Switching Lemma

Alexander Glazman

St. Petersburg State University
Joint Advanced Student School
March 25, 2009

Outline

(1) Definitions:

- Matchings
- Language L_{n}
- $\operatorname{Trees}(F)$
(2) Switching lemma.

Matchings

- Let D, R be ordered subsets of S with all elements of D preceding elements of R and $D \cup R=S$. A matching between D and R is a set of mutually disjoint unordered pairs $\{i, j\}$, where $i \in D, j \in R$.
- A matching covers a vertex i if $\{i, j\}$ belongs to the matching for some vertex j. By $V(\pi)$ we will denote the vertices covered by π.
- If $X \subseteq S$, then $M(X)$ denotes the set of all matchings π such that π covers X, but no matching properly contained in π covers X.
- The set of matchings between D and R we shall denote by M_{n}.
- Two matchings π_{1} and π_{2} in M_{n} are compatible if $\pi_{1} \cup \pi_{2}$ is also a matching. In this case we will denote there union by $\pi_{1} \pi_{2}$.
- If π is a matching then $S \mid \pi=S \backslash V(\pi)$.

Language L_{n}

- Let $|D|=n+1$ and $|R|=n$. The language built from propositional variables $P_{i j}$ and the constants 0 and 1 using the connectives V and \neg we shall refer to as L_{n}.
- A matching π determines a restriction ρ_{π} of the variables of L_{n} : if i or j is covered by π then $\rho_{\pi}\left(P_{i j}\right)=1$ if $\{i, j\} \in \pi$, and $\rho_{\pi}\left(P_{i j}\right)=0$ if $\{i, j\} \notin \pi$; otherwise $\rho_{\pi}\left(P_{i, j}\right)$ is undefined.
- If F is formula of L_{n}, and $\pi \in M_{n}$, then we denote by $F \mid \pi$ the formula resulting from F by substituting for the variables in F the constants representing their value under π.
- Formula C is a matching term if:

$$
C=\bigcap_{\{i, j\} \in \pi} P_{i j}=\wedge \pi
$$

where π is a matching.

- Formula F is a matching disjunction if $F=C_{1} \vee \cdots \vee C_{m}$, where C_{i} is a matching term for every i. It is an r-disjunction if all the matching terms have size bounded by r.

Matching trees

Let $|D|=n+1$ and $|R|=n$, where $S=D \cup R$ and $D \cap R=\varnothing$. The full matching tree for S over S is a tree T satisfying conditions:
(1) nodes of T other than the leaves are labeled with vertices in S;
(2) edges of T are labeled with pairs $\{i, j\}$, where $i \in D$ and $j \in R$;
(3) if p is a node of T then the edge labels on the path from the root of T to p determine a matching $\pi(p)$ between D and R;
(4) p is labeled with the first node i in X not covered by $\pi(p)$, and the set $\{\pi(q) \mid q$ a child of $p\}$ consists of all matchings in S of the form $\pi(p) \cup\{\{i, j\}\}$ for $j \in S$;

$\operatorname{Tree}_{\mathrm{S}}(\mathrm{F})$

Let $F=C_{1} \vee \cdots \vee C_{m}$ be a matching disjunction over S. The canonical matching decision tree for F over S, $\operatorname{Tree}_{S}(F)$, is defined inductively as follows:
(1) If $F \equiv 0$ then $\operatorname{Tree}_{S}(F)$ is a single node labeled 0 ; if $F \equiv 1$ then $\operatorname{Tree}_{S}(F)$ is a single node labeled 1 ;
(2) Let C be the first matching term in F such that $C \not \equiv 0$. Then $\operatorname{Trees}_{S}(F)$ is constructed as follows:

- Construct the full matching tree for $V(C)$ over S;
- Replace each leaf ℓ of the fill matching tree for $V(C)$ by the canonical matching decision tree $\operatorname{Tree}_{S \mid \pi(\ell)}(F \mid \pi(\ell))$.
The depth of a tree T is a maximum length of a branch in T.

