roduction	Proof systems	The propositional Pigeonhole Principle	Sequent Calculus
000000	000000000000000000000000000000000000000	000 000 00	

Course "Propositional Proof Complexity", JASS'09

Frege Systems

Michael Herrmann

Department of Computer Science TU Munich

May 10, 2009

Michael Herrmann: Frege Systems

1/44

Introduction	Proof systems	The propositional Pigeonhole Principle	Sequent Calculus
00 0000000	000000000000000000000000000000000000000		

Table Of Contents

Introduction

Motivation Basics

Proof systems

Frege systems Extended Frege systems

The propositional Pigeonhole Principle

PHP model for Frege proof Frege proof Extended Frege proof

Sequent Calculus

Introduction ●O ○○○○○○○	Proof systems 00000000000000 0000	The propositional Pigeonhole Principle 000 000 00	Sequent Calculus
Motivation			

Motivation

Question: Why even dealing with proof systems?

We differ between two kinds of proofs.

- Social proofs. Proofs consisting of social conventions with that scientists reciprocal convince each other of the truth of theorems. This is done in natural language and with some symbols and figures.
- Formal proofs. A proof is a string, which satisfies some precisely stated set of rules.

Introduction	Proof systems	The propositional Pigeonhole Principle	Sequent Calculus
0000000	000000000000000000000000000000000000000	000 000 00	
Motivation			

Of course our motivation in studying formal proof systems is to develop a formal proof system.

But there is a greater impact on proof systems to complexity theory.

Introduction ^{OO} •OOOOOOO	Proof systems 000000000000000 0000	The propositional Pigeonhole Principle 000 000 00	Sequent Calculus
Basics			

Repetition NP and coNP

- \mathcal{P} is the set of decision problems, which can be solved by a deterministic Turing machine in polynomial time.
- \mathcal{NP} is the set of decision problems, for which the answer yes has simple proofs if the answer is indeed yes.
- coNP a element \mathcal{X} is in coNP if and only if the element $\overline{\mathcal{X}}$ is in NP.

A important question is, whether \mathcal{NP} is closed under complementation, i.e. $\Sigma^* - L$ is in \mathcal{NP} whenever L is in \mathcal{NP} .

Introduction O O O O O O O O O O O O O	Proof systems 00000000000000 0000	The propositional Pigeonhole Principle 000 000 00	Sequent Calculus
Basics			

Proposition 1

 \mathcal{NP} is closed under complementation if and only if TAUT is in $\mathcal{NP}.$

Definition 2

 \mathcal{F} is a set of functions $f: \Sigma_1^* \to \Sigma_2^*$, with Σ_1, Σ_2 are any finite alphabets, such that f can be computed by a deterministic Turing machine in time bounded by a polynomial in the length of the input.

For the proof we need the following result: There is a function $f \in \mathcal{F}$ with that every set L is reducible to the complement of the tautologies.

Introduction OO OO OO OO OO OO OO OO OO O	Proof systems 00000000000000 0000	The propositional Pigeonhole Principle 000 000 00	Sequent Calculus
Basics			

Proof.

Assume \mathcal{NP} is closed under complementation. To verify that a formula is not a tautology one can guess a truth assignment and verify that it falsifies the formula. Because we assumed, that \mathcal{NP} is closed under complementation, the set of tautologies is also in \mathcal{NP} .

Assume that the set of tautologies is in \mathcal{NP} . So a non deterministic procedure for accepting the complement of L would be : On input x, compute f(x) (the result of above) and accept if x is a tautology. Hence the complement of L is in \mathcal{NP} .

Introduction 00 0000000	Proof systems 00000000000000 0000	The propositional Pigeonhole Principle 000 000 00	Sequent Calculus
Basics			

Basics

Definition 3

Let $L \subseteq \Sigma^*$, a *proof system* for *L* is a function $f : \Sigma_1^* \to L$ for some alphabet Σ_1 and $f \in \mathcal{F}$ such that *f* is onto.

