Tree isomorphism

Alexander Smal

St.Petersburg State University of Information Technologies, Mechanics and Optics

Joint Advanced Student School 2008

Motivation

In some applications the chemical structures are often trees with millions of vertices:

- gene splicing,
- protein analysis,
- molecular biology.

Difference between $O(n), O(n \log n)$, and $O\left(n^{2}\right)$ isomorphism algorithms is not just theoretical importance.

Graph isomorphism

Definition
Isomorphism of graphs $G_{1}\left(V_{1}, E_{1}\right)$ and $G_{2}\left(V_{2}, E_{2}\right)$ is a bijection between the vertex sets $\varphi: V_{1} \rightarrow V_{2}$ such that

$$
\forall u, v \in V_{1} \quad(u, v) \in E_{1} \Leftrightarrow(\varphi(u), \varphi(v)) \in E_{2}
$$

Graph isomorphism

Definition

Isomorphism of graphs $G_{1}\left(V_{1}, E_{1}\right)$ and $G_{2}\left(V_{2}, E_{2}\right)$ is a bijection between the vertex sets $\varphi: V_{1} \rightarrow V_{2}$ such that

$$
\forall u, v \in V_{1} \quad(u, v) \in E_{1} \Leftrightarrow(\varphi(u), \varphi(v)) \in E_{2}
$$

Facts

- No algorithm, other than brute force, is known for testing whether two arbitrary graphs are isomorphic.

Graph isomorphism

Definition

Isomorphism of graphs $G_{1}\left(V_{1}, E_{1}\right)$ and $G_{2}\left(V_{2}, E_{2}\right)$ is a bijection between the vertex sets $\varphi: V_{1} \rightarrow V_{2}$ such that

$$
\forall u, v \in V_{1} \quad(u, v) \in E_{1} \Leftrightarrow(\varphi(u), \varphi(v)) \in E_{2}
$$

Facts

- No algorithm, other than brute force, is known for testing whether two arbitrary graphs are isomorphic.
- It is still an open question (!) whether graph isomorphism is $\mathcal{N P}$ complete.

Graph isomorphism

Definition

Isomorphism of graphs $G_{1}\left(V_{1}, E_{1}\right)$ and $G_{2}\left(V_{2}, E_{2}\right)$ is a bijection between the vertex sets $\varphi: V_{1} \rightarrow V_{2}$ such that

$$
\forall u, v \in V_{1} \quad(u, v) \in E_{1} \Leftrightarrow(\varphi(u), \varphi(v)) \in E_{2}
$$

Facts

- No algorithm, other than brute force, is known for testing whether two arbitrary graphs are isomorphic.
- It is still an open question (!) whether graph isomorphism is $\mathcal{N P}$ complete.
- Polynomial time isomorphism algorithms for various graph subclasses such as trees are known.

Rooted trees

Definition
Rooted tree (V, E, r) is a tree (V, E) with selected root $r \in V$.

Rooted trees

Definition
Rooted tree (V, E, r) is a tree (V, E) with selected root $r \in V$.
Definition
Isomorphism of rooted trees $T_{1}\left(V_{1}, E_{1}, r_{1}\right)$ and $T_{2}\left(V_{2}, E_{2}, r_{2}\right)$ is a bijection between the vertex sets $\varphi: V_{1} \rightarrow V_{2}$ such that

$$
\forall u, v \in V_{1} \quad(u, v) \in E_{1} \Leftrightarrow(\varphi(u), \varphi(v)) \in E_{2}
$$

and $\varphi\left(r_{1}\right)=r_{2}$.

Rooted trees

Definition
Rooted tree (V, E, r) is a tree (V, E) with selected root $r \in V$.
Definition
Isomorphism of rooted trees $T_{1}\left(V_{1}, E_{1}, r_{1}\right)$ and $T_{2}\left(V_{2}, E_{2}, r_{2}\right)$ is a bijection between the vertex sets $\varphi: V_{1} \rightarrow V_{2}$ such that

$$
\forall u, v \in V_{1} \quad(u, v) \in E_{1} \Leftrightarrow(\varphi(u), \varphi(v)) \in E_{2}
$$

and $\varphi\left(r_{1}\right)=r_{2}$.

