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Definition 1
Given a Graph G = (V ,E ), together with a weight function
w : E → R. A spanning acyclic Subgraph F with minimum total
weight is called a minimum spanning forest (MSF). If F is
connected (thus a tree) it is called minimum spanning tree (MST)

Definition 2

• F (a, b) denotes the path (if exists) in the graph F from node
a to node b.

• by default we set m := |E | and n := |V |

For simplicity, we assume that all weights in the Graph G are
distinct, therefore the MST of G is unique.
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Theorem 3 (Cut property)

Let C = (V1,V2) be a cut in G, then the lightest edge e crossing
the cut belongs to the MST of G.

Theorem 4 (Cycle property)

For any cycle C in G the heaviest edge e in C does not belong to
the MST of G
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Proof.

...
...

g

e

e

1) Assume e /∈ MST (G ). Let T be the MST
and e be the lightest edge crossing the cut.
Then T ∪ e yields a circle that includes at
least two edges e and g crossing the cut.
Exchanging e for g gives a MST with lower
weight - contradiction!

2) Assume e ∈ MST . Deleting e = (v ,w)
splits the Tree in two parts which can be
reconnected using an edge from the circle.
This edge is lighter than e and so is the
resulting spanning tree - contradiction!
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Dijkstra-Jarnik-Prim Algorithm (DJP) Grows a tree T , one
edge per step, starting with a tree consisting of one arbitrary
vertex. Augment T by choosing an edge incident to T having the
least weight. By the cut property this edge belongs to the MST of
the Graph.

V (T ) := {v}; E (T ) = ∅
for n − 1 times
choose lightest edge (x , y) indicent to T

with x ∈ T and y /∈ T
V (T ) := V (T ) ∪ {y}; E (T ) := E (T ) ∪ (x , y)

end

Runtime: O(m + n log n) if implemented using Fibonacci-Heaps

Maximilian Schlund: Minimum Spanning Trees 6/ 45



Preliminaries Simple Algorithms Advanced Algorithms Summary

a

b c

d e

f g

7

8
5

9

7

5
15

6

8

9

11

d

Maximilian Schlund: Minimum Spanning Trees 7/ 45



Preliminaries Simple Algorithms Advanced Algorithms Summary

a

b c

d e

f g

7

8
5

9

7

5
15

6

8

9

11

d

a

Maximilian Schlund: Minimum Spanning Trees 7/ 45



Preliminaries Simple Algorithms Advanced Algorithms Summary

a

b c

d e

f g

7

8
5

9

7

5
15

6

8

9

11

d

a

f

Maximilian Schlund: Minimum Spanning Trees 7/ 45



Preliminaries Simple Algorithms Advanced Algorithms Summary

a

b c

d e

f g

7

8
5

9

7

5
15

6

8

9

11

d

a

f

b

Maximilian Schlund: Minimum Spanning Trees 7/ 45



Preliminaries Simple Algorithms Advanced Algorithms Summary

a

b c

d e

f g

7

8
5

9

7

5
15

6

8

9

11

d

a

f

b

e

Maximilian Schlund: Minimum Spanning Trees 7/ 45



Preliminaries Simple Algorithms Advanced Algorithms Summary

a

b c

d e

f g

7

8
5

9

7

5
15

6

8

9

11

d

a

f

b

e

c

Maximilian Schlund: Minimum Spanning Trees 7/ 45



Preliminaries Simple Algorithms Advanced Algorithms Summary

a

b c

d e

f g

7

8
5

9

7

5
15

6

8

9

11

d

a

f

b

e

c

g

Maximilian Schlund: Minimum Spanning Trees 7/ 45



Preliminaries Simple Algorithms Advanced Algorithms Summary

Kruskal’s Algorithm:

• Sort all edges according to their weight in ascending order.

• Include edges successively in the MSF if they do not complete
a circle.