Definition 4

A proof system is *polynomially bounded* if and only if there is a polynomial p(n) such that for all $y \in L$ there is $x \in \Sigma_1^*$ such that y = f(x) and $|x| \le p(|y|)$.

Introduction OO OOOOOOOO	Proof systems 00000000000000 0000	The propositional Pigeonhole Principle 000 000 00	Sequent Calculus
Basics			

Proposition 5

A set L is in \mathcal{NP} if and only if $L = \emptyset$ or L has a polynomially bounded proof system.

Proof.

Assume $L \in \mathcal{NP}$. That means. there is a non deterministic Turing Machine M, that accepts L in polynomial time. If $L \neq \emptyset$, the proof system calculates for the case that M accepts y, f(x) = y. Where x is the calculation on an output tape of M on input y. Otherwise it sets $f(x) = y_0$, for a fixed y_0 .

Let f be a polynomially bounded proof system for L. On input y guess an proof for x and accept if f(x) = y.

Introduction	Proof systems	The propositional Pigeonhole Principle	Sequent Calculus
00000000	000000000000000000000000000000000000000	000 000 00	
Basics			

Putting things together

Proposition 1 says that \mathcal{NP} is closed under complementation iff TAUT $\in \mathcal{NP}$ and Proposition 5 says that any Language $L \in \mathcal{NP}$ iff *L* has an polynomially bounded proof system. That leads directly to:

Proposition 6

 \mathcal{NP} is closed under complementation if and only if TAUT has a polynomially bounded proof system.

Introduction ○○ ○○○○○○●○	Proof systems 00000000000000 0000	The propositional Pigeonhole Principle 000 000 00	Sequent Calculus
Basics			

With that we are able to get a further result. But we need at first the definition of *p*-simulation.

Definition 7

If $f_1 : \Sigma_1^* \to L$ and $f_2 : \Sigma_2^* \to L$ are proof systems for L, then f_2 p-simulates f_1 if there is a function $g_1 : \Sigma_1^* \to \Sigma_2^*$ such that g is in \mathcal{F} and $f_2(g(x)) = f_1(x)$ for all x.

Introduction ○○ ○○○○○○○●	Proof systems 00000000000000 0000	The propositional Pigeonhole Principle 000 000 00	Sequent Calculus
Basics			

Proposition 8

If a proof system f_2 for L p-simulates a polynomially bounded proof system f_1 , then is f_2 also polynomially bounded.

Proof.

Since p-simulation means that there is a $g \in \mathcal{F}$, and polynomially bounded means that $|x| \leq p(|y|)$ the equation $|g(x)| \leq p(|f(g(x))|)$ still holds.

Introduction 00 0000000	Proof systems • 0000000000000 0000	The propositional Pigeonhole Principle 000 000 00	Sequent Calculus
_			

Definition 9

A Frege System is a three tuple $(\mathcal{L}, \mathcal{A}, \mathcal{R})$. Where

- \mathcal{L} is the propositional language.
- \mathcal{A} is a finite set of axioms.
- \mathcal{R} is a finite set of rules.

The language \mathcal{L} is identified by the connectives that are allowed. We mark the set of connectives with κ . For example the "standard basis" is $\{\neg, \land, \lor\}$. We say a Frege System is *propositionally complete* if every formula ϕ over the "standard basis" has an equivalent formula ϕ' over \mathcal{L} .

Introduction 00 0000000	Proof systems ○●○○○○○○○○○○○○○○○○○○○	The propositional Pigeonhole Principle 000 000 00	Sequent Calculus
Frege systems			

A rule is a system of formulas $(C_1, C_2, ..., C_n)/D$, where $(C_1, C_2, ..., C_n) \models D$.

If n = 0 the rule is an axiom.

Introduction 00 0000000	Proof systems 00000000000000 0000	The propositional Pigeonhole Principle 000 000 00	Sequent Calculus
E			

Example 10

An example for an Frege System:

• Language with the connectives $\kappa = \{\neg, \land, \lor, \rightarrow\}$

• Rule of inference
$$\frac{P \qquad (P \rightarrow Q)}{Q} MP$$

Axioms See next slide.