Rooted trees

Definition
Rooted tree (V, E, r) is a tree (V, E) with selected root $r \in V$.
Definition
Isomorphism of rooted trees $T_{1}\left(V_{1}, E_{1}, r_{1}\right)$ and $T_{2}\left(V_{2}, E_{2}, r_{2}\right)$ is a bijection between the vertex sets $\varphi: V_{1} \rightarrow V_{2}$ such that

$$
\forall u, v \in V_{1} \quad(u, v) \in E_{1} \Leftrightarrow(\varphi(u), \varphi(v)) \in E_{2}
$$

and $\varphi\left(r_{1}\right)=r_{2}$.
Example
T_{1} and T_{2} are isomorphic as graphs...

Rooted trees

Definition
Rooted tree (V, E, r) is a tree (V, E) with selected root $r \in V$.
Definition
Isomorphism of rooted trees $T_{1}\left(V_{1}, E_{1}, r_{1}\right)$ and $T_{2}\left(V_{2}, E_{2}, r_{2}\right)$ is a bijection between the vertex sets $\varphi: V_{1} \rightarrow V_{2}$ such that

$$
\forall u, v \in V_{1} \quad(u, v) \in E_{1} \Leftrightarrow(\varphi(u), \varphi(v)) \in E_{2}
$$

and $\varphi\left(r_{1}\right)=r_{2}$.
Example
T_{1} and T_{2} are isomorphic as graphs but not as rooted trees!

Rooted trees (part 2)

Lemma

If there is $O(n)$ algorithm for rooted trees isomorphism there is $O(n)$ algorithm for ordinary trees isomorphism.

Rooted trees (part 2)

Lemma

If there is $O(n)$ algorithm for rooted trees isomorphism there is $O(n)$ algorithm for ordinary trees isomorphism.
Proof.
(1) Let \mathcal{A} to be $O(n)$ algorithm for rooted trees.

Rooted trees (part 2)

Lemma

If there is $O(n)$ algorithm for rooted trees isomorphism there is $O(n)$ algorithm for ordinary trees isomorphism.

Proof.

(1) Let \mathcal{A} to be $O(n)$ algorithm for rooted trees.
(2) Let T_{1} and T_{2} to be ordinary trees.

Rooted trees (part 2)

Lemma

If there is $O(n)$ algorithm for rooted trees isomorphism there is $O(n)$ algorithm for ordinary trees isomorphism.

Proof.

(1) Let \mathcal{A} to be $O(n)$ algorithm for rooted trees.
(2) Let T_{1} and T_{2} to be ordinary trees.
(3) Lets find centers of this trees. There are three possibilities:

Rooted trees (part 2)

Lemma

If there is $O(n)$ algorithm for rooted trees isomorphism there is $O(n)$ algorithm for ordinary trees isomorphism.

Proof.
(1) Let \mathcal{A} to be $O(n)$ algorithm for rooted trees.
(2) Let T_{1} and T_{2} to be ordinary trees.
(3) Lets find centers of this trees. There are three possibilities:
(1) each tree has only one center (c_{1} and c_{2} respectively) return $\mathcal{A}\left(T_{1}, c_{1}, T_{2}, c_{2}\right)$

Rooted trees (part 2)

Lemma

If there is $O(n)$ algorithm for rooted trees isomorphism there is $O(n)$ algorithm for ordinary trees isomorphism.

