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Motivation

Motivation

Question: Why even dealing with proof systems?

We differ between two kinds of proofs.

I Social proofs. Proofs consisting of social conventions with
that scientists reciprocal convince each other of the truth of
theorems. This is done in natural language and with some
symbols and figures.

I Formal proofs. A proof is a string, which satisfies some
precisely stated set of rules.
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Motivation

Of course our motivation in studying formal proof systems is to
develop a formal proof system.

But there is a greater impact on proof systems to complexity
theory.
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Basics

Repetition NP and coNP

P is the set of decision problems, which can be solved
by a deterministic Turing machine in polynomial time.

NP is the set of decision problems, for which the answer
yes has simple proofs if the answer is indeed yes.

coNP a element X is in coNP if and only if the element X̄
is in NP.

A important question is, whether NP is closed under
complementation, i.e. Σ∗ − L is in NP whenever L is in NP.
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Basics

Proposition 1

NP is closed under complementation if and only if TAUT is in
NP.

Definition 2
F is a set of functions f : Σ∗1 → Σ∗2, with Σ1,Σ2 are any finite
alphabets, such that f can be computed by a deterministic Turing
machine in time bounded by a polynomial in the length of the
input.

For the proof we need the following result: There is a function
f ∈ F with that every set L is reducible to the complement of the
tautologies.
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Basics

Proof.
Assume NP is closed under complementation. To verify that a
formula is not a tautology one can guess a truth assignment and
verify that it falsifies the formula. Because we assumed, that NP
is closed under complementation, the set of tautologies is also in
NP.

Assume that the set of tautologies is in NP. So a non
deterministic procedure for accepting the complement of L would
be : On input x , compute f (x) (the result of above) and accept if
x is a tautology. Hence the complement of L is in NP.
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Basics

Definition 3
Let L ⊆ Σ∗, a proof system for L is a function f : Σ∗1 → L for some
alphabet Σ1 and f ∈ F such that f is onto.

Definition 4
A proof system is polynomially bounded if and only if there is a
polynomial p(n) such that for all y ∈ L there is x ∈ Σ∗1 such that
y = f (x) and |x | ≤ p(|y |).
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Basics

Proposition 5

A set L is in NP if and only if L = ∅ or L has a polynomially
bounded proof system.

Proof.
Assume L ∈ NP . That means. there is a non deterministic
Turing Machine M, that accepts L in polynomial time. If L 6= ∅,
the proof system calculates for the case that M accepts y ,
f (x) = y . Where x is the calculation on an output tape of M on
input y . Otherwise it sets f (x) = y0, for a fixed y0.

Let f be a polynomially bounded proof system for L. On input y
guess an proof for x and accept if f (x) = y .
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Basics

Putting things together

Proposition 1 says that NP is closed under complementation iff
TAUT ∈ NP and Proposition 5 says that any Language L ∈ NP
iff L has an polynomially bounded proof system.
That leads directly to:

Proposition 6

NP is closed under complementation if and only if TAUT has a
polynomially bounded proof system.

Michael Herrmann: Frege Systems 10/ 44



Introduction Proof systems The propositional Pigeonhole Principle Sequent Calculus

Basics

With that we are able to get a further result. But we need at first
the definition of p-simulation.

Definition 7
If f1 : Σ∗1 → L and f2 : Σ∗2 → L are proof systems for L, then f2
p-simulates f1 if there is a function g1 : Σ∗1 → Σ∗2 such that g is in
F and f2(g(x)) = f1(x) for all x .
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Basics

Proposition 8

If a proof system f2 for L p-simulates a polynomially bounded proof
system f1, then is f2 also polynomially bounded.

Proof.
Since p-simulation means that there is a g ∈ F , and polynomially
bounded means that |x | ≤ p(|y |) the equation
|g(x)| ≤ p(|f (g(x))|) still holds.
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Frege systems

Frege Systems

Definition 9
A Frege System is a three tuple (L,A,R). Where

I L is the propositional language.

I A is a finite set of axioms.

I R is a finite set of rules.

The language L is identified by the connectives that are allowed.
We mark the set of connectives with κ. For example the ”standard
basis” is {¬,∧,∨}.
We say a Frege System is propositionally complete if every formula
φ over the ”standard basis” has an equivalent formula φ′ over L.
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Frege systems

A rule is a system of formulas (C1,C2, ...,Cn)/D, where
(C1,C2, ...,Cn) |= D.

