
Tree isomorphism

Alexander Smal

St.Petersburg State University of Information Technologies, Mechanics and Optics

Joint Advanced Student School 2008

1 / 22

Motivation

In some applications the chemical structures are often trees with

millions of vertices:

• gene splicing,

• protein analysis,

• molecular biology.

Difference between O(n), O(n log n), and O(n2) isomorphism

algorithms is not just theoretical importance.

2 / 22

Graph isomorphism

Definition
Isomorphism of graphs G1(V1,E1) and G2(V2,E2) is a bijection

between the vertex sets ϕ : V1 → V2 such that

∀u, v ∈ V1 (u, v) ∈ E1 ⇔ (ϕ(u), ϕ(v)) ∈ E2.

Facts

• No algorithm, other than brute force, is known for testing

whether two arbitrary graphs are isomorphic.

• It is still an open question (!) whether graph isomorphism is

NP complete.

• Polynomial time isomorphism algorithms for various graph

subclasses such as trees are known.

3 / 22

Graph isomorphism

Definition
Isomorphism of graphs G1(V1,E1) and G2(V2,E2) is a bijection

between the vertex sets ϕ : V1 → V2 such that

∀u, v ∈ V1 (u, v) ∈ E1 ⇔ (ϕ(u), ϕ(v)) ∈ E2.

Facts

• No algorithm, other than brute force, is known for testing

whether two arbitrary graphs are isomorphic.

• It is still an open question (!) whether graph isomorphism is

NP complete.

• Polynomial time isomorphism algorithms for various graph

subclasses such as trees are known.

3 / 22

Graph isomorphism

Definition
Isomorphism of graphs G1(V1,E1) and G2(V2,E2) is a bijection

between the vertex sets ϕ : V1 → V2 such that

∀u, v ∈ V1 (u, v) ∈ E1 ⇔ (ϕ(u), ϕ(v)) ∈ E2.

Facts

• No algorithm, other than brute force, is known for testing

whether two arbitrary graphs are isomorphic.

• It is still an open question (!) whether graph isomorphism is

NP complete.

• Polynomial time isomorphism algorithms for various graph

subclasses such as trees are known.

3 / 22

Graph isomorphism

Definition
Isomorphism of graphs G1(V1,E1) and G2(V2,E2) is a bijection

between the vertex sets ϕ : V1 → V2 such that

∀u, v ∈ V1 (u, v) ∈ E1 ⇔ (ϕ(u), ϕ(v)) ∈ E2.

Facts

• No algorithm, other than brute force, is known for testing

whether two arbitrary graphs are isomorphic.

• It is still an open question (!) whether graph isomorphism is

NP complete.

• Polynomial time isomorphism algorithms for various graph

subclasses such as trees are known.

3 / 22

Rooted trees

Definition
Rooted tree (V ,E , r) is a tree (V ,E) with selected root r ∈ V .

Definition
Isomorphism of rooted trees T1(V1,E1, r1) and T2(V2,E2, r2) is

a bijection between the vertex sets ϕ : V1 → V2 such that

∀u, v ∈ V1 (u, v) ∈ E1 ⇔ (ϕ(u), ϕ(v)) ∈ E2

and ϕ(r1) = r2.

Example

T1 and T2 are isomorphic as graphs . . .

a B

b

c

A CT1 T2

4 / 22

Rooted trees

Definition
Rooted tree (V ,E , r) is a tree (V ,E) with selected root r ∈ V .

Definition
Isomorphism of rooted trees T1(V1,E1, r1) and T2(V2,E2, r2) is

a bijection between the vertex sets ϕ : V1 → V2 such that

∀u, v ∈ V1 (u, v) ∈ E1 ⇔ (ϕ(u), ϕ(v)) ∈ E2

and ϕ(r1) = r2.

Example

T1 and T2 are isomorphic as graphs . . .

a B

b

c

A CT1 T2

4 / 22

Rooted trees

Definition
Rooted tree (V ,E , r) is a tree (V ,E) with selected root r ∈ V .