Code(r, s)

Define $\operatorname{Code}(r, s)$ to be the set of all tables $k \times r$ with elements just 0 and 1 such that there is no string with all 0 , and the number of 1 in the whole table is s.
Given table A, define a map from $\{1, \ldots, s\}$ to $\{1, \ldots, r\} \times\{0,1\}$ as follows:
(1) Let the first 1 occur in the j th place. Then $f(1)=(j, 0)$.
(2) Let the i th 1 , where $i>1$, occur in the j th place in the ℓ th string for some ℓ. Then $f(i)=(j, b)$, where $b=0$ if the previous 1 occurs in the same string, and $b=1$ otherwise.
It is easy to see that this map uniquely determines a table $A \in \operatorname{Code}(r, s)$. So we get the estimate for the cardinality of Code (r, s) :

$$
|\operatorname{Code}(r, s)| \leq(2 r)^{s} .
$$

$\operatorname{Bad}_{\mathrm{n}}^{\ell}(\mathbf{F}, \mathrm{s})$

Let $|D|=n+1$ and $|R|=n, S=D \cup R$. For $\ell \leq n$ define M_{n}^{ℓ} :

$$
M_{n}^{\ell}=\left\{\rho \in M_{n}: \# R \mid \rho=\ell\right\} .
$$

For $s>0, F$ a matching disjunction over S :

$$
\operatorname{Bad}_{n}^{\ell}(F, s)=\left\{\rho \in M_{n}^{\ell}:\left|\operatorname{Tree}_{S \mid \rho}(F \mid \rho)\right| \geq s\right\}
$$

Theorem
Switching Lemma. Let F be an r-disjunction over $D \cup R$, $|D|=n+1,|R|=n$. Let $I \geq 10$. If $r \leq I$ and $I^{4} / n \leq 1 / 10$ then:

$$
\frac{\left|B a d_{n}^{\ell}(F, 2 s)\right|}{\left|M_{n}^{\ell}\right|} \leq\left(11 r \ell^{4} / n\right)^{s}
$$

Proof idea

Note that:

$$
\begin{aligned}
\left|M_{n}^{\ell}\right| & =\binom{n}{\ell}(n+1)^{n-1} \\
\frac{\left|M_{n}^{\ell-j}\right|}{\left|M_{n}^{\ell}\right|} & =\frac{n^{\underline{\ell}}(n+1)^{\frac{n-\ell}{-}}}{\ell!}(n+1)^{n-\ell+j} \ell! \\
(\ell-j)^{n} n^{\ell}(n+\ell)^{\frac{n-\ell}{j}} & \frac{(\ell+1)^{j} \ell!}{(\ell-j)!n-(n-\ell+j)^{j}}= \\
& =\frac{(\ell+1)^{j} \ell^{j}}{(n-\ell+j)^{j}} \leq\left(\frac{\ell(\ell+1)}{n-\ell}\right)^{j}
\end{aligned}
$$

Bijection

$$
\begin{aligned}
& \operatorname{Bad}_{n}^{\ell}(F, s) \rightarrow M_{n}^{\ell-j} \\
& \operatorname{Bad}_{n}^{\ell}(F, s) \rightarrow \bigcup_{s / 2 \leq j \leq s} M_{n}^{\ell-j}
\end{aligned}
$$

Theorem
Let $F=C_{1} \vee \cdots \vee C_{m}$ be an r-disjunction over S. Then there is a bijection from $\operatorname{Bad}_{n}^{\prime}(F, s)$ into

$$
\bigcup_{s / 2 \leq j \leq s} M_{n}^{I-j} \times \operatorname{Code}(r, j) \times[2 I+1]^{s} .
$$

Proof

Let $\rho \in \operatorname{Bad}_{n}^{\prime}(F, s)$; choose π to be matching determined by the leftmost path originating in the root of $\operatorname{Tree}_{S \mid \rho}(F \mid \rho)$ that has length s. Define three sequences by induction:
(1) D_{1}, \ldots, D_{k}, a subsequence of C_{1}, \ldots, C_{m};
(2) $\sigma_{1}, \ldots, \sigma_{k}$, a sequence of restrictions $\sigma_{i} \subseteq \delta_{i}$, where $D_{i}=\wedge \delta_{i}$, and $\rho \sigma_{1} \ldots \sigma_{i} \in M_{n}$;
(3) π_{1}, \ldots, π_{k}, a partition of π, where each $\pi_{i}, i<k$, satisfies the conditions:

- $\pi_{i} \in M\left(V\left(\sigma_{i}\right)\right)$;
- the restriction $\rho \pi_{1} \ldots \pi_{i}$ labels a path in $\operatorname{Trees}_{S}(F)$, ending in a boundary node.

