Optimal proof systems and disjoint NP pairs.

Dmitry Antipov

Department of Mathematics Saint Petersburg State University

Joint Advanced Student School 2009 Saint Petersburg Course 1: "Propositional Proof Complexity"

17 мая 2009 г.

Optimal p.p.s and canonical NP pair optimal and p-optimal NP pairs

canonical NP pairs

Connections with other notions automatizability representability

Definition

Let f and f' be two proof systems. f simulates f' if \exists function $h: \Sigma^* \to \Sigma^*$, , $\forall w \in \Sigma^*, f(h(w)) = f'(w)$ and $\exists p: |h(w)| \leq p(|w|)$. If $h \in \mathbf{FP}$, f p-simulates f'.

Definition

A proof system is optimal if it simulates every other proof system (for the same language!).

Definition

A proof system is p-optimal if it p-simulates every other proof system.

In this talk, all proof systems are propositional proof systems, that is proof systems for TAUT.

Definition

Disjoint NP-pair is just a pair of two disjoint NP sets.

Definition

A set S is a separator of disjoint NP pair (A, B) if $A \in S$ and $B \in \overline{S}$. Disjoint NP-pair is called p-separable if it has a separator from P.

Definition

A set A is many-one reducible in polynomial time to B $(A \leq_m^P B)$ if there exists a polynomial time computable function f such that $x \in A \Leftrightarrow f(x) \in B$.

A set A is Turing reducible in polynomial time to B $(A \leq_T^P B)$ if there exists a polynomial-time oracle DTM M : A = L(M, B).

Optimal p.p.s and canonical NP pair NP pairs

Definition

Let (A, B) and (C, D) be disjoint pairs. $(A, B) \leq_m^{PP} (C, D)$ if \exists a function $f \in FP$ such that $f(A) \subseteq C$ and $f(B) \subseteq D$ $(A, B) \leq_T^{PP} (C, D)$ if \exists a polynomial-time oracle DTM M such that for \forall separator T of $(C, D) \exists$ a separator S of (A, B), such that S = L(M, T)

Lemma

If $(A, B) \leq_{m}^{PP} (C, D)$ and (C, D) is p-separable then (A, B) is p-separable

Canonical pair(Razborov)

Definition

The canonical pair of a proof system f is the disjoint NP-pair (SAT^*, REF_f) where

$$SAT^* = \{(x, 0^n) | x \in SAT \text{ and } n \in N\}$$
$$REF_f = \{(x, 0^n) | \neg x \in TAUT \text{ and } \exists y : (|y| \le n \text{ and } f(y) = \neg x)\}.$$

- Why is it disjoint NP-pair?
- ▶ $REF = \{(x | \neg x \in TAUT)\}; REF \in co-NP.$

▶ If $x \in SAT$, then $\neg x \notin TAUT$. SAT^* is evidently in **NP** and witness for REF_f is y.

Theorem

Let f and g be propositional proof systems. If g simulates f then $(SAT^*, REF_f) \leq_m^{PP} (SAT^*, REF_g)$.

Proof

$$\exists h: \Sigma^* \to \Sigma^* \text{ and } p: \forall y(g(h(y) = f(y) \text{ and } |h(y)| \le p(|y|)).$$

$$r(x, 0^n) := (x, 0^{p(n)}). \text{ Evidently } (x, 0^{p(n)}) \in SAT^*.$$

$$(x, 0^n) \in REF_f \Rightarrow \exists y: |y| \le n \text{ and } f(y) = \neg x \Rightarrow$$

$$\Rightarrow \text{ for } y' := h(y), (|y'| \le p(n); g(y') = \neg x) \Rightarrow$$

$$\Rightarrow (x, 0^{p(n)}) \in REF_g.$$

Optimal p.p.s and canonical NP pair canonical NP pairs

Definition

A set A is paddable if there is a polynomial-time computable length-increasing function g such that for all strings x and y, x is in A if and only if g(x, y) is in A.

Lemma

SAT is paddable.