Definition
Isomorphism of rooted trees T1(V1,E1, r1) and T2(V2,E2, r2) is

a bijection between the vertex sets ϕ : V1 → V2 such that

∀u, v ∈ V1 (u, v) ∈ E1 ⇔ (ϕ(u), ϕ(v)) ∈ E2

and ϕ(r1) = r2.

Example

T1 and T2 are isomorphic as graphs . . .

a B

b

c

A CT1 T2

4 / 22

Rooted trees

Definition
Rooted tree (V ,E , r) is a tree (V ,E) with selected root r ∈ V .

Definition
Isomorphism of rooted trees T1(V1,E1, r1) and T2(V2,E2, r2) is

a bijection between the vertex sets ϕ : V1 → V2 such that

∀u, v ∈ V1 (u, v) ∈ E1 ⇔ (ϕ(u), ϕ(v)) ∈ E2

and ϕ(r1) = r2.

Example

T1 and T2 are isomorphic as graphs . . .

a B

b

c

A CT1 T2

4 / 22

Rooted trees

Definition
Rooted tree (V ,E , r) is a tree (V ,E) with selected root r ∈ V .

Definition
Isomorphism of rooted trees T1(V1,E1, r1) and T2(V2,E2, r2) is

a bijection between the vertex sets ϕ : V1 → V2 such that

∀u, v ∈ V1 (u, v) ∈ E1 ⇔ (ϕ(u), ϕ(v)) ∈ E2

and ϕ(r1) = r2.

Example

T1 and T2 are isomorphic as graphs but not as rooted trees!

a B

b

c

A CT1 T2

4 / 22

Rooted trees (part 2)

Lemma
If there is O(n) algorithm for rooted trees isomorphism there is

O(n) algorithm for ordinary trees isomorphism.

Proof.

1 Let A to be O(n) algorithm for rooted trees.

2 Let T1 and T2 to be ordinary trees.

3 Lets find centers of this trees. There are three possibilities:

1 each tree has only one center (c1 and c2 respectively)
return A(T1, c1,T2, c2)

2 each tree has exactly two centers (c1, c
′
1
and c2, c

′
2

respectively)
return A(T1, c1,T2, c2) or A(T1, c

′
1
,T2, c2)

3 trees has different count of centers
return False

5 / 22

Rooted trees (part 2)

Lemma
If there is O(n) algorithm for rooted trees isomorphism there is

O(n) algorithm for ordinary trees isomorphism.

Proof.

1 Let A to be O(n) algorithm for rooted trees.

2 Let T1 and T2 to be ordinary trees.

3 Lets find centers of this trees. There are three possibilities:

1 each tree has only one center (c1 and c2 respectively)
return A(T1, c1,T2, c2)

2 each tree has exactly two centers (c1, c
′
1
and c2, c

′
2

respectively)
return A(T1, c1,T2, c2) or A(T1, c

′
1
,T2, c2)

3 trees has different count of centers
return False

5 / 22

Rooted trees (part 2)

Lemma
If there is O(n) algorithm for rooted trees isomorphism there is

O(n) algorithm for ordinary trees isomorphism.

Proof.

1 Let A to be O(n) algorithm for rooted trees.

2 Let T1 and T2 to be ordinary trees.

3 Lets find centers of this trees. There are three possibilities:

1 each tree has only one center (c1 and c2 respectively)
return A(T1, c1,T2, c2)

2 each tree has exactly two centers (c1, c
′
1
and c2, c

′
2

respectively)
return A(T1, c1,T2, c2) or A(T1, c

′
1
,T2, c2)

3 trees has different count of centers
return False

5 / 22

Rooted trees (part 2)

Lemma
If there is O(n) algorithm for rooted trees isomorphism there is

O(n) algorithm for ordinary trees isomorphism.

Proof.

1 Let A to be O(n) algorithm for rooted trees.

2 Let T1 and T2 to be ordinary trees.

3 Lets find centers of this trees. There are three possibilities:

1 each tree has only one center (c1 and c2 respectively)
return A(T1, c1,T2, c2)

2 each tree has exactly two centers (c1, c
′
1
and c2, c

′
2

respectively)
return A(T1, c1,T2, c2) or A(T1, c

′
1
,T2, c2)

3 trees has different count of centers
return False

5 / 22

Rooted trees (part 2)

Lemma
If there is O(n) algorithm for rooted trees isomorphism there is

O(n) algorithm for ordinary trees isomorphism.