If n = 0 the rule is an axiom.
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Frege systems

Example 10

An example for an Frege System:

I Language with the connectives κ = {¬,∧,∨,→}

I Rule of inference

P (P → Q)

Q
MP

Axioms See next slide.
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Frege systems

Axioms:

(P ∧ Q)→ P
(P ∧ Q)→ Q
P → (P ∨ Q)
Q → (P ∨ Q)
(P → Q)→ ((P → ¬Q)→ ¬P)
(¬¬P)→ P
P → (Q → P ∧ Q)
(P → R)→ ((Q → R)→ (P ∨ Q → R))
P → (Q → P)
(P → Q)→ (P → (Q → R))→ (P → R)
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Frege systems

Further conditions of Frege systems

I Soundness: A Frege system is sound if every theorem is valid.

I Completeness: A Frege system is complete if every valid
formula has a proof.

I Implicational Soundness: Whenever φ ` ψ then φ |= ψ.

I Implicational Completeness: Whenever φ |= ψ then φ ` ψ.

There exist many sound and complete Frege proof systems.
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Frege systems

Some definitions

I atoms Propositional variables.

I derivation π Finite set of lines and ends with the line which is
proved.

I hypothesis A derivation of 0 or more lines.

Every row in a proof must be either a hypothesis or derivable by a
rule.
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Frege systems

Frege proof

A Frege proof Π in a Frege system F = (L,A,R) is a sequence
A = (A1,A2, ...,Am) such that for all i , either:

I Ai is an instance of an axiom.

I It exists j1, ..., jk with k < i and with a k-ary rule R ∈ R such
that Ai = R(Aj1 , ...,Ajk ).

Then Π is a proof of the theorem Am. We may write then ` Am.
Or F ` Am, respectively `F Am, to state that Am has a proof in
the Frege system F .
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Frege systems

Complexity of proofs

The complexity of a Frege proof is the symbol length of the proof:
n = |Π| =

∑m
i=1 |Ai |

Open Problem: Do the tautologies have polynomial-size Frege
proofs?
(Is there a polynomial p that for all A ∈ TAUT, there exists a
proof with length at most p(|A|)?)

If so, then NP = coNP.

Michael Herrmann: Frege Systems 20/ 44



Introduction Proof systems The propositional Pigeonhole Principle Sequent Calculus

Frege systems

Before we introduce the next theorem we need some terminology.

I A1, ...,An `πF B means that there is the derivation π in the
system F from A1, ...,An to B.

I A1, ...,An `F B means that there is some derivation in the
system F from A1, ...,An to B.

I l(A) is the number of atoms (variables) in the formula or
sequence A.

I λ(π) is the number of lines in the derivation.

I ρ(π) = maxi l(Ai ), if π is A1, ...,An.

I |π| or |A| is the length as string.

A substitution is σ = (D1, ...,Dk)/(P1, ...,Pk). And σA is the
formula, which results in replacing Pi by Di for 1 ≤ i ≤ k.
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Frege systems

Theorem 11
For any two Frege systems F1 and F2 over κ there is a function
f ∈ F and constant c such that for all formulas A1, ...,An,B and
derivations π, if (A1,A2, ...,An) `πF1

B then

(A1,A2, ...,An) `f (π)
F2

B, and λ(f (π)) ≤ c1λ(π) and
ρ(f (λ)) ≤ c2ρ(π).

Lemma 12
Let A1, . . . ,Ak be some formulas and π is the derivation of B from
these formulas, then σ(π) is a derivation of σA from σB1, . . . , σBk

for any substitution σ.

Proof.
By induction over the length of σ.
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Frege systems

Proof of Theorem 11

Let F1 and F2 be two complete and implicationally complete Frege
systems over κ. Then there is for every rule R = (C1, ...,Cm)/D in
F1 a derivation πr of D from C1, ...,Cm in F2.