Correctness follows directly from cut and cycle properties.
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Bor̊uvka’s Algorithm

make every vertex a singleton red tree
repeat until there is one red tree
for each red tree
select minimum weight edge incident to it

color all selected edges red

Each inner execution of the loop is called a Bor̊uvka step. Each
step reduces the number of vertices by at least 2 and takes O(m)
time, therefore the total running time is in O(m log n)
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MST Verification

Theorem 5
A spanning tree is a MST iff the weight of each nontree edge
(u, v) is at least the weight of the heaviest edge in the path in the
tree between u and v.

Definition 6
Tree path problem: finding the heaviest edges in the paths between
certain pairs of nodes (”query paths“).

Solved by Komlòs in 1984; algorithm requires linear comparisons
but nonlinear overhead!
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King [Kin97] presented a simpler algorithm using Komlòs’
algorithm on a full branching tree B which gives linear runtime (on
a unit cost RAM)!

Theorem 7
If T is a spanning tree then there is an O(n) algorithm that
constructs a full branching tree B s.t.

• B has not more than 2n nodes

• For any pair of nodes x and y in T , the weight of the heaviest
edge in T (x , y) equals the weight of the heaviest edge in
B(x , y)
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Construction of B: We run Bor̊uvka’s algorithm on a tree T

• for each node v in V we create a leaf f (v) for B

• let A = {v ∈ V | v contracted into t by Bor̊uvka step}. Add

new node f (t) to B add
{

(f (a), f (t))|∀a ∈ A
}

to the set of

edges in B

The runtime of a Bor̊uvka step is proportional to the number of
”uncolored“ edges. This number drops by a factor of 2 after each
step (because T is a tree) ⇒ runtime is in O(n).
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Komlòs algorithm on full branching trees:

• Goal: Find the heaviest edge between every pair of leaves

• Idea: Break each path in two half-paths, from leaf to the
lowest common ancestor. Then find heaviest edge in each
half-path

• Finding the heaviest edge in a query path then requieres one
additional comparison
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Definition 8

• A(v) denotes the set of paths which contain v and are
restricted to the ”interval“ [root, v ]

• A(v |a) denotes the set of restrictions of each path in A(v) to
the interval [root, a]

• H(p) denotes the weight of the heaviest edge in a path p

Example:

• A(v) = {(v , a), (v , a, b), (v , a, b, c), (v , a, b, c , root)}
• A(v |a) = {(a, b), (a, b, c), (a, b, c , root)}
• length(s) > length(t) ⇒ H(s) ≥ H(t) for any two paths s, t

in A(v) therefore the order of H(A(v)) is determined by
length of paths.
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Algorithm:

I Starting with the root descend the Tree level by level

I At each node v , the heaviest edge in the Set A(v) is
determined:

• Let p be the parent of v and assume we know H(A(p)).
• Then H(A(v)) can be found by comparing v , p to each weight

in H(A(p) using binary search.

Komlòs showed, that∑
v∈T log |A(v)| ∈ O(n log((m + n)/n)) ⊂ O(m), which is an

upper bound on the number of comparisons needed to find the
heaviest edge in all half-paths.
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A(r) = ∅
A(c) = {(c , r)}
A(b) = {(b, c), (b, c , r)}
A(a) = {(a, b), (a, b, c), (a, b, c , r)}
A(v) = {(v , a), (v , a, b), (v , a, b, c), (v , a, b, c , r)}
H(A(c)) = {4}
H(A(b)) = {6, 6}
H(A(a)) = {3, 6, 6}
H(A(v)) = {5, 5, 6, 6}
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Summary Verify that T is a MST

• generate full-branching tree B via Bor̊uvka algorithm applied
to T

• precompute the heaviest edge of all half-paths in B

• precompute all lowest common ancestors in B for the leaves x
and y that form a non-tree edge (x , y) in T

• for every non-tree edge e = (x , y) in T compare w(e) to
heaviest edge in half-paths B(x , lca) and B(lca, y)

Remark: the LCA of all pairs can be computed in O(m + n),
therefore the total running time of the algorithm is in O(m)
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A Randomized Linear-Time Algorithm for MST[DRK95]

Definition 9
Let G be a weighted graph and F be a forest in G .