Proof.

1 Let A to be O(n) algorithm for rooted trees.

2 Let T1 and T2 to be ordinary trees.

3 Lets find centers of this trees. There are three possibilities:

1 each tree has only one center (c1 and c2 respectively)
return A(T1, c1,T2, c2)

2 each tree has exactly two centers (c1, c
′
1
and c2, c

′
2

respectively)
return A(T1, c1,T2, c2) or A(T1, c

′
1
,T2, c2)

3 trees has different count of centers
return False

5 / 22

Rooted trees (part 2)

Lemma
If there is O(n) algorithm for rooted trees isomorphism there is

O(n) algorithm for ordinary trees isomorphism.

Proof.

1 Let A to be O(n) algorithm for rooted trees.

2 Let T1 and T2 to be ordinary trees.

3 Lets find centers of this trees. There are three possibilities:

1 each tree has only one center (c1 and c2 respectively)
return A(T1, c1,T2, c2)

2 each tree has exactly two centers (c1, c
′
1
and c2, c

′
2

respectively)
return A(T1, c1,T2, c2) or A(T1, c

′
1
,T2, c2)

3 trees has different count of centers
return False

5 / 22

Rooted trees (part 2)

Lemma
If there is O(n) algorithm for rooted trees isomorphism there is

O(n) algorithm for ordinary trees isomorphism.

Proof.

1 Let A to be O(n) algorithm for rooted trees.

2 Let T1 and T2 to be ordinary trees.

3 Lets find centers of this trees. There are three possibilities:

1 each tree has only one center (c1 and c2 respectively)
return A(T1, c1,T2, c2)

2 each tree has exactly two centers (c1, c
′
1
and c2, c

′
2

respectively)
return A(T1, c1,T2, c2) or A(T1, c

′
1
,T2, c2)

3 trees has different count of centers
return False

5 / 22

Diameter and center

Definition
The diameter of tree is the length of the longest path.

Definition
A center is a vertex v such that the longest path from v to a leaf

is minimal over all vertices in the tree.

Algorithm

1: Choose a random root r .

2: Find a vertex v1 — the farthest form r.

3: Find a vertex v2 — the farthest form v1.

4: Diameter is a length of path from v1 to v2.

5: Center is a median element(s) of path from v1 to v2.

It is O(n) algorithm.

6 / 22

Diameter and center

Definition
The diameter of tree is the length of the longest path.

Definition
A center is a vertex v such that the longest path from v to a leaf

is minimal over all vertices in the tree.

Algorithm

1: Choose a random root r .

2: Find a vertex v1 — the farthest form r.

3: Find a vertex v2 — the farthest form v1.

4: Diameter is a length of path from v1 to v2.

5: Center is a median element(s) of path from v1 to v2.

It is O(n) algorithm.

6 / 22

Diameter and center

Definition
The diameter of tree is the length of the longest path.

Definition
A center is a vertex v such that the longest path from v to a leaf

is minimal over all vertices in the tree.

Algorithm

1: Choose a random root r .

2: Find a vertex v1 — the farthest form r.

3: Find a vertex v2 — the farthest form v1.

4: Diameter is a length of path from v1 to v2.

5: Center is a median element(s) of path from v1 to v2.

It is O(n) algorithm.

6 / 22

Diameter and center

Definition
The diameter of tree is the length of the longest path.

Definition
A center is a vertex v such that the longest path from v to a leaf

is minimal over all vertices in the tree.

Algorithm

1: Choose a random root r .

2: Find a vertex v1 — the farthest form r.

3: Find a vertex v2 — the farthest form v1.

4: Diameter is a length of path from v1 to v2.

5: Center is a median element(s) of path from v1 to v2.

It is O(n) algorithm.

6 / 22

The idea

Let’s try to find complete invariant of rooted trees isomorphism.

Definition
Isomorphism invariant is a function f (T) such that

f (T1) = f (T2) for all pairs of isomorphic trees T1 and T2.

Definition
Complete isomorphism invariant is a function f (T) such that

two trees T1 and T2 are isomorphic if and only if f (T1) = f (T2).