Sequence defining

We have $\pi_{i-1}, D_{i-1}, \sigma_{i-1}$ and $\pi_{1} \ldots \pi_{i-1} \neq \pi$. Since $\pi_{1} \ldots \pi_{i-1}$ labels a path ending in a boundary node, it follows that there must be a term D in F so that $D \mid \rho \pi_{1} \ldots \pi_{i-1} \not \equiv 0$ and $D \mid \rho \pi_{1} \ldots \pi_{i-1} \not \equiv 1$, for otherwise the path labeled by π would end at that node.
(1) Define D_{i} be the first such term in F;
(2) then define σ_{i} to be the unique minimal matching so that $D \mid \rho \pi_{1} \ldots \pi_{i-1} \sigma_{i} \equiv 1$ (at the end here $\not \equiv 0$);
(3) let π_{i} be the set of pairs in π that cover vertices in $V\left(\sigma_{i}\right)$. It is easy to verify that $\rho \sigma_{1} \ldots \sigma_{i} \in M_{n}$, moreover $\rho \pi_{1} \ldots \pi_{i-1} \sigma_{i} \ldots \sigma_{k} \in M_{n}$.

Ordering by index

It is convenient to introduce a special ordering of the $2 /+1$ vertices unset by the restriction ρ. To avoid confusion between the original ordering and the new ordering, we shall refer to the original ordering as ordering by size. and the new order as ordering by index. Let $\sigma=\sigma_{1} \ldots \sigma_{k}$. The index ordering is defined as follows:

- The vertices set by σ are listed:
(1) first according to the order $V\left(\sigma_{1}\right)<\cdots<V\left(\sigma_{k}\right)$
(2) then by size
- The remaining vertices unset by $\rho \sigma$ are listed by size, in the index positions $2 j+1, \ldots, 2 l+1$, where $j=|\sigma|$.

Bijection: definition

The map $G(\rho)=\left\langle G_{1}(\rho), G_{2}(\rho), G_{3}(\rho)\right\rangle$ is now defined as follows:
(1) $G_{1}(\rho)=\rho \sigma$;
(2) For $i=1, \ldots, k$ and $j=1, \ldots, r$ let $G_{2}(\rho)_{i j}$ be 1 if σ_{i} sets the j th variable of D_{i}, and let it be 0 , otherwise
(3) The list $G_{3}(\rho) \in[2 I+1]^{s}$ is defined as follows:

- List the elements of π according to the index ordering, where for each pair in π the element with lower index determines the position of the pair;
- From the ordered list of the pairs in π, create a new list by recording for each pair the index of the element in the pair with the higher index. This new list is $G_{3}(\rho)$.

Bijection: correctness

It is easy to see that $G(\rho) \in M_{n}^{I-j} \times \operatorname{Code}(r, j) \times[2 I+1]^{s}$, where $j=|\sigma|$. For $i<k, \pi_{i} \in M\left(V\left(\sigma_{i}\right)\right)$, so that $\left|\sigma_{i}\right| \leq\left|\pi_{i}\right| \leq 2\left|\sigma_{i}\right|$, while for $i=k,\left|\sigma_{i}\right|=\left|\pi_{i}\right|$ holds by construction. Thus $|\pi| / 2 \leq|\sigma| \leq|\pi|$, that is, $s / 2 \leq j \leq s$. So it remains to show that G is a bijection.

Bijection: proof

How to reconstruct ρ from $G(\rho)$:
(1) We know $G(\rho)$ and the r-disjunction F;
(2) the set of vertices unset by $\rho \sigma$;
(3) Induction by i. We know $D_{1}, \ldots, D_{i-1}, \pi_{1}, \ldots, \pi_{i-1}$,

$$
\sigma_{1}, \ldots, \sigma_{i-1} \text { and } \rho \pi_{1} \ldots \pi_{i-1} \sigma_{i} \ldots \sigma_{k}
$$

(4) If C_{j} occurs earlier in F than D_{i}, then $C_{j} \mid \rho \pi_{1} \ldots \pi_{i-1} \equiv 0$. Hence:

$$
C_{j} \mid \rho \pi_{1} \ldots \pi_{i-1} \sigma_{i}, \ldots, \sigma_{k} \equiv 0
$$