Introduction 00 0000000	Proof systems	The propositional Pigeonhole Principle 000 000 00	Sequent Calculus
Frege systems			

Axioms:

$$(P \land Q) \rightarrow P$$

$$(P \land Q) \rightarrow Q$$

$$P \rightarrow (P \lor Q)$$

$$Q \rightarrow (P \lor Q)$$

$$(P \rightarrow Q) \rightarrow ((P \rightarrow \neg Q) \rightarrow \neg P)$$

$$(\neg \neg P) \rightarrow P$$

$$P \rightarrow (Q \rightarrow P \land Q)$$

$$(P \rightarrow R) \rightarrow ((Q \rightarrow R) \rightarrow (P \lor Q \rightarrow R))$$

$$P \rightarrow (Q \rightarrow P)$$

$$(P \rightarrow Q) \rightarrow (P \rightarrow (Q \rightarrow R)) \rightarrow (P \rightarrow R)$$

Michael Herrmann: Frege Systems

16/44

Introduction	Proof systems	The propositional Pigeonhole Principle	Sequent Calculus
00 0000000	000000000000000000000000000000000000000	000 000 00	

Further conditions of Frege systems

- **Soundness:** A Frege system is sound if every theorem is valid.
- Completeness: A Frege system is complete if every valid formula has a proof.
- ▶ Implicational Soundness: Whenever $\phi \vdash \psi$ then $\phi \models \psi$.
- ▶ Implicational Completeness: Whenever $\phi \models \psi$ then $\phi \vdash \psi$.

There exist many sound and complete Frege proof systems.

Introduction 00 0000000	Proof systems	The propositional Pigeonhole Principle 000 000 00	Sequent Calculus
Frege systems			

Some definitions

- atoms Propositional variables.
- derivation π Finite set of lines and ends with the line which is proved.
- **hypothesis** A derivation of 0 or more lines.

Every row in a proof must be either a hypothesis or derivable by a rule.

Introduction 00 0000000	Proof systems ○○○○○●○○○○○○○○○○○○	The propositional Pigeonhole Principle 000 000 00	Sequent Calculus

Frege proof

A Frege proof Π in a Frege system $\mathcal{F} = (\mathcal{L}, \mathcal{A}, \mathcal{R})$ is a sequence $\mathcal{A} = (\mathcal{A}_1, \mathcal{A}_2, ..., \mathcal{A}_m)$ such that for all *i*, either:

- A_i is an instance of an axiom.
- ▶ It exists $j_1, ..., j_k$ with k < i and with a k-ary rule $R \in \mathcal{R}$ such that $A_i = R(A_{j_1}, ..., A_{j_k})$.

Then Π is a proof of the theorem A_m . We may write then $\vdash A_m$. Or $\mathcal{F} \vdash A_m$, respectively $\vdash_{\mathcal{F}} A_m$, to state that A_m has a proof in the Frege system \mathcal{F} .

Introduction	Proof systems	The propositional Pigeonhole Principle	Sequent Calculus
00 0000000	000000000000000 0000	000 000 00	
Frege systems			

Complexity of proofs

The complexity of a Frege proof is the symbol length of the proof: $n = |\Pi| = \sum_{i=1}^{m} |A_i|$

Open Problem: Do the tautologies have polynomial-size Frege proofs?

(Is there a polynomial p that for all $A \in TAUT$, there exists a proof with length at most p(|A|)?)

If so, then NP = coNP.

Introduction 00 0000000	Proof systems 000000000000000 0000	The propositional Pigeonhole Principle 000 000 00	Sequent Calculus
Frege systems			

Before we introduce the next theorem we need some terminology.