So if we find complete isomorphism invariant we can obtain

algorithm from it.

Note
Starting from the next slide tree means rooted tree!

7 / 22

The idea

Let’s try to find complete invariant of rooted trees isomorphism.

Definition
Isomorphism invariant is a function f (T) such that

f (T1) = f (T2) for all pairs of isomorphic trees T1 and T2.

Definition
Complete isomorphism invariant is a function f (T) such that

two trees T1 and T2 are isomorphic if and only if f (T1) = f (T2).

So if we find complete isomorphism invariant we can obtain

algorithm from it.

Note
Starting from the next slide tree means rooted tree!

7 / 22

The idea

Let’s try to find complete invariant of rooted trees isomorphism.

Definition
Isomorphism invariant is a function f (T) such that

f (T1) = f (T2) for all pairs of isomorphic trees T1 and T2.

Definition
Complete isomorphism invariant is a function f (T) such that

two trees T1 and T2 are isomorphic if and only if f (T1) = f (T2).

So if we find complete isomorphism invariant we can obtain

algorithm from it.

Note
Starting from the next slide tree means rooted tree!

7 / 22

The idea

Let’s try to find complete invariant of rooted trees isomorphism.

Definition
Isomorphism invariant is a function f (T) such that

f (T1) = f (T2) for all pairs of isomorphic trees T1 and T2.

Definition
Complete isomorphism invariant is a function f (T) such that

two trees T1 and T2 are isomorphic if and only if f (T1) = f (T2).

So if we find complete isomorphism invariant we can obtain

algorithm from it.

Note
Starting from the next slide tree means rooted tree!

7 / 22

The idea

Let’s try to find complete invariant of rooted trees isomorphism.

Definition
Isomorphism invariant is a function f (T) such that

f (T1) = f (T2) for all pairs of isomorphic trees T1 and T2.

Definition
Complete isomorphism invariant is a function f (T) such that

two trees T1 and T2 are isomorphic if and only if f (T1) = f (T2).

So if we find complete isomorphism invariant we can obtain

algorithm from it.

Note
Starting from the next slide tree means rooted tree!

7 / 22

Candidate 1

Observation
The level number of a vertex is a tree isomorphism invariant.

Conjecture

Two trees are isomorphic if and only if they have the same number

of levels and the same number of vertices on each level.

Observation
The number of the leaves is a tree isomorphism invariant.

Contrary instance

a A

1 2 n· · · 1 2 n· · ·

d e D E

T1 T2

8 / 22

Candidate 1

Observation
The level number of a vertex is a tree isomorphism invariant.

Conjecture

Two trees are isomorphic if and only if they have the same number

of levels and the same number of vertices on each level.

Observation
The number of the leaves is a tree isomorphism invariant.

Contrary instance

a A

1 2 n· · · 1 2 n· · ·

d e D E

T1 T2

8 / 22

Candidate 1

Observation
The level number of a vertex is a tree isomorphism invariant.

Conjecture

Two trees are isomorphic if and only if they have the same number

of levels and the same number of vertices on each level.

Observation
The number of the leaves is a tree isomorphism invariant.

Contrary instance

a A

1 2 n· · · 1 2 n· · ·

d e D E

T1 T2

8 / 22

Candidate 1

Observation
The level number of a vertex is a tree isomorphism invariant.

Conjecture

Two trees are isomorphic if and only if they have the same number

of levels and the same number of vertices on each level.

Observation
The number of the leaves is a tree isomorphism invariant.

Contrary instance

a A

1 2 n· · · 1 2 n· · ·

d e D E

T1 T2

8 / 22

Candidate 2

What’s wrong with candidate 1?

We didn’t take into account the spectrum degree of a tree.

Definition
Degree spectrum of tree is the sequence of non-negative integers

{dj}, where dj is the number of vertices that have j children.

Conjecture

Two trees are isomorphic if and only if they have the same degree

spectrum.

9 / 22

Candidate 2

What’s wrong with candidate 1?

We didn’t take into account the spectrum degree of a tree.

Definition
Degree spectrum of tree is the sequence of non-negative integers

{dj}, where dj is the number of vertices that have j children.