Theorem

For every disjoint NP-pair $(A, B) \exists$ a proof system f: $(SAT^*, REF_f) \equiv_m^{PP} (A, B).$

Proof

Let g be polynomially invertible function such that $A \leq_m^p SAT$ via g. Such g exists because SAT is paddable. Let $M \in NDTM$, L(M) = B, time(M) is bounded by p.

Let $< ., . > \in FP$ and polynomially invertible function,

$$|\langle x, w \rangle| = 2 * (|x| + |w|).$$

$$f(z) = \begin{cases} \neg g(x) \text{if } z = \langle x, w \rangle, |w| = p(|x|), M(x) \text{ accepts along path } w \\ x : \text{ if } z = \langle x, w \rangle, |w| \neq p(|x|), |z| \ge 2^{|x|}, x \in TAUT \\ 1 : \text{ otherwise;} \end{cases}$$

Optimal p.p.s and canonical NP pair canonical NP pairs

Lemma

- $(SAT^*, REF_f) \leq_m^{PP} (A, B).$
- Let $a \in A$ and $b \in B$. We need a reduction function h:
- ▶ input($x, 0^n$);

```
• if (n \ge 2^{|x|}){
if (x \in SAT) return a else return b;
}
```

• if $(g^{-1}(x) \text{ exists})$ return $g^{-1}(x)$ else return a;

Optimal p.p.s and canonical NP pair canonical NP pairs

Lemma

 $(SAT^*, REF_f) \ge_m^{PP} (A, B).$ The reduction function $h'(x) := (g(x), 0^{2*(|x|+p(|x|))}).$

So,
$$(SAT^*, REF_f) \equiv_m^{PP} (A, B)$$
.

Theorem

 \exists optimal p.p.s $f \Rightarrow$ its canonical disjoint NP-pair is \leq_m^{PP} complete.

Definition

A proof system f is automatizable if $\exists DTM \ M$: $\forall x \in TAUT : \exists w : f(w) = x; f(M(x)) = x$ and M works in time polynomial of |w|

Lemma

If a proof system is automatizable then its canonical $\ensuremath{\mathbf{NP}}\xspace$ -pair is p-separable.

But not vice versa!:

Lemma

 \exists a proof system $f : (SAT^*, REF_f)$ is p-separable and f is not automatizable unless $\mathbf{P} = \mathbf{NP}$

Connections with other notions automatizability

Proof

$$f(z) = \begin{cases} x \text{ if } z = < x, 1^m > \text{ and } m \ge 2^{|x|} \\ (x \lor T) : \text{ if } z = < x, \alpha >, \alpha \text{ is a satisfiable assignment for } x \\ T : \text{ otherwise;} \end{cases}$$

Definition

A proof system f is weakly automatizable if $\exists g : g$ is automatizable and g p-simulates f

Theorem

A proof system is weakly automatizable \Leftrightarrow its canonic **NP**-pair is *p*-separable.

Proof

$$\Leftarrow$$
: Let's take $h \in FP$: $h(SAT^*) = 1$ and $h(REF_f) = 0$.

$$g(z) := \begin{cases} x: & \text{if } z = < x, 1^m > \text{ and } h < x, 1^m > = 0 \\ True: & \text{otherwise;} \end{cases}$$

 $\Rightarrow: g \text{ p-simulates } f \Rightarrow g \text{ simulates } f$ $\Rightarrow (SAT^*, REF_f) \leq_m^{PP} (SAT^*, REF_g) \Rightarrow (SAT^*, REF_f) \text{is p-separable.}$ Connections with other notions representability

Theorem

 \exists complete disjoint NP-pair $\Leftrightarrow \exists$ a proof system for TAUT in which disj-NP is emph(p-)representable .i.e.every language $A \in \text{disj-NP}$ has short P-proofs of fact, that $A \in \text{disj-NP}$ and this proofs can be constructed in polynomial time.

- Glasser, Selman, Zhang: Survey on Disjoint **NP**-pairs and relations to propositional proof systems.
- Beyesdorff, Sadovski: Characterizing the existence of optimal proof systems and complete set for promise class.
- Beyersdorff: Disjoint **NP** pairs from propositional proof system
- Razborov: On provably disjoint **NP** pairs.