(5) If $i<k$ then $D \mid \rho \pi_{1} \ldots \pi_{i-1} \sigma_{i} \equiv 1$ while $D \mid \rho \pi_{1} \ldots \pi_{k-1} \sigma_{k} \not \equiv 0$. Thus in either case:

$$
D_{i} \mid \rho \pi_{1} \ldots \pi_{i-1} \sigma_{i} \ldots \sigma_{k} \not \equiv 0
$$

(6) We know D_{i} - this is the first term in F not set 0 by the restriction $\rho \pi_{1} \ldots \pi_{i-1} \sigma_{i} \ldots \sigma_{k}$.

Bijection: proof

(3) Using D_{i} and $G_{2}(\rho)$ we can find σ_{i}.
(8) We know indices of the vertices in $V\left(\sigma_{i}\right)$.
(9) Every pair in π_{i} contains at least one vertex in $V\left(\sigma_{i}\right)$, hence for every such pair we can find the vertex with lower index.
(10) Using $G_{3}(\rho)$ we can find π_{i}.
(1) By replacing σ_{i} by π_{i} we can find restriction $\rho \pi_{1} \ldots \pi_{i} \sigma_{i+1} \ldots \sigma_{k}$.
(12) Having found all of $\sigma_{1}, \ldots, \sigma_{k}$, we can find ρ by removing all of the pairs in $\sigma_{1} \ldots \sigma_{k}$ from $\rho \sigma_{1} \ldots \sigma_{k}$.

Switching lemma

Theorem
Let F be an r-disjunction over $D \cup R,|D|=n+1,|R|=n$. Let $\ell \geq 10$. If $r \leq \ell$ and $\ell^{4} / n \leq 1 / 10$ then:

$$
\frac{\left|\operatorname{Bad}_{n}^{\ell}(F, 2 s)\right|}{\left|M_{n}^{\ell}\right|} \leq\left(11 r \ell^{4} / n\right)^{s}
$$

Proof

By the previous theorem we should bound the ratio:

$$
\frac{\bigcup_{s \leq j \leq 2 s} M_{n}^{\ell-j} \times \operatorname{Code}(r, j) \times[2 \ell+1]^{s}}{\left|M_{n}^{\ell}\right|}
$$

And we know, that:

$$
\frac{\left|M_{n}^{\ell-j}\right|}{\left|M_{n}^{\ell}\right|} \leq\left(\frac{\ell(\ell+1)}{n-\ell}\right)^{j}
$$

Using this and the estimate $|\operatorname{Code}(r, j)| \leq(2 r)^{j}$ we can bound our ratio by the sum:

$$
\sum_{s \leq j \leq 2 s}\left(\frac{\ell(\ell+1)}{n-\ell}\right)^{j}(2 r)^{j}(2 \ell+1)^{2 s}=(2 \ell+1)^{2 s} \sum_{s \leq j \leq 2 s}\left(\frac{2 \ell(\ell+1) r}{n-\ell}\right)^{j}
$$

Proof

Using the inequalities $r \leq \ell, \ell^{4} / n \leq 1 / 10$ and $\ell \geq 10$, we can prove that:

$$
\frac{2 \ell(\ell+1) r}{n-\ell}<0.0221 .
$$

So the geometrical progression which we have is less than 1.03 times its largest term. This provides the estimate:

$$
\frac{\left|B a d_{n}^{\ell}(F, 2 s)\right|}{\left|M_{n}^{\ell}\right|} \leq 1.03\left(\frac{2(2 \ell+1)^{2} \ell(\ell+1) r}{n-\ell}\right)^{s}
$$

Now we can estimate the right side:

$$
\left(\frac{2(2 \ell+1)^{2} \ell(\ell+1) r}{n-\ell}\right) \leq \frac{10.65 \ell^{4} r}{n}
$$

This inequality yields the bound:

$$
\frac{\left|\operatorname{Bad}_{n}^{\ell}(F, 2 s)\right|}{\left|M_{n}^{\ell}\right|} \leq 1.03\left(10.65 r \ell^{4} / n\right)^{s}<\left(11 r \ell^{4} / n\right)^{s}
$$

This completes the proof of this fact.

