Optimal proof systems and disjoint NP pairs.

Dmitry Antipov

Department of Mathematics
Saint Petersburg State University
Joint Advanced Student School 2009
Saint Petersburg
Course 1: "Propositional Proof Complexity"

17 мая 2009 г.

Optimal p.p.s and canonical NP pair optimal and p-optimal NP pairs
canonical NP pairs

Connections with other notions
automatizability representability

Definition

Let f and f^{\prime} be two proof systems. f simulates f^{\prime} if \exists function $h: \Sigma^{*} \rightarrow \Sigma^{*},, \forall w \in \Sigma^{*}, f(h(w))=f^{\prime}(w)$ and $\exists p:|h(w)| \leq p(|w|)$. If $h \in \mathbf{F P}, f$ p-simulates f^{\prime}.

Definition

A proof system is optimal if it simulates every other proof system (for the same language!).

Definition

A proof system is p-optimal if it p-simulates every other proof system.
In this talk, all proof systems are propositional proof systems, that is proof systems for TAUT.

Definition

Disjoint NP-pair is just a pair of two disjoint NP sets.

Definition

A set S is a separator of disjoint NP pair (A, B) if $A \in S$ and $B \in \bar{S}$. Disjoint NP-pair is called p-separable if it has a separator from P .

Definition

A set A is many-one reducible in polynomial time to $B\left(A \leq_{m}^{P} B\right)$ if there exists a polynomial time computable function f such that $x \in A \Leftrightarrow f(x) \in B$.

A set A is Turing reducible in polynomial time to $B\left(A \leq_{T}^{P} B\right)$ if there exists a polynomial-time oracle DTM $M: A=L(M, B)$.

Definition

Let (A, B) and (C, D) be disjoint pairs.
$(A, B) \leq_{m}^{P P}(C, D)$ if \exists a function $f \in F P$ such that $f(A) \subseteq C$ and $f(B) \subseteq D$
$(A, B) \leq_{T}^{P P}(C, D)$ if \exists a polynomial-time oracle DTM M such that for \forall separator T of $(C, D) \exists$ a separator S of (A, B), such that $S=L(M, T)$

Lemma

If $(A, B) \leq_{m}^{P P}(C, D)$ and (C, D) is p-separable then (A, B) is p-separable

Canonical pair(Razborov)

Definition

The canonical pair of a proof system f is the disjoint NP-pair $\left(S A T^{*}, R E F_{f}\right.$) where

$$
\begin{gathered}
S A T^{*}=\left\{\left(x, 0^{n}\right) \mid x \in S A T \text { and } n \in N\right\} \\
R E F_{f}=\left\{\left(x, 0^{n}\right) \mid \neg x \in T A U T \text { and } \exists y:(|y| \leq n \text { and } f(y)=\neg x)\right\} .
\end{gathered}
$$

Why is it disjoint NP-pair?

- $R E F=\{(x \mid \neg x \in T A U T)\} ; R E F \in \mathbf{c o}-\mathbf{N P}$.
- If $x \in S A T$, then $\neg x \notin T A U T$. $S A T^{*}$ is evidently in NP and witness for $R E F_{f}$ is y.

Theorem

Let f and g be propositional proof systems. If g simulates f then $\left(S A T^{*}, R E F_{f}\right) \leq_{m}^{P P}\left(S A T^{*}, R E F_{g}\right)$.

Proof

$$
\begin{gathered}
\exists h: \Sigma^{*} \rightarrow \Sigma^{*} \text { and } p: \forall y(g(h(y)=f(y) \text { and }|h(y)| \leq p(|y|)) . \\
r\left(x, 0^{n}\right):=\left(x, 0^{p(n)}\right) . \text { Evidently }\left(x, 0^{p(n)}\right) \in S A T^{*} . \\
\left(x, 0^{n}\right) \in R E F_{f} \Rightarrow \exists y:|y| \leq n \text { and } f(y)=\neg x \Rightarrow \\
\Rightarrow \text { for } y^{\prime}:=h(y),\left(\left|y^{\prime}\right| \leq p(n) ; g\left(y^{\prime}\right)=\neg x\right) \Rightarrow \\
\Rightarrow\left(x, 0^{p(n)}\right) \in R E F_{g} .
\end{gathered}
$$

Definition

A set A is paddable if there is a polynomial-time computable length-increasing function g such that for all strings x and y, x is in A if and only if $g(x, y)$ is in A.