Proof.
(1) Let \mathcal{A} to be $O(n)$ algorithm for rooted trees.
(2) Let T_{1} and T_{2} to be ordinary trees.
(3) Lets find centers of this trees. There are three possibilities:
(1) each tree has only one center (c_{1} and c_{2} respectively) return $\mathcal{A}\left(T_{1}, c_{1}, T_{2}, c_{2}\right)$
(2) each tree has exactly two centers (c_{1}, c_{1}^{\prime} and c_{2}, c_{2}^{\prime} respectively)
return $\mathcal{A}\left(T_{1}, c_{1}, T_{2}, c_{2}\right)$ or $\mathcal{A}\left(T_{1}, c_{1}^{\prime}, T_{2}, c_{2}\right)$

Rooted trees (part 2)

Lemma

If there is $O(n)$ algorithm for rooted trees isomorphism there is $O(n)$ algorithm for ordinary trees isomorphism.

Proof.

(1) Let \mathcal{A} to be $O(n)$ algorithm for rooted trees.
(2) Let T_{1} and T_{2} to be ordinary trees.
(3) Lets find centers of this trees. There are three possibilities:
(1) each tree has only one center (c_{1} and c_{2} respectively) return $\mathcal{A}\left(T_{1}, c_{1}, T_{2}, c_{2}\right)$
(2) each tree has exactly two centers (c_{1}, c_{1}^{\prime} and c_{2}, c_{2}^{\prime} respectively)
return $\mathcal{A}\left(T_{1}, c_{1}, T_{2}, c_{2}\right)$ or $\mathcal{A}\left(T_{1}, c_{1}^{\prime}, T_{2}, c_{2}\right)$
(3) trees has different count of centers return False

Diameter and center

Definition

The diameter of tree is the length of the longest path.

Diameter and center

Definition

The diameter of tree is the length of the longest path.
Definition
A center is a vertex v such that the longest path from v to a leaf is minimal over all vertices in the tree.

Diameter and center

Definition

The diameter of tree is the length of the longest path.

Definition

A center is a vertex v such that the longest path from v to a leaf is minimal over all vertices in the tree.

Algorithm
1: Choose a random root r.
2: Find a vertex v_{1} - the farthest form r.
3: Find a vertex $v_{2}-$ the farthest form v_{1}.
4: Diameter is a length of path from v_{1} to v_{2}.
5: Center is a median element(s) of path from v_{1} to v_{2}.

Diameter and center

Definition

The diameter of tree is the length of the longest path.

Definition

A center is a vertex v such that the longest path from v to a leaf is minimal over all vertices in the tree.

Algorithm
1: Choose a random root r.
2: Find a vertex v_{1} - the farthest form r.
3: Find a vertex v_{2} - the farthest form v_{1}.
4: Diameter is a length of path from v_{1} to v_{2}.
5: Center is a median element(s) of path from v_{1} to v_{2}.
It is $O(n)$ algorithm.

The idea

Let's try to find complete invariant of rooted trees isomorphism.

The idea

Let's try to find complete invariant of rooted trees isomorphism.
Definition
Isomorphism invariant is a function $f(T)$ such that $f\left(T_{1}\right)=f\left(T_{2}\right)$ for all pairs of isomorphic trees T_{1} and T_{2}.

The idea

Let's try to find complete invariant of rooted trees isomorphism.
Definition
Isomorphism invariant is a function $f(T)$ such that $f\left(T_{1}\right)=f\left(T_{2}\right)$ for all pairs of isomorphic trees T_{1} and T_{2}.

Definition
Complete isomorphism invariant is a function $f(T)$ such that two trees T_{1} and T_{2} are isomorphic if and only if $f\left(T_{1}\right)=f\left(T_{2}\right)$.

The idea

Let's try to find complete invariant of rooted trees isomorphism.
Definition
Isomorphism invariant is a function $f(T)$ such that $f\left(T_{1}\right)=f\left(T_{2}\right)$ for all pairs of isomorphic trees T_{1} and T_{2}.