- ► $A_1, ..., A_n \vdash_{\mathcal{F}}^{\pi} B$ means that there is the derivation π in the system \mathcal{F} from $A_1, ..., A_n$ to B.
- A₁,..., A_n ⊢_F B means that there is some derivation in the system F from A₁,..., A_n to B.
- I(A) is the number of atoms (variables) in the formula or sequence A.
- $\lambda(\pi)$ is the number of lines in the derivation.

•
$$\rho(\pi) = \max_i I(A_i)$$
, if π is $A_1, ..., A_n$.

• $|\pi|$ or |A| is the length as string.

A substitution is $\sigma = (D_1, ..., D_k)/(P_1, ..., P_k)$. And σA is the formula, which results in replacing P_i by D_i for $1 \le i \le k$.

Introduction 00 0000000	Proof systems 000000000000000 0000	The propositional Pigeonhole Principle 000 000 00	Sequent Calculus
Frege systems			

Theorem 11

For any two Frege systems \mathcal{F}_1 and \mathcal{F}_2 over κ there is a function $f \in \mathcal{F}$ and constant c such that for all formulas $A_1, ..., A_n, B$ and derivations π , if $(A_1, A_2, ..., A_n) \vdash_{\mathcal{F}_1}^{\pi} B$ then $(A_1, A_2, ..., A_n) \vdash_{\mathcal{F}_2}^{f(\pi)} B$, and $\lambda(f(\pi)) \leq c_1 \lambda(\pi)$ and $\rho(f(\lambda)) \leq c_2 \rho(\pi)$.

Lemma 12

Let A_1, \ldots, A_k be some formulas and π is the derivation of B from these formulas, then $\sigma(\pi)$ is a derivation of σA from $\sigma B_1, \ldots, \sigma B_k$ for any substitution σ .

Proof.

By induction over the length of σ .

Introduction 00 0000000	Proof systems 000000000●0000 0000	The propositional Pigeonhole Principle 000 000 00	Sequent Calculus
Frege systems			

Proof of Theorem 11

Let \mathcal{F}_1 and \mathcal{F}_2 be two complete and implicationally complete Frege systems over κ . Then there is for every rule $R = (C_1, ..., C_m)/D$ in \mathcal{F}_1 a derivation π_r of D from $C_1, ..., C_m$ in \mathcal{F}_2 .

Now let π be a derivation of B from $A_1, A_2, ..., A_n$ in \mathcal{F}_1 and suppose $\pi = (B_1, B_2, ..., B_k)$. To construct the \mathcal{F}_2 -derivation $f(\pi)$ from π do the following: If B_i follows from earlier B_j 's by the \mathcal{F}_1 rule R_i and substitution σ_i , simply replace B_i by the derivation $\sigma_i(\pi_{R_i})$. According to Lemma 12 $\sigma_i(\pi_{R_i})$ is the derivation of B_i from the same earlier B_j 's.

Introduction 00 0000000	Proof systems 0000000000000000 0000	The propositional Pigeonhole Principle 000 000 00	Sequent Calculus
Frege systems			

Proof of Theorem 11

The condition $\lambda(f(\pi)) \leq c_1 \lambda(\pi)$ holds if c_1 is the number of lines in the longest derivation π_R over all rules R.

The condition $\rho(f(\pi)) \le c_2\rho(\pi)$ holds too, with c_2 is an upper bound on I(A), with A are all formulas in the derivations π_R .

Introduction	Proof systems	The propositional Pigeonhole Principle	Sequent Calculus
00 0000000	00000000000000000000000000000000000000	000 000 00	
-			

Corollary 13

Any two Frege systems over κ p-simulate each other. Hence one Frege system over κ is polynomially bounded if and only if all Frege systems over κ are.

Proof.

Immediate result of Proposition 8 and Theorem 11.

Introduction	Proof systems	The propositional Pigeonhole Principle	Sequent Calculus
00 00000000	00000000000000000000000000000000000000	000 000 00	

Soundness and implicational soundness of Frege systems

Idea:

Noting that all axioms are valid and prove that modus ponens preserves the property of an formula being valid.