Conjecture

Two trees are isomorphic if and only if they have the same degree

spectrum.

9 / 22

Candidate 2

What’s wrong with candidate 1?

We didn’t take into account the spectrum degree of a tree.

Definition
Degree spectrum of tree is the sequence of non-negative integers

{dj}, where dj is the number of vertices that have j children.

Conjecture

Two trees are isomorphic if and only if they have the same degree

spectrum.

9 / 22

Candidate 2 (part 2)

Observation
Since a tree isomorphism preserves longest paths from the root, the

number of levels in a tree is a tree isomorphism invariant.

Contrary instance

a A

b c B C

d e D E

1

n

1

n
...

...T1 T2

10 / 22

Candidate 2 (part 2)

Observation
Since a tree isomorphism preserves longest paths from the root, the

number of levels in a tree is a tree isomorphism invariant.

Contrary instance

a A

b c B C

d e D E

1

n

1

n
...

...T1 T2

10 / 22

Candidate 3

Conjecture

Two trees are isomorphic if and only if they have the same degree

spectrum at each level.

If two trees have the same degree spectrum at each level, then they

must automatically have the same numbers of levels, the same

numbers of vertices at each level, and the same global degree

spectrum!

Observation
The number of leaf descendants of a vertex and the level number of

a vertex are both tree isomorphism invariants.

11 / 22

Candidate 3

Conjecture

Two trees are isomorphic if and only if they have the same degree

spectrum at each level.

If two trees have the same degree spectrum at each level, then they

must automatically have the same numbers of levels, the same

numbers of vertices at each level, and the same global degree

spectrum!

Observation
The number of leaf descendants of a vertex and the level number of

a vertex are both tree isomorphism invariants.

11 / 22

Candidate 3

Conjecture

Two trees are isomorphic if and only if they have the same degree

spectrum at each level.

If two trees have the same degree spectrum at each level, then they

must automatically have the same numbers of levels, the same

numbers of vertices at each level, and the same global degree

spectrum!

Observation
The number of leaf descendants of a vertex and the level number of

a vertex are both tree isomorphism invariants.

11 / 22

Candidate 3 (part 2)

Contrary instance

a A

b c B C

d e f D E F

g G1

n

1

n

...
...

level degree spectrum

(0, 0, 1, 0, . . .)

(0, 1, 1, 0, . . .)

(2, 0, 1, 0, . . .)

(1, 1, 0, 0, . . .)

...

(1, 0, 0, 0, . . .)

T1 T2

12 / 22

AHU algorithm

Algorithm by Aho, Hopcroft and Ullman

• Determine tree isomorphism in time O(|V |).
• Uses complete history of degree spectrum of the vertex

descendants as a complete invariant.

The idea of AHU algorithm

The AHU algorithm associates with each vertex a tuple that

describes the complete history of its descendants.

Hard question

Why our previous invariants are not complete?

Let’s discuss AHU algorithm. We start from O(|V |2) version and

then I tell how to make it faster (O(|V |)).

13 / 22

AHU algorithm

Algorithm by Aho, Hopcroft and Ullman

• Determine tree isomorphism in time O(|V |).
• Uses complete history of degree spectrum of the vertex

descendants as a complete invariant.

The idea of AHU algorithm

The AHU algorithm associates with each vertex a tuple that

describes the complete history of its descendants.

Hard question

Why our previous invariants are not complete?

Let’s discuss AHU algorithm. We start from O(|V |2) version and

then I tell how to make it faster (O(|V |)).

13 / 22

AHU algorithm

Algorithm by Aho, Hopcroft and Ullman

• Determine tree isomorphism in time O(|V |).
• Uses complete history of degree spectrum of the vertex

descendants as a complete invariant.

The idea of AHU algorithm

The AHU algorithm associates with each vertex a tuple that

describes the complete history of its descendants.

Hard question

Why our previous invariants are not complete?

Let’s discuss AHU algorithm. We start from O(|V |2) version and

then I tell how to make it faster (O(|V |)).

13 / 22

AHU algorithm

Algorithm by Aho, Hopcroft and Ullman

• Determine tree isomorphism in time O(|V |).
• Uses complete history of degree spectrum of the vertex

descendants as a complete invariant.

