Razborov's theorem, interpolation method, and lower bounds for Resolution and Cutting Planes

Author: Alisa Knizel

< ロ > < 同 > < 回 > < 回 >

- Proof of Razborov's theorem.
- Lower bounds for the resolution proof system.
- Lower bounds for the cutting planes.

(日) (同) (三) (

Monotone circuits

Definition Boolean circuit :

- directed acyclic graph
- nodes (gates) labelled by: inputs, AND, OR, NOT
- computes a function of its n input bit in the natural way

Conjecture: NP-complete problems have no polynomial circuits.

- the best lower bounds we are able to prove are *kn* (for small constants *k*)
- let's prove in a weaker circuit model
- the most natural model is the monotone circuits (that is, ones without NOT gates)

Monotone circuits

- Monotone circuits can only compute monotone functions(
 x ≤ y ⇒ f(x) ≤ f(y)), and ∀ monotone function can be computed by monotone circuit.
- There are monotone NP-complete problems $(CLIQUE_{n,k})$

< ロ > < 同 > < 回 > < 回 >

Definition: $CLIQUE_{n,k}$ is the Boolean function. CLIQUE(G(V, E))=1 if G has a clique of size k.

- $CLIQUE_{n,k}$ is a monotone function.
- *CLIQUE_{n,k}* is **NP**-complete

イロト イポト イヨト イヨト

Monotone circuit for $CLIQUE_{n,k}$

- input gate $g_{[i,j]}$ is set to true $\Leftrightarrow [i,j] \in E$
- $\forall S \subseteq V$ with |S| = k test with AND gates whether S forms a clique
- repeat $\forall S \subseteq V$ with |S| = k and take a big OR of the outcomes

Definition: Crude circuit is a circuit testing whether a family of subsets of V form a clique and returning true \Leftrightarrow one of the sets does. The above circuit is denoted $CC(S_1, ...S_{\binom{n}{k}})$

Razborov's Theorem: There is a constant **c** such that for large enough *n* all monotone circuits for $CLIQUE_{n,k}$ with $k = \sqrt[4]{n}$ have size at least $2^{c\sqrt[8]{n}}$

イロト イポト イヨト イヨト

- approximate any monotone circuit for *CLIQUE_{n,k}* by a restricted kind of crude circuit.
- show that each step introduces rather few errors
- show that the resulting crude circuit has exponentially many errors.
- Thus the approximation takes exponentially many steps \Rightarrow the original monotone circuit has exponentially many gates.

- **Defenition:** A sunflower is a family of p sets $\{P_1, ..., P_p\}$, called *petals*, each of cardinality at most ℓ , such that all pairs of sets in the family have the same intersection (called *the core* of sunflower).
- The Erdös-Rado Lemma: Let Z be a family of more than $M = (p-1)^{\ell} \ell!$ nonempty sets, each of cardinality ℓ or less. Then Z must contain a sunflower.

イロト 不得下 イヨト イヨト 三日

Induction on ℓ .

- $\ell = 1 \Leftrightarrow$ different singletons form a sunflower. D is a maximal subset of Z of disjoint sets.
- $|D| \ge p$ sets, then it constitutes a sunflower with empty core.
- $\mathbf{F} = \bigcup H_i, H_i \in \mathbf{D}$. We know: $|\mathbf{F}| \leq (p-1)\ell$ and that \mathbf{D} intersects every set in \mathbf{Z} .
- There is an element $d \in \mathbf{D}$ which intersects more than $\frac{M}{(p-1)\ell} = (p-1)^{\ell}(\ell-1)!$ sets.

イロト 不得下 イヨト イヨト 二日

•
$$\mathbf{G} = {\mathbf{S} - d : \mathbf{S} \in \mathbf{Z} \text{ and } d \in \mathbf{Z}}$$

- G has more than (p − 1)^ℓ(ℓ − 1)! sets ⇒ by induction it contains a sunflower P₁, ..., P_p. Then {P₁ ∪ {d}, ..., P_p ∪ {d}} is a sunflower in Z. □
- Definition: Plucking a sunflower entails replacing the sets in the sunflower by its core.

$$Z_1, .., Z_p \longrightarrow Z$$

• **Remark:**If there are >M sets in a family, we can reduce their number by repeatedly finding a sunflower and plucking it.

- do it inductively (any monotone circuit is considered as the OR or AND of two subcircuits).
- there are two circuits CC(X), CC(Y), X,Y are families of ≤ M sets of nodes. (M = (p − 1)^ℓℓ! (p is about ⁸√n)).
- each set with $\leq \ell \ (= \sqrt[8