Introduction	Proof systems	The propositional Pigeonhole Principle	Sequent Calculus
00 00000000	00000000000000 0000	000 000 00	

Completeness of Frege systems

Theorem 14

The propositional proof system \mathcal{F} is complete and is implicationally complete.

- 1. If ϕ is a tautology, then $\vdash \phi$.
- 2. If $\psi \models \phi$, then $\psi \vdash \phi$

Proof. (Idea) Part (2) can be reduced to part (1).

Show (1), since the proof is very lengthy we skip here.

Introduction	Proof systems	The propositional Pigeonhole Principle	Sequent Calculus
00 0000000	00000000000000 0000	000 000 00	
Extended Frege systems			

Extended Frege Systems

An extended Frege system $e\mathcal{F}$ is an ordinary Frege system with one additional proof rule.

A extended Frege proof is a sequence of formulas $A_1, A_2, ..., A_n$ such that for all *i*:

- ► *A_i* is an instance of an axiom.
- ▶ It exists $j_1, ..., j_k$ with k < i and with a *k*-ary rule $R \in \mathcal{R}$ such that $A_i = R(A_{j_1}, ..., A_{j_k})$.

Or:

• A_i is an *extension formula* of the form $P_i \equiv \phi$

Where ϕ is any formula and P_i is a fresh extension variable.

We say that P_i is a defined atom and $P_i \equiv \phi$ is it's defining formula.

Michael Herrmann: Frege Systems

Introduction	Proof systems	The propositional Pigeonhole Principle	Sequent Calculus
00 0000000	000000000000000000000000000000000000000	000 000 00	
Extended Frege system	กร		

The idea of the extension rule is, that P_i can be used as an abbreviation for ϕ in all subsequent steps of the proof.

 \Rightarrow This can reduce the proof complexity (number of used symbols) greatly.

Introduction	Proof systems	The propositional Pigeonhole Principle	Sequent Calculus
00 00000000	00000000000000000000000000000000000000	000 000 00	

Extended Frege systems

Soundness of $e\mathcal{F}$

Proposition 15

If π is a derivation of B from $A_1, ..., A_n$ in a extended Frege system $e\mathcal{F}$, then $A_1, ..., A_m \models B$.

Proof.

Let τ be any truth assignment to the atoms of $A_1, ..., A_n$ and B, which satisfies $A_1, ..., A_n$ (normal Frege). Now we extend τ to make each line in the derivation true. In particular, if $P_i \equiv \phi$ is a defining formula, then P has not occurred earlier in the derivation. That means that we are able to extend τ so $\tau(P_i) = \tau(\phi_i)$. Hence $\tau(B)$ is true since B is the last line of derivation.

Introduction 00 00000000	Proof systems	The propositional Pigeonhole Principle 000 000 00	Sequent Calculus
Extended Frege systems			

Open Problems:

- ► Can Frege proof systems (p-)simulate *eF* systems?
- ► Can we p-simulate with eF proof systems every other proof system?

Introduction	Proof systems	The propositional Pigeonhole Principle	Sequent Calculus
00 0000000	000000000000000000000000000000000000000	000 000 00	

The propositional Pigeonhole Principle PHP

This principle states that, given two natural numbers n and m with n > m, if n pigeons are put into m pigeonholes, then at least one pigeonhole must contain more than one item.

A not very surprisingly result is that in a family with three children there must be at least two children with the same gender,

A, in the first moment unexpected result, is that in a city with population over 1 million, there must be at least two inhabitants with the same number of hairs.

There are many more of such examples.

Introduction 00 0000000	Proof systems 00000000000000 0000	The propositional Pigeonhole Principle OO OO OO O	Sequent Calculus		
PHP model for Frege proof					

PHP model

Let P_{ij} with $1 \le i \le n, 1 \le j \le n-1$ be a set of axioms. Whose meaning is that *i* is mapped to *j*.