• wF (x , y) denotes the maximum weight of an edge on F (x , y)

• An edge (x , y) is called F -heavy if w(x , y) > wF (x , y) and
F -light otherwise

Note:

• All edges of F are F -light

• For any forest F , no F -heavy edge can be in the MSF of G by
the cycle property.
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Algorithm

Step(1) Apply two Bor̊uvka steps to the graph, reducing the number
of vertices by at least a factor of 4

Step(2) In the contracted graph choose a subgraph H by selecting
each edge with probability 1/2. Apply the algorithm
recursively on H, to get a MSF F of H. Find all the F -heavy
edges (both those in H and not in H) and delete them.

Step(3) Apply the algorithm recursively to the remaining graph to
compute a spanning forest F ′. Return the edges contracted in
Step(1) together with the edges of F ′

Remarks:

• all edges in H − F are F -Heavy, but there may be more in the
rest of G

• only the edges that are in F appear in both recursions
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Correctness is proved by induction and cycle property (every edge
that is deleted in Step(2) cannot be in the MSF)
Analysis:

Step(1) takes time O(m) (2 Bor̊uvka steps).

Step(2) finding F -heavy edges takes time O(m) using Komlòs
algorithm as described in [Kin97]

so for some constant c we can describe the runtime as:

T (n,m) = cm + T (n2,m2)︸ ︷︷ ︸
recursion in Step(2)

+ T (n3,m3)︸ ︷︷ ︸
recursion in Step(3)

• imagine recursion tree: left child of a node is seen as the
recursion in Step(2), right child as the recursion in Step(3)
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Theorem 10
Wort-case Runtime of the algorithm is in O(min{n2,m log n})

Proof.

• consider subproblem in depth d : num. of nodes ≤ n/4d ⇒
num. of edges ≤ (n/4d)2/2

• sum over all subproblems: total num. of edges
≤

∑∞
d=0 2d n2

2·42d ≤ n2

2

∑∞
d=0

2d

22d = n2
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Proof (continued).

I Parent problem with v vertices. Edges of F are in both
subproblems, edges revomed in Step(1) are in none. All other
edges are in exactly one subproblem.

I After Step(1) there are v ′ ≤ v/4 nodes left in G ⇒ F has
≤ v ′ − 1 ≤ v/4 edges. But at least v/2 edges are removed in
Step(1) therefore the total number of edges in both
subproblems does not increase.

I ⇒ Number of edges in all subproblems at depth d in recursion
tree is ≤ m ⇒ as the recursion tree has depth O(log n) the
runtime is in O(m log n)
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Theorem 11
The expected runtime of the algorithm is in O(m)

Proof.

• X := number of edges in parent problem

• Y := number of edges in left subproblem

In Step(2) each edge that was not removed in Step(1) is included
with probability 1/2 ⇒
E [Y |X = k] ≤ k/2 ⇒ E [Y |X ] ≤ X/2 ⇒ E [Y ] ≤ E [X ]/2

T (n,m) = cm + T (n2,m2)︸ ︷︷ ︸
recursion in Step(2)

+ T (n3,m3)︸ ︷︷ ︸
recursion in Step(3)

T (n,m) ≤ cm + T (n/4,m/2) + T (n/4, n/2)︸︷︷︸
by Lemma 12

⇒ T (n,m) ∈ O(m + n) ⊂ O(m)
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Lemma 12
Let H be a subgraph of G obtained by including each edge
independently with probability p and let F be the MSF of H. Then
the expected number of F -light edges in G is ≤ n/p.

Proof.
Using the mean of the negative binomial distribution. see
[DRK95]
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An Optimal MST Algorithm:

• Pettie and Ramachandran[SP01], asymptotically optimal on a
pointer machine

• Uses precomputed optimal decision trees (unknown depth ⇒
exact runtime not known!)