Now let π be a derivation of B from A1,A2, ...,An in F1 and
suppose π = (B1,B2, ...,Bk). To construct the F2-derivation f (π)
from π do the following: If Bi follows from earlier Bj ’s by the F1

rule Ri and substitution σi , simply replace Bi by the derivation
σi (πRi

). According to Lemma 12 σi (πRi
) is the derivation of Bi

from the same earlier Bj ’s.
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Frege systems

Proof of Theorem 11

The condition λ(f (π)) ≤ c1λ(π) holds if c1 is the number of lines
in the longest derivation πR over all rules R.

The condition ρ(f (π)) ≤ c2ρ(π) holds too, with c2 is an upper
bound on l(A), with A are all formulas in the derivations πR .
�
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Frege systems

Corollary 13

Any two Frege systems over κ p-simulate each other. Hence one
Frege system over κ is polynomially bounded if and only if all
Frege systems over κ are.

Proof.
Immediate result of Proposition 8 and Theorem 11.
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Frege systems

Soundness and implicational soundness of Frege systems

Idea:

Noting that all axioms are valid and prove that modus ponens
preserves the property of an formula being valid.
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Frege systems

Completeness of Frege systems

Theorem 14
The propositional proof system F is complete and is
implicationally complete.

1. If φ is a tautology, then ` φ.

2. If ψ |= φ, then ψ ` φ

Proof.
(Idea) Part (2) can be reduced to part (1).

Show (1), since the proof is very lengthy we skip here.
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Extended Frege systems

Extended Frege Systems
An extended Frege system eF is an ordinary Frege system with
one additional proof rule.
A extended Frege proof is a sequence of formulas A1,A2, ...,An

such that for all i :
I Ai is an instance of an axiom.
I It exists j1, ..., jk with k < i and with a k-ary rule R ∈ R such

that Ai = R(Aj1 , ...,Ajk ).

Or:

I Ai is an extension formula of the form Pi ≡ φ
Where φ is any formula and Pi is a fresh extension variable.

We say that Pi is a defined atom and Pi ≡ φ is it’s defining
formula.
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Extended Frege systems

The idea of the extension rule is, that Pi can be used as an
abbreviation for φ in all subsequent steps of the proof.

⇒ This can reduce the proof complexity (number of used symbols)
greatly.
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Extended Frege systems

Soundness of eF

Proposition 15

If π is a derivation of B from A1, ...,An in a extended Frege system
eF , then A1, ...,Am |= B.

Proof.
Let τ be any truth assignment to the atoms of A1, ...,An and B,
which satisfies A1, ...,An (normal Frege). Now we extend τ to
make each line in the derivation true. In particular, if Pi ≡ φ is a
defining formula, then P has not occurred earlier in the derivation.
That means that we are able to extend τ so τ(Pi ) = τ(φi ). Hence
τ(B) is true since B is the last line of derivation.
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Extended Frege systems

Open Problems:

I Can Frege proof systems (p-)simulate eF systems?

I Can we p-simulate with eF proof systems every other proof
system?
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The propositional Pigeonhole Principle PHP

This principle states that, given two natural numbers n and m with
n > m, if n pigeons are put into m pigeonholes, then at least one
pigeonhole must contain more than one item.

A not very surprisingly result is that in a family with three children
there must be at least two children with the same gender,

A, in the first moment unexpected result, is that in a city with
population over 1 million, there must be at least two inhabitants
with the same number of hairs.

There are many more of such examples.
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PHP model for Frege proof

PHP model

Let Pij with 1 ≤ i ≤ n, 1 ≤ j ≤ n − 1 be a set of axioms. Whose
meaning is that i is mapped to j .

Let Sn be the set:
{Pi1 ∨ ... ∨ Pi ,n−1|1 ≤ i ≤ n} ∪ {¬Pik ∨ ¬Pjk |1 ≤ i < j ≤ n, 1 ≤
k ≤ n − 1}

Example 16

For n = 3:
{Pi1 ∨ Pi ,n−1|1 ≤ i ≤ n} = {(P11 ∨ P12), (P21 ∨ P22), (P31 ∨ P32)}
{¬Pik ∨ ¬Pjk |1 ≤ i < j ≤ n, 1 ≤ k ≤ n − 1} =
{(¬P11 ∨ ¬P21), (¬P21 ∨ ¬P31), (¬P12 ∨ ¬P22), (¬P22 ∨ ¬P32), }
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PHP model for Frege proof