Let
$$S_n$$
 be the set:
 $\{P_{i1} \lor ... \lor P_{i,n-1} | 1 \le i \le n\} \cup \{\neg P_{ik} \lor \neg P_{jk} | 1 \le i < j \le n, 1 \le k \le n-1\}$
Example 16
For $n = 3$:
 $\{P_{i1} \lor P_{i,n-1} | 1 \le i \le n\} = \{(P_{11} \lor P_{12}), (P_{21} \lor P_{22}), (P_{31} \lor P_{32})\}$
 $\{\neg P_{ik} \lor \neg P_{jk} | 1 \le i < j \le n, 1 \le k \le n-1\} =$
 $\{(\neg P_{11} \lor \neg P_{21}), (\neg P_{21} \lor \neg P_{31}), (\neg P_{12} \lor \neg P_{22}), (\neg P_{22} \lor \neg P_{32}), \}$

	Introduction 00 0000000	Proof systems 00000000000000 0000	The propositional Pigeonhole Principle	Sequent Calculus
PHP model for Frege proof				

PHP model for Frege proof

We can this also represent as a function, with following properties:

- 1. From $\{0, 1, ..., n\} \rightarrow \{0, 1, ..., n-1\}$
- 2. Injective.

Introduction 00 00000000	Proof systems 000000000000000 0000	The propositional Pigeonhole Principle	Sequent Calculus	
0000000	0000	00		

PHP model for Frege proof

Defining f

Since we proof the pigeon-hole principle by induction we need a inductive definition of f. Let us assume, that

 $f:\{0,1,...,n\} \rightarrow \{0,1,...,n-1\}$ is an injective function. Then is f' defined by:

$$f'(i) = egin{cases} f(i) & f(i)
eq n-1 \ f(n) & ext{else} \ f' ext{ is also injective.} \end{cases}$$

Introduction	Proof systems	The propositional Pigeonhole Principle	Sequent Calculus
00 0000000	000000000000000000000000000000000000000		
Frege proof			

Frege proof

To do the proof, we try to deduce S_{n-1} from S_n . For each i, j we introduce a formula B_{ij} , which means f'(i) = j and is defined by $B_{ij} = P_{ij} \vee (P_{i,n-1} \wedge P_{nj})$ with $1 \le i \le n-1, 1 \le j \le n-2$.

Because f is injective implies f' is also injective we get $S_n \models \sigma_{n-1}(S_{n-1})$. Since our Frege system is complete we have $S_n \vdash \sigma_{n-1}(S_{n-1})$.

The same holds for n-1: $S_{n-1} \models \sigma_{n-1}(S_{n-2})$. And so, by Lemma 12, we know, that there is a derivation $\sigma_{n_1}(S_{n-1}) \models \sigma_{n-1}\sigma_{n-2}(S_{n-2})$.

Introduction	Proof systems	The propositional Pigeonhole Principle	Sequent Calculus
00 0000000	000000000000000000000000000000000000000		
Frege proof			

Frege proof

Proceeding this way, we finally obtain a derivation showing $S_n \vdash \sigma_{n_1}...\sigma_2(S_2)$.

But $S_2 = \{P_{11}, P_{21}, \neg P_{21} \lor \neg P_{21}\}$. For which we can't find a truth assignment, which makes the formula true.

So we can conclude, that $\vdash \neg S_n$, and that means $\vdash A_n$. \Box

Introduction 00 0000000	Proof systems 000000000000000 0000	The propositional Pigeonhole Principle ○○○ ○○● ○○	Sequent Calculus
Frege proof			

Upper bound

There is a Frege system with that the derivation of $\sigma_{n-1}(S_{n-1})$ from S_n can be done in $\mathcal{O}(n^3)$. Because we have *n* derivations we come to an upper bound of $\mathcal{O}(n^4)$.

The problem is, that every application of the substitution triples the length of a formula, so the longest formula in the proof of a_n grows exponentially in n.