• Fredman and Tarjan [MLF87] showed how to compute the
MST in time O(mβ(n,m)) with
β(n,m) = min{i | log(i) n < n/m}

⇒ For graphs with density Ω(log(3) n) this yields a linear-time
algorithm  DenseCase algorithm.
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Central datastructure used is the Soft Heap [Cha00]

• approximate priority queue with fixed error rate

• upports all heap operations (Insert, FindMin, Delete, Union)
in constant armotized time except for Insert which takes time

O(log(1
ε )

• Items are grouped together sharing the same key. Items can
adopt larger keys from other items corrupting the item.

This is shown in [Cha00]:

Lemma 13
For any 0 < ε ≤ 1/2, a soft heap with error rate ε supports each
operation in constant amortized time, except for insert, which
takes O(log(1

ε )) time. The data structure never contains more
than εn corrupted items at any given time.
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Lemma 14 (DJP Lemma)

Let T be a tree formed after some number of steps of the DJP
algorithm. Let e and f be two arbitrary edges with exactly one
endpoint in T and let g be the maximum weight edge on the path
from e to f in T . Then g cannot be heavier than both e and f .

Proof.
Let P be the path connecting e and f , assume the
contrary, that g is the heaviest edge in P ∪ {e, f }. At the
moment g is selected by DJP there are two edges eligible
one of which is g . If the other edge is in P then it must
be lighter than g . If it is either e or f then by the
assumption it must be lighter than g . In both cases g
could not be chosen next by DJP so we have a
contradiction.
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Definition 15
Let F be a subgraph of G . G \ F denotes the graph that results
from G by contracting all connected components formed by F .

Definition 16
Let M and C be Subgraphs of G .

• G ⇑ M the graph obtained from G when raising the weight of
every edge in M by an arbitrary amount (these edges are
corrupted)

• MC is the set of edges in M with exactly one endpoint in C

• C is said to be DJP-contractable if after some steps of the
DJP algorithm with start in C the resulting tree is a MST of C
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Lemma 17 (Contraction lemma)

Let M be a set of edges in a graph G. If C is a subgraph of G that
is DJP-contractable w.r.t. G ⇑ M, then

MSF (G ) ⊂ MSF (C ) ∪MSF (G \ C −MC ) ∪MC

Proof [SP01].

We prove MSF (G )C ⊃ MSF (C )C︸ ︷︷ ︸
(1)

∩MSF (G \ C −MC )C ∩MC
C

where AC denotes the complement of the set A (concerning the
edges, so MSF (C )C = C −MSF (C ) )

(1) Every edge in C that is not in MSF (C ) is the heaviest edge
on a cycle in C (because C has a MST). This cycle exists in
G as well, so this edge is also not in the MSF of G .
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Proof cont.
It remains to show that MSF (G )C ⊃ MSF (G \ C −MC )C ∩MC

C .
Set H := G \ C −MC . Then we are left with

MSF (G )C ⊃ H −MSF (H) ∩ G \ C −MC︸ ︷︷ ︸
=H

= H −MSF (H)

Let e ∈ H −MSF (H), then e is the heaviest edge on some cycle χ
in H.

1) If χ does not involve the super-node C then
it exists in G as well and e /∈ MSF (G ).

2) Otherwise χ includes a path
P = (x ,w , . . . , z , y) in H with x , y ∈ C .
Since H includes no corrupted edges with
one endpoint in C , the G -weight of the end
edges (x ,w) and (z , y) is the same as their
(G ⇑ M)-weight.
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Proof cont.
Let T be the spanning tree of C ⇑ M that was found by the DJP
algorithm, Q be the path in T connecting x and y , and g be the

heaviest edge in Q. Then P ∪Q forms a
circle with e being heavier than both (x ,w) and (y , z). By the
DJP-Lemma 14 The heavier of these both edges is heavier than
the G ⇑ M-weight of g which is an upper bound on the G -weigths
of all edges in Q. So w.r.t. G -weights, e is the heaviest edge on
the cycle P ∪Q and thus cannot be in MSF (G )
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Corollary 18

by applying Lemma 17 i times we get

MSF (G ) ⊂
i⋃

j=1

MSF (Cj) ∪MSF

G \
i⋃

j=1

Cj −
i⋃

j=1

MCj

 ∪
i⋃

j=1

MCj
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Overview of the optimal algorithm:

