{V}{i}{}\mathrm{ are live and | }\mp@subsup{V}{i}{}|<\mathrm{ maxsize
            Repeat
            delete min-weight edge ( }x,y\mathrm{ ) from Soft Heap
            Until y}\not=\mp@subsup{V}{i}{
            Vi:= Vi\cupy
            If y is live then insert each of y's edges into the Soft Heap
    Set all vertices in }\mp@subsup{V}{i}{}\mathrm{ to be dead
    Let M}\mp@subsup{M}{i}{}\mathrm{ be the corrupted edges with one endpoint in Vi
    M:=M\cupM\mp@subsup{V}{i}{}}\quadG:=G-M\mp@subsup{V}{i}{
    Dismantle the Soft Heap
Let }\mathcal{C}:={\mp@subsup{C}{1}{},\ldots,\mp@subsup{C}{i}{}}\mathrm{ where }\mp@subsup{C}{k}{}\mathrm{ is the subgraph of }G\mathrm{ induced by }\mp@subsup{V}{k}{
Return M, C
```

- We partition the Graph into DJP contractable components that are very small i.e. have less than $\log ^{(3)} n$ vertices.
- The growing of a component stops if it has reached its maximum size, or it attaches to an existing component with $\geq \log ^{(3)} n$ vertices
- Then we delete all corrupted edges M_{c} and contract all remaining connected components into single vertices
- As each connected component consists of $\geq \log ^{(3)} n$ vertices the resulting graph has $\leq n / \log { }^{(3)} n$ vertices and we can apply the DenseCase algorithm to the remaining graph

OptimalMSF(G)

$$
\begin{aligned}
& \text { If } E(G)=\emptyset \text { then Return }(\emptyset) \\
& r:=\log { }^{(3)}|V(G)| \\
& M, \mathcal{C}:=\operatorname{Partition}(G, r, \epsilon) \\
& \mathcal{F}:=\operatorname{DecisionTrees}(\mathcal{C}) \\
& \text { Let } k:=|C|, \operatorname{let} \mathcal{C}=\left\{C_{1}, \ldots, C_{k}\right\} \text { and } \mathcal{F}=\left\{F_{1}, \ldots, F_{k}\right\} \\
& G_{a}:=G \backslash\left(F_{1} \cup \cdots \cup F_{k}\right)-M \\
& F_{0}:=\operatorname{DenseCase}\left(G_{a}\right) \\
& G_{b}:=F_{0} \cup F_{1} \cup \cdots \cup F_{k} \cup M \\
& F^{\prime}, G_{c}:=\operatorname{Boruvka2}\left(G_{b}\right) \\
& F:=\text { OptimalMSF }\left(G_{c}\right) \\
& \text { Return }\left(F \cup F^{\prime}\right)
\end{aligned}
$$

Analysis: Apart from recursive calls the computation is clearly linear. Partition takes $\mathcal{O}(m \log (1 / \epsilon))$ time and because of the reductions in vertices DenseCase also takes linear time. For $\epsilon=\frac{1}{8}$ the number of edges passed to the recursive calls is
$\leq m / 4+n / 4 \leq m / 2$ which gives a geometric reduction in the number of edges. The lower bound for any MSF algorithm is $\mathcal{O}(m)$, so the only bottleneck, if any, must lie in the decision trees, which are optimal by construction. One can quite easily show

$$
T(m, n) \in \mathcal{O}\left(\mathcal{T}^{*}(m, n)\right)
$$

if T is the runtime of our algorithm and T^{*} is the optimal number of comparisions needed for determining the MSF of an arbitrary graph.

Summary

- We can verify a MST in linear time on a RAM with wordsize logn
- There is an randomized algorithm that runs in expected linear time and w.h.p. in "real " linear time
- The MST can be computed optimally on a pointer machine but we do not know the worst case runtime
Open problems:
- Is there a linear time algorithm that runs on pointer machines?
- Is there an optimal algorithm that does not use precomputed decision trees?
- Can we find good parallel algorithms for the MST problem?

囯 B. Chazelle.
The soft heap: An approximate priority queue with optimal error rate.
Journal of the ACM, 47(6):1012-1027, 2000.
R R. E. Tarjan D. R. Karger, P. N. Klein.
A Randomized linear-time algorithm to find Minimum Spanning Trees.
Journal of the ACM, 42(2):321-328, 1995.
風 V. King.
A simpler Minimum Spanning Tree Verification algorithm. Algorithmica, 18(2):263-270, 1997.

围 R. E. Tarjan M. L. Fredman.
Fibonacci heaps and their uses in improved network optimization algorithms.
Journal of the ACM, 34(3):596-615, 1987.
國 V. Ramachandran S. Pettie.
An Optimal Minimum Spanning Tree algorithm. Technical report, Department of Computer Sciences, The University of Texas at Austin, 2001.
URL:
http://www.cs.utexas.edu/users/vlr/papers/optmsf.pdf.