We can this also represent as a function, with following properties:

1. From {0, 1, ..., n} → {0, 1, ..., n − 1}
2. Injective.
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PHP model for Frege proof

Defining f

Since we proof the pigeon-hole principle by induction we need a
inductive definition of f . Let us assume, that
f : {0, 1, ..., n} → {0, 1, ..., n − 1} is an injective function. Then is
f ′ defined by:

f ′(i) =

{
f (i) f (i) 6= n − 1

f (n) else

f ′ is also injective.
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Frege proof

Frege proof

To do the proof, we try to deduce Sn−1 from Sn. For each i , j we
introduce a formula Bij , which means f ′(i) = j and is defined by
Bij = Pij ∨ (Pi ,n−1 ∧ Pnj) with 1 ≤ i ≤ n − 1, 1 ≤ j ≤ n − 2.

Because f is injective implies f ′ is also injective we get
Sn |= σn−1(Sn−1). Since our Frege system is complete we have
Sn ` σn−1(Sn−1).

The same holds for n− 1: Sn−1 |= σn−1(Sn−2). And so, by Lemma
12, we know, that there is a derivation
σn1(Sn−1) |= σn−1σn−2(Sn−2).
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Frege proof

Frege proof

Proceeding this way, we finally obtain a derivation showing
Sn ` σn1 ...σ2(S2).

But S2 = {P11,P21,¬P21 ∨¬P21}. For which we can’t find a truth
assignment, which makes the formula true.

So we can conclude, that ` ¬Sn, and that means ` An. �
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Frege proof

Upper bound

There is a Frege system with that the derivation of σn−1(Sn−1)
from Sn can be done in O(n3). Because we have n derivations we
come to an upper bound of O(n4).

The problem is, that every application of the substitution triples
the length of a formula, so the longest formula in the proof of an

grows exponentially in n.
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Extended Frege proof

Extended Frege proof

We are using the possibility to use abbreviation formulas to reduce
the proof length significantly.

For the first step:
We define a atom Q1

ij ≡ (Pij ∨ (Pi ,n−1 ∧ Pn,j)) with
1 ≤ i ≤ n, 1 ≤ j ≤ n − 2. With that formula and with Sn the
formula τn−1(Sn−1) can be derived, where τn−1 is the substitution
Q1

ij/Pij .
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Extended Frege proof

In general we set:
Qk+1

ij ≡ (Qk
ij ∨ (Qk

i ,n−k−1 ∧Qk
n−k,j)).

With that the formulas τn−k−1(Sn−k−1) can be derived from
τn−k(Sn−k) where τn−k is the substitution Qk

ij /Pij .

With that we get a contradiction in O(n4), with every formula has
the length only O(n). That makes a totally upper bound of O(n5).
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Sequent Calculus

The sequent calculus PK consists of a set of sequence rules for
creating new rules from existing ones.

With a rule we can derive from exiting sequences new sequences.
A rule R looks in general like:

premise

conclusion
R

Furthermore we have axioms, which are rules without a premise.

Michael Herrmann: Frege Systems 41/ 44



Introduction Proof systems The propositional Pigeonhole Principle Sequent Calculus

If we find a derivation so that all all leaf sequences are atoms, then
we found a proof for the tautology.

If there is not such a derivation, then we know that the formula is
no tautology.

The on the next slide introduced sequent calculus is sound. Proof
idea is to observe, that all rules of inference preserve the property
of formulas being tautologies.
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We are showing now the rules of an sound and complete sequent
calculus.

Γ, φ ` ∆, φ
(Ax)

Γ ` ∆, 1
(1-Ax)

Γ, 0 ` ∆
(0-Ax)

Γ `∆, φ

Γ,¬φ ` ∆
(¬L)

Γ, φ ` ∆

Γ ` ∆,¬φ (¬R)

Γ, φ ` ∆ Γ, ψ ` ∆

Γ, φ ∨ ψ ` ∆
(∨L)

Γ ` ∆, φ, ψ

Γ ` ∆, φ ∨ ψ (∨R)

Γ, φ, ψ ` ∆

Γ, φ ∧ ψ ` ∆
(∧L)

Γ ` ∆, φ Γ ` ∆, ψ

Γ ` ∆, φ ∧ ψ (∧R)
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