1) find DJP-contractable subgraphs C1,C2, . . . ,Ck with their
associated sets M =

⋃
i MCi

, where MCi
consists of corrupted

edges with exactly one endpoint in C .
2) Find MSF Fi of each Ci by using precomputed decision trees

for edge weight comparisons. Also find the MSF F0 of the
contracted graph G \ (

⋃
i Ci )−

⋃
i MCi

. By Lemma 17 the
MSF of G is contained within F0 ∪

⋃
i (Fi ∪MCi

).
3) Find some edges of the MSF of G via two Bor̊uvka steps and

recurse on the contraced graph

Note
• in Step 1) we make sure that each Ci is extremely small

(< log(3) n vertices) so we can apply the decision trees in
Step2)

• until Step 3) no edges of the MSF of G have been identified -
we only have discarded lots of edges.

• F0 in Step can be found by the DenseCase algorithm
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This procedure finds the DJP-contractable subgraphs and the set
M
Partition (G , maxsize, ε) returns M, C

All vertices are initially ’’live‘‘

M := ∅; i := 0
While there is a live vertex

i := i + 1
Let Vi := {v} where v is any live vertex

Create a Soft Heap consisting of v’s edges

While all vertices in Vi are live and |Vi | < maxsize
Repeat

delete min-weight edge (x , y) from Soft Heap

Until y /∈ Vi

Vi := Vi ∪ y
If y is live then insert each of y’s edges into the Soft Heap

Set all vertices in Vi to be dead

Let MVi
be the corrupted edges with one endpoint in Vi

M := M ∪ MVi
G := G − MVi

Dismantle the Soft Heap

Let C := {C1, . . . , Ci} where Ck is the subgraph of G induced by Vk

Return M, C
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• We partition the Graph into DJP contractable components
that are very small i.e. have less than log(3) n vertices.

• The growing of a component stops if it has reached its
maximum size, or it attaches to an existing component with
≥ log(3) n vertices

• Then we delete all corrupted edges Mc and contract all
remaining connected components into single vertices

• As each connected component consists of ≥ log(3) n vertices
the resulting graph has ≤ n/ log(3) n vertices and we can
apply the DenseCase algorithm to the remaining graph
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OptimalMSF(G )

If E (G ) = ∅ then Return(∅)
r := log(3) |V (G )|
M, C := Partition(G , r , ε)
F := DecisionTrees(C)
Let k := |C |, letC = {C1, . . . ,Ck} and F = {F1, . . . ,Fk}
Ga := G \ (F1 ∪ · · · ∪ Fk)−M
F0 := DenseCase(Ga)
Gb := F0 ∪ F1 ∪ · · · ∪ Fk ∪M
F ′,Gc := Boruvka2(Gb)
F := OptimalMSF(Gc)
Return (F ∪ F ′)
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Analysis: Apart from recursive calls the computation is clearly
linear. Partition takes O(m log(1/ε)) time and because of the
reductions in vertices DenseCase also takes linear time. For ε = 1

8
the number of edges passed to the recursive calls is
≤ m/4 + n/4 ≤ m/2 which gives a geometric reduction in the
number of edges. The lower bound for any MSF algorithm is

O(m), so the only bottleneck, if any, must lie in the decision trees,
which are optimal by construction. One can quite easily show

T (m, n) ∈ O(T ∗(m, n))

if T is the runtime of our algorithm and T ∗ is the optimal number
of comparisions needed for determining the MSF of an arbitrary
graph.
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Summary

• We can verify a MST in linear time on a RAM with wordsize
logn

• There is an randomized algorithm that runs in expected linear
time and w.h.p. in ”real“ linear time

• The MST can be computed optimally on a pointer machine -
but we do not know the worst case runtime

Open problems:

• Is there a linear time algorithm that runs on pointer machines?

• Is there an optimal algorithm that does not use precomputed
decision trees?

• Can we find good parallel algorithms for the MST problem?
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