The idea of AHU algorithm

The AHU algorithm associates with each vertex a tuple that

describes the complete history of its descendants.

Hard question

Why our previous invariants are not complete?

Let’s discuss AHU algorithm. We start from O(|V |2) version and

then I tell how to make it faster (O(|V |)).
13 / 22

Understanding AHU algorithm

Knuth tuples

Let’s assign parenthetical tuples to all tree vertices.

Knuth tuples example

A

B

E

C

F G

D

14 / 22

Understanding AHU algorithm

Knuth tuples

Let’s assign parenthetical tuples to all tree vertices.

Knuth tuples example

A

B

E

C

F G

D

14 / 22

Understanding AHU algorithm

Knuth tuples

Let’s assign parenthetical tuples to all tree vertices.

Knuth tuples example

A

B

E

C

F G

D

(0) (0) (0)

(0)

14 / 22

Understanding AHU algorithm

Knuth tuples

Let’s assign parenthetical tuples to all tree vertices.

Knuth tuples example

A

B

E

C

F G

D

(0) (0) (0)

(0)((0))

14 / 22

Understanding AHU algorithm

Knuth tuples

Let’s assign parenthetical tuples to all tree vertices.

Knuth tuples example

A

B

E

C

F G

D

(0) (0) (0)

(0)((0)) ((0) (0))

14 / 22

Understanding AHU algorithm

Knuth tuples

Let’s assign parenthetical tuples to all tree vertices.

Knuth tuples example

A

B

E

C

F G

D

(0) (0) (0)

(0)((0)) ((0) (0))

F

14 / 22

Understanding AHU algorithm

Knuth tuples

Let’s assign parenthetical tuples to all tree vertices.

Knuth tuples example

A

B

E

C

F G

D

(0) (0) (0)

(0)((0)) ((0) (0))

G

14 / 22

Understanding AHU algorithm

Knuth tuples

Let’s assign parenthetical tuples to all tree vertices.

Knuth tuples example

A

B

E

C

F G

D

(0) (0) (0)

(0)((0)) ((0) (0))

(((0)) ((0)(0)) (0))

14 / 22

Understanding AHU algorithm

Knuth tuples

Let’s assign parenthetical tuples to all tree vertices.

Knuth tuples example

A

B

E

C

F G

D

(0) (0) (0)

(0)((0)) ((0) (0))

(((0)) ((0)(0)) (0))

B

14 / 22

Understanding AHU algorithm

Knuth tuples

Let’s assign parenthetical tuples to all tree vertices.

Knuth tuples example

A

B

E

C

F G

D

(0) (0) (0)

(0)((0)) ((0) (0))

(((0)) ((0)(0)) (0))

C

14 / 22

Understanding AHU algorithm

Knuth tuples

Let’s assign parenthetical tuples to all tree vertices.

Knuth tuples example

A

B

E

C

F G

D

(0) (0) (0)

(0)((0)) ((0) (0))

(((0)) ((0)(0)) (0))

D

14 / 22

Understanding AHU algorithm (part 2)

There is algorithm Assign-Knuth-Tuples(v) that visits every

vertex once or twice.

Assign-Knuth-Tuples(v)

1: if v is a leaf then

2: Give v the tuple name (0)
3: else

4: for all child w of v do

5: Assign-Knuth-Tuples(w)

6: end for

7: end if

8: Concatenate the names of all children of v to temp

9: Give v the tuple name temp

15 / 22

Understanding AHU algorithm (part 3)

Observation
There is no order on parenthetical tuples.

Example

A

B C

D

a

b

d

c(0)

(0)

(0)

(0)

((0)) ((0))

((0) ((0))) (((0)) (0))

Let’s convert parenthetical tuples to canonical names. We should

drop all “0”-s and replace “(” and “)” with “1” and “0” respectively.

16 / 22

Understanding AHU algorithm (part 3)

Observation
There is no order on parenthetical tuples.

Example

A

B C

D

a

b

d

c(0)

(0)

(0)

(0)

((0)) ((0))

((0) ((0))) (((0)) (0))

Let’s convert parenthetical tuples to canonical names. We should

drop all “0”-s and replace “(” and “)” with “1” and “0” respectively.

16 / 22

Understanding AHU algorithm (part 3)

Observation
There is no order on parenthetical tuples.

Example

A

B C

D

a

b

d

c(0)

(0)

(0)

(0)

((0)) ((0))

((0) ((0))) (((0)) (0))

Let’s convert parenthetical tuples to canonical names. We should

drop all “0”-s and replace “(” and “)” with “1” and “0” respectively.

16 / 22

Understanding AHU algorithm (part 3)

Observation
There is no order on parenthetical tuples.

Example

A

B C

D

a

b

d

c10

10

10

10

1100 1100

1 10 1100 0 1 1100 10 0

Let’s convert parenthetical tuples to canonical names. We should

drop all “0”-s and replace “(” and “)” with “1” and “0” respectively.

16 / 22

Understanding AHU algorithm (part 3)

Observation
There is no order on parenthetical tuples.

Example

A

B C

D

a

b

d

c10

10

10

10

1100 1100

1 10 1100 0 1 10 1100 0

Let’s convert parenthetical tuples to canonical names. We should

drop all “0”-s and replace “(” and “)” with “1” and “0” respectively.

16 / 22

Understanding AHU algorithm (part 4)

Assign-Canonical-Names(v)

1: if v is a leaf then

2: Give v the tuple name “10”

3: else

4: for all child w of v do

5: Assign-Canonical-Names(v)

6: end for

7: end if

8: Sort the names of the children of v

9: Concatenate the names of all children of v to temp

10: Give v the name 1temp0

17 / 22

Understanding AHU algorithm (part 5)
We should discuss some important questions.

Invariant?
Is canonical name of a root is a tree isomorphism invariant?

Complete invariant?

Is canonical name of a root is a complete tree isomorphism

invariant?

AHU-Tree-Isomorphism(T1(V1,E1, r1), T2(V2,E2, r2))

1: Assign-Canonical-Names(r1)

2: Assign-Canonical-Names(r2)

3: if name(r1) = name(r2) then
4: return True

5: else

6: return False

7: end if

18 / 22

Understanding AHU algorithm (part 5)
We should discuss some important questions.

Invariant?
Is canonical name of a root is a tree isomorphism invariant?

Complete invariant?

Is canonical name of a root is a complete tree isomorphism

invariant?

AHU-Tree-Isomorphism(T1(V1,E1, r1), T2(V2,E2, r2))

1: Assign-Canonical-Names(r1)

2: Assign-Canonical-Names(r2)

3: if name(r1) = name(r2) then
4: return True

5: else

6: return False

7: end if

18 / 22

Understanding AHU algorithm (part 5)
We should discuss some important questions.

Invariant?
Is canonical name of a root is a tree isomorphism invariant?

Complete invariant?

Is canonical name of a root is a complete tree isomorphism

invariant?

AHU-Tree-Isomorphism(T1(V1,E1, r1), T2(V2,E2, r2))

1: Assign-Canonical-Names(r1)

2: Assign-Canonical-Names(r2)

3: if name(r1) = name(r2) then
4: return True

5: else

6: return False

7: end if

18 / 22

Understanding AHU algorithm (part 5)
We should discuss some important questions.

Invariant?
Is canonical name of a root is a tree isomorphism invariant?

Complete invariant?

Is canonical name of a root is a complete tree isomorphism

invariant?

AHU-Tree-Isomorphism(T1(V1,E1, r1), T2(V2,E2, r2))

1: Assign-Canonical-Names(r1)

2: Assign-Canonical-Names(r2)

3: if name(r1) = name(r2) then
4: return True

5: else

6: return False

7: end if

18 / 22

AHU algorithm improvement

Observation
To compute the root name of a tree of n vertices in one long

strand, takes time proportional to 1 + 2 + · · ·+ n, which is Ω(n2).

Observation
For all levels i , the canonical name of level i is a tree isomorphism

invariant.

Observation
Two trees T1 and T2 are isomorphic if and only if for all levels i

canonical level names of T1 and T2 are identical.

The idea 1
Assign canonical names level, sort by level, and check by level that

the canonical level names agree.

The idea 2
Assign canonical names level and if canonical level names agree

than replace canonical names with integers.