Introduction	Proof systems	The propositional Pigeonhole Principle	Sequent Calculus
00 0000000	000000000000000000000000000000000000000		
Extended Frege proof			

Extended Frege proof

We are using the possibility to use abbreviation formulas to reduce the proof length significantly.

For the first step: We define a atom $Q_{ij}^1 \equiv (P_{ij} \lor (P_{i,n-1} \land P_{n,j}))$ with $1 \le i \le n, 1 \le j \le n-2$. With that formula and with S_n the formula $\tau_{n-1}(S_{n-1})$ can be derived, where τ_{n-1} is the substitution Q_{ij}^1/P_{ij} .

Introduction	Proof systems	The propositional Pigeonhole Principle	Sequent Calculus
00	00000000000000	○○○	
0000000	0000	○○○	
Extended Frege proof			

In general we set:
$$\mathcal{Q}_{ij}^{k+1} \equiv (\mathcal{Q}_{ij}^k \lor (\mathcal{Q}_{i,n-k-1}^k \land \mathcal{Q}_{n-k,j}^k)).$$

With that the formulas $\tau_{n-k-1}(S_{n-k-1})$ can be derived from $\tau_{n-k}(S_{n-k})$ where τ_{n-k} is the substitution Q_{ii}^k/P_{ii} .

With that we get a contradiction in $\mathcal{O}(n^4)$, with every formula has the length only $\mathcal{O}(n)$. That makes a totally upper bound of $\mathcal{O}(n^5)$.

Introduction	Proof systems	The propositional Pigeonhole Principle	Sequent Calculus
00 00000000	000000000000000000000000000000000000000	000 000 00	

Sequent Calculus

The sequent calculus PK consists of a set of sequence rules for creating new rules from existing ones.

With a rule we can derive from exiting sequences new sequences. A rule R looks in general like:

 $\frac{\text{premise}}{\text{conclusion}} \ R$

Furthermore we have axioms, which are rules without a premise.

If we find a derivation so that all all leaf sequences are atoms, then we found a proof for the tautology.

If there is not such a derivation, then we know that the formula is no tautology.

The on the next slide introduced sequent calculus is sound. Proof idea is to observe, that all rules of inference preserve the property of formulas being tautologies.

Introduction	Proof systems	The propositional Pigeonhole Principle	Sequent Calculus
00 00000000	000000000000000000000000000000000000000	000 000 00	

We are showing now the rules of an sound and complete sequent calculus.

$$\frac{\overline{\Gamma, \phi \vdash \Delta, \phi}}{\overline{\Gamma \vdash \Delta, 1}} (Ax) \qquad \overline{\Gamma, \phi \vdash \Delta} (0-Ax)$$

$$\frac{\overline{\Gamma \vdash \Delta, \phi}}{\overline{\Gamma, \phi \vdash \Delta}} (\neg L) \qquad \frac{\overline{\Gamma, \phi \vdash \Delta}}{\overline{\Gamma \vdash \Delta, \neg \phi}} (\neg R)$$

$$\frac{\overline{\Gamma, \phi \vdash \Delta}}{\overline{\Gamma, \phi \lor \psi \vdash \Delta}} (\lor L) \qquad \frac{\overline{\Gamma \vdash \Delta, \phi, \psi}}{\overline{\Gamma \vdash \Delta, \phi \lor \psi}} (\lor R)$$

$$\frac{\overline{\Gamma, \phi, \psi \vdash \Delta}}{\overline{\Gamma, \phi \land \psi \vdash \Delta}} (\land L) \qquad \frac{\overline{\Gamma \vdash \Delta, \phi \lor \psi}}{\overline{\Gamma \vdash \Delta, \phi \land \psi}} (\land R)$$

Introduction	Proof systems	The propositional Pigeonhole Principle	Sequent Calculus
00 00000000	000000000000000000000000000000000000000	000 000 00	

Summery

Introduction

Motivation Basics

Dasies

Proof systems

Frege systems Extended Frege systems

The propositional Pigeonhole Principle

PHP model for Frege proof Frege proof Extended Frege proof

Sequent Calculus