Definition

Complete isomorphism invariant is a function $f(T)$ such that two trees T_{1} and T_{2} are isomorphic if and only if $f\left(T_{1}\right)=f\left(T_{2}\right)$.

So if we find complete isomorphism invariant we can obtain algorithm from it.

The idea

Let's try to find complete invariant of rooted trees isomorphism.
Definition
Isomorphism invariant is a function $f(T)$ such that $f\left(T_{1}\right)=f\left(T_{2}\right)$ for all pairs of isomorphic trees T_{1} and T_{2}.

Definition

Complete isomorphism invariant is a function $f(T)$ such that two trees T_{1} and T_{2} are isomorphic if and only if $f\left(T_{1}\right)=f\left(T_{2}\right)$.

So if we find complete isomorphism invariant we can obtain algorithm from it.

Note
Starting from the next slide tree means rooted tree!

Candidate 1

Observation

The level number of a vertex is a tree isomorphism invariant.

Candidate 1

Observation
The level number of a vertex is a tree isomorphism invariant.

Conjecture

Two trees are isomorphic if and only if they have the same number of levels and the same number of vertices on each level.

Candidate 1

Observation
The level number of a vertex is a tree isomorphism invariant.

Conjecture

Two trees are isomorphic if and only if they have the same number of levels and the same number of vertices on each level.

Observation
The number of the leaves is a tree isomorphism invariant.

Candidate 1

Observation
The level number of a vertex is a tree isomorphism invariant.

Conjecture

Two trees are isomorphic if and only if they have the same number of levels and the same number of vertices on each level.

Observation
The number of the leaves is a tree isomorphism invariant.
Contrary instance

Candidate 2

What's wrong with candidate 1 ?
We didn't take into account the spectrum degree of a tree.

Candidate 2

What's wrong with candidate 1 ?
We didn't take into account the spectrum degree of a tree.
Definition
Degree spectrum of tree is the sequence of non-negative integers $\left\{d_{j}\right\}$, where d_{j} is the number of vertices that have j children.

Candidate 2

What's wrong with candidate 1 ?
We didn't take into account the spectrum degree of a tree.
Definition
Degree spectrum of tree is the sequence of non-negative integers $\left\{d_{j}\right\}$, where d_{j} is the number of vertices that have j children.

Conjecture
Two trees are isomorphic if and only if they have the same degree spectrum.

Candidate 2 (part 2)

Observation
Since a tree isomorphism preserves longest paths from the root, the number of levels in a tree is a tree isomorphism invariant.

Candidate 2 (part 2)

Observation
Since a tree isomorphism preserves longest paths from the root, the number of levels in a tree is a tree isomorphism invariant.

Contrary instance

Candidate 3

Conjecture

Two trees are isomorphic if and only if they have the same degree spectrum at each level.

Candidate 3

Conjecture

Two trees are isomorphic if and only if they have the same degree spectrum at each level.

If two trees have the same degree spectrum at each level, then they must automatically have the same numbers of levels, the same numbers of vertices at each level, and the same global degree spectrum!

Candidate 3

Conjecture

Two trees are isomorphic if and only if they have the same degree spectrum at each level.

If two trees have the same degree spectrum at each level, then they must automatically have the same numbers of levels, the same numbers of vertices at each level, and the same global degree spectrum!

Observation

The number of leaf descendants of a vertex and the level number of a vertex are both tree isomorphism invariants.

Candidate 3 (part 2)

Contrary instance
level degree spectrum

AHU algorithm

Algorithm by Aho, Hopcroft and Ullman

- Determine tree isomorphism in time $O(|V|)$.
- Uses complete history of degree spectrum of the vertex descendants as a complete invariant.

AHU algorithm

Algorithm by Aho, Hopcroft and Ullman

- Determine tree isomorphism in time $O(|V|)$.
- Uses complete history of degree spectrum of the vertex descendants as a complete invariant.

The idea of AHU algorithm
The AHU algorithm associates with each vertex a tuple that describes the complete history of its descendants.

AHU algorithm

Algorithm by Aho, Hopcroft and Ullman

- Determine tree isomorphism in time $O(|V|)$.
- Uses complete history of degree spectrum of the vertex descendants as a complete invariant.

The idea of AHU algorithm
The AHU algorithm associates with each vertex a tuple that describes the complete history of its descendants.

Hard question
Why our previous invariants are not complete?

AHU algorithm

Algorithm by Aho, Hopcroft and Ullman

- Determine tree isomorphism in time $O(|V|)$.
- Uses complete history of degree spectrum of the vertex descendants as a complete invariant.

The idea of AHU algorithm
The AHU algorithm associates with each vertex a tuple that describes the complete history of its descendants.

Hard question
Why our previous invariants are not complete?

Let's discuss AHU algorithm. We start from $O\left(|V|^{2}\right)$ version and then I tell how to make it faster $(O(|V|))$.

Understanding AHU algorithm

Knuth tuples
Let's assign parenthetical tuples to all tree vertices.

Understanding AHU algorithm

Knuth tuples
Let's assign parenthetical tuples to all tree vertices.
Knuth tuples example

Understanding AHU algorithm

Knuth tuples
Let's assign parenthetical tuples to all tree vertices.
Knuth tuples example

Understanding AHU algorithm

Knuth tuples
Let's assign parenthetical tuples to all tree vertices.
Knuth tuples example

Understanding AHU algorithm

Knuth tuples
Let's assign parenthetical tuples to all tree vertices.
Knuth tuples example

Understanding AHU algorithm

Knuth tuples
Let's assign parenthetical tuples to all tree vertices.
Knuth tuples example

Understanding AHU algorithm

Knuth tuples
Let's assign parenthetical tuples to all tree vertices.
Knuth tuples example

Understanding AHU algorithm

Knuth tuples
Let's assign parenthetical tuples to all tree vertices.
Knuth tuples example

Understanding AHU algorithm

Knuth tuples
Let's assign parenthetical tuples to all tree vertices.
Knuth tuples example

Understanding AHU algorithm

Knuth tuples
Let's assign parenthetical tuples to all tree vertices.
Knuth tuples example

Understanding AHU algorithm

Knuth tuples
Let's assign parenthetical tuples to all tree vertices.
Knuth tuples example

Understanding AHU algorithm (part 2)

There is algorithm Assign-Knuth-Tuples(v) that visits every vertex once or twice.

Assign-Knuth-Tuples (v)
1: if v is a leaf then
2: Give v the tuple name (0)
3: else
4: for all child w of v do
5: \quad Assign-Knuth-Tuples(w)
6: end for
7: end if
8: Concatenate the names of all children of v to temp
9: Give v the tuple name temp

Understanding AHU algorithm (part 3)

Observation
There is no order on parenthetical tuples.

Understanding AHU algorithm (part 3)

Observation
There is no order on parenthetical tuples.
Example

Understanding AHU algorithm (part 3)

Observation
There is no order on parenthetical tuples.
Example

Let's convert parenthetical tuples to canonical names. We should drop all " 0 "-s and replace "(" and ")" with " 1 " and " 0 " respectively.

Understanding AHU algorithm (part 3)

Observation
There is no order on parenthetical tuples.
Example

Let's convert parenthetical tuples to canonical names. We should drop all " 0 "-s and replace "(" and ")" with " 1 " and " 0 " respectively.

Understanding AHU algorithm (part 3)

Observation
There is no order on parenthetical tuples.
Example

Let's convert parenthetical tuples to canonical names. We should drop all " 0 "-s and replace "(" and ")" with " 1 " and " 0 " respectively.

Understanding AHU algorithm (part 4)

Assign-Canonical-Names (v)

1: if v is a leaf then
2: Give v the tuple name " 10 "
3: else
4: for all child w of v do
5: Assign-Canonical-NAmes(v)
6: end for
7: end if
8: Sort the names of the children of v
9: Concatenate the names of all children of v to temp
10: Give v the name 1 temp 0

Understanding AHU algorithm (part 5)

We should discuss some important questions.

Understanding AHU algorithm (part 5)

We should discuss some important questions.

Invariant?

Is canonical name of a root is a tree isomorphism invariant?

Understanding AHU algorithm (part 5)

We should discuss some important questions.

Invariant?

Is canonical name of a root is a tree isomorphism invariant?
Complete invariant?
Is canonical name of a root is a complete tree isomorphism invariant?

Understanding AHU algorithm (part 5)

We should discuss some important questions.

Invariant?

Is canonical name of a root is a tree isomorphism invariant?
Complete invariant?
Is canonical name of a root is a complete tree isomorphism invariant?

AHU-TrEE-ISOMORPhism $\left(T_{1}\left(V_{1}, E_{1}, r_{1}\right), T_{2}\left(V_{2}, E_{2}, r_{2}\right)\right)$
1: Assign-Canonical-Names $\left(r_{1}\right)$
2: Assign-Canonical-NAmes (r_{2})
3: if name $\left(r_{1}\right)=$ name $\left(r_{2}\right)$ then
4: return True
5: else
6: return False
7: end if

AHU algorithm improvement

Observation
To compute the root name of a tree of n vertices in one long strand, takes time proportional to $1+2+\cdots+n$, which is $\Omega\left(n^{2}\right)$.

AHU algorithm improvement

Observation
To compute the root name of a tree of n vertices in one long strand, takes time proportional to $1+2+\cdots+n$, which is $\Omega\left(n^{2}\right)$.

Observation
For all levels i, the canonical name of level i is a tree isomorphism invariant.

AHU algorithm improvement

Observation
To compute the root name of a tree of n vertices in one long strand, takes time proportional to $1+2+\cdots+n$, which is $\Omega\left(n^{2}\right)$.
Observation
For all levels i, the canonical name of level i is a tree isomorphism invariant.

Observation
Two trees T_{1} and T_{2} are isomorphic if and only if for all levels i canonical level names of T_{1} and T_{2} are identical.

AHU algorithm improvement

Observation
To compute the root name of a tree of n vertices in one long strand, takes time proportional to $1+2+\cdots+n$, which is $\Omega\left(n^{2}\right)$.

Observation
For all levels i, the canonical name of level i is a tree isomorphism invariant.

Observation
Two trees T_{1} and T_{2} are isomorphic if and only if for all levels i canonical level names of T_{1} and T_{2} are identical.

The idea 1
Assign canonical names level, sort by level, and check by level that the canonical level names agree.

AHU algorithm improvement

Observation
To compute the root name of a tree of n vertices in one long strand, takes time proportional to $1+2+\cdots+n$, which is $\Omega\left(n^{2}\right)$.

Observation
For all levels i, the canonical name of level i is a tree isomorphism invariant.

Observation

Two trees T_{1} and T_{2} are isomorphic if and only if for all levels i canonical level names of T_{1} and T_{2} are identical.

The idea 1
Assign canonical names level, sort by level, and check by level that the canonical level names agree.
The idea 2
Assign canonical names level and if canonical level names agree than replace canonical names with integers.

AHU algorithm example

Example

AHU algorithm example

Example

AHU algorithm example

Example

AHU algorithm example

Example

AHU algorithm example

Example

AHU algorithm example

Example

AHU algorithm example

Example

AHU algorithm example

Example

AHU algorithm example

Example

AHU algorithm example

Example

AHU algorithm example

Example

Resume

Resume

- We have three unsuccessful tries to construct complete tree isomorphism invariant.
- We discussed $O\left(|V|^{2}\right)$ version of AHU algorithm.
- We discussed ways of improvement of AHU algorithm to make it work in $O(|V|)$ time.

Thank you for your attention! Any questions?