19 / 22

AHU algorithm improvement

Observation
To compute the root name of a tree of n vertices in one long

strand, takes time proportional to 1 + 2 + · · ·+ n, which is Ω(n2).

Observation
For all levels i , the canonical name of level i is a tree isomorphism

invariant.

Observation
Two trees T1 and T2 are isomorphic if and only if for all levels i

canonical level names of T1 and T2 are identical.

The idea 1
Assign canonical names level, sort by level, and check by level that

the canonical level names agree.

The idea 2
Assign canonical names level and if canonical level names agree

than replace canonical names with integers.

19 / 22

AHU algorithm improvement

Observation
To compute the root name of a tree of n vertices in one long

strand, takes time proportional to 1 + 2 + · · ·+ n, which is Ω(n2).

Observation
For all levels i , the canonical name of level i is a tree isomorphism

invariant.

Observation
Two trees T1 and T2 are isomorphic if and only if for all levels i

canonical level names of T1 and T2 are identical.

The idea 1
Assign canonical names level, sort by level, and check by level that

the canonical level names agree.

The idea 2
Assign canonical names level and if canonical level names agree

than replace canonical names with integers.

19 / 22

AHU algorithm improvement

Observation
To compute the root name of a tree of n vertices in one long

strand, takes time proportional to 1 + 2 + · · ·+ n, which is Ω(n2).

Observation
For all levels i , the canonical name of level i is a tree isomorphism

invariant.

Observation
Two trees T1 and T2 are isomorphic if and only if for all levels i

canonical level names of T1 and T2 are identical.

The idea 1
Assign canonical names level, sort by level, and check by level that

the canonical level names agree.

The idea 2
Assign canonical names level and if canonical level names agree

than replace canonical names with integers.

19 / 22

AHU algorithm improvement

Observation
To compute the root name of a tree of n vertices in one long

strand, takes time proportional to 1 + 2 + · · ·+ n, which is Ω(n2).

Observation
For all levels i , the canonical name of level i is a tree isomorphism

invariant.

Observation
Two trees T1 and T2 are isomorphic if and only if for all levels i

canonical level names of T1 and T2 are identical.

The idea 1
Assign canonical names level, sort by level, and check by level that

the canonical level names agree.

The idea 2
Assign canonical names level and if canonical level names agree

than replace canonical names with integers.
19 / 22

AHU algorithm example

Example

A

B C

D E

a

b

d e

c 0

1

20 / 22

AHU algorithm example

Example

A

B C

D E

a

b

d e

c

0D 0E 0d 0e

0

1

20 / 22

AHU algorithm example

Example

A

B C

D E

a

b

d e

c

1D 1E 1d 1e

0

11,1 1,1

20 / 22

AHU algorithm example

Example

A

B C

D E

a

b

d e

c

1 1 1 1

0

11,1 1,1

20 / 22

AHU algorithm example

Example

A

B C

D E

a

b

d e

c

1 1 1 1

00B 0c1 1b1 1C

1

20 / 22

AHU algorithm example

Example

A

B C

D E

a

b

d e

c

1 1 1 1

1B 1c2b2C

11,2 1,2

20 / 22

AHU algorithm example

Example

A

B C

D E

a

b

d e

c

1 1 1 1

1 122

11,2 1,2

20 / 22

AHU algorithm example

Example

A

B C

D E

a

b

d e

c

1 1 1 1

1 122

1 2A 1 2a

1

20 / 22

AHU algorithm example

Example

A

B C

D E

a

b

d e

c

1 1 1 1

1 122

1A 1a

11 1

20 / 22

AHU algorithm example

Example

A

B C

D E

a

b

d e

c

1 1 1 1

1 122

1 1

11 1

20 / 22

AHU algorithm example

Example

A

B C

D E

a

b

d e

c

1 1 1 1

1 122

1 1

1OK

20 / 22

Resume

Resume

• We have three unsuccessful tries to construct complete tree

isomorphism invariant.

• We discussed O(|V |2) version of AHU algorithm.

• We discussed ways of improvement of AHU algorithm to make

it work in O(|V |) time.

21 / 22

Thank you for your attention!

Any questions?

22 / 22