Lemma

SAT is paddable.

Theorem

For every disjoint NP-pair $(A, B) \exists$ a proof system f : $\left(S A T^{*}, R E F_{f}\right) \equiv_{m}^{P P}(A, B)$.

Proof

Let g be polynomially invertible function such that $A \leq_{m}^{P} S A T$ via g. Such g exists because SAT is paddable. Let $M \in \operatorname{NDTM}, L(M)=B$, $\operatorname{time}(M)$ is bounded by p.
Let $<., .>\in F P$ and polynomially invertible function, $|<x, w>|=2 *(|x|+|w|)$.
$f(z)=\left\{\begin{array}{l}\neg g(x) \text { if } z=<x, w>,|w|=p(|x|), M(x) \text { accepts along path } w \\ x: \text { if } z=<x, w>,|w| \neq p(|x|),|z| \geq 2^{|x|}, x \in \text { TAUT } \\ 1: \text { otherwise; }\end{array}\right.$

Lemma
 $\left(S A T^{*}, R E F_{f}\right) \leq_{m}^{P P}(A, B)$.

Let $a \in A$ and $b \in B$.
We need a reduction function h :
$-\operatorname{input}\left(x, 0^{n}\right)$;

- if $\left(n \geq 2^{|x|}\right)\{$
if $(x \in S A T)$ return a else return b; \}
- if $\left(g^{-1}(x)\right.$ exists) return $g^{-1}(x)$ else return a;

Lemma

$\left(S A T^{*}, R E F_{f}\right) \geq_{m}^{P P}(A, B)$.
The reduction function $h^{\prime}(x):=\left(g(x), 0^{2 *(|x|+p(|x|))}\right)$.
So, $\left(S A T^{*}, R E F_{f}\right) \equiv_{m}^{P P}(A, B)$.

Theorem

\exists optimal p.p.s $f \Rightarrow$ its canonical disjoint NP-pair is $\leq_{m}^{P P}$ complete.

Definition

A proof system f is automatizable if $\exists D T M M$: $\forall x \in$ TAUT : $\exists w: f(w)=x ; f(M(x))=x$ and M works in time polynomial of $|w|$

Lemma

If a proof system is automatizable then its canonical NP-pair is p-separable.

- But not vice versa!

Lemma

\exists a proof system $f:\left(S A T^{*}, R E F_{f}\right)$ is p-separable and f is not automatizable unless $\mathbf{P}=\mathbf{N P}$

Proof

$f(z)=\left\{\begin{array}{l}x \text { if } z=<x, 1^{m}>\text { and } m \geq 2^{|x|} \\ (x \vee T): \text { if } z=<x, \alpha>, \alpha \text { is a satisfiable assignment for } x \\ T: \text { otherwise; }\end{array}\right.$

Definition

A proof system f is weakly automatizable if $\exists g: g$ is automatizable and g p-simulates f

Theorem

A proof system is weakly automatizable \Leftrightarrow its canonic NP-pair is p-separable.

Proof

$\Leftarrow:$ Let's take $h \in F P: h\left(S A T^{*}\right)=1$ and $h\left(R E F_{f}\right)=0$.

$$
g(z):=\left\{\begin{array}{l}
x: \text { if } z=<x, 1^{m}> \\
\text { True : otherwise; }
\end{array}\right.
$$

$\Rightarrow: g$ p-simulates $f \Rightarrow g$ simulates f
$\Rightarrow\left(S A T^{*}, R E F_{f}\right) \leq_{m}^{P P}\left(S A T^{*}, R E F_{g}\right) \Rightarrow\left(S A T^{*}, R E F_{f}\right)$ is p-separable.
Theorem\exists complete disjoint NP-pair $\Leftrightarrow \exists$ a proof system for TAUT in whichdisj -NP is emph(p-)representable .i.e.every language $A \in \operatorname{disj}-N P$ hasshort P-proofs of fact, that $A \in \operatorname{disj}-N P$ and this proofs can beconstructed in polynomial time.

Bibliography

Glasser, Selman, Zhang: Survey on Disjoint NP-pairs and relations to propositional proof systems.

Beyesdorff, Sadovski: Characterizing the existence of optimal proof systems and complete set for promise class.
Beyersdorff: Disjoint NP pairs from propositional proof system Razborov: On provably disjoint NP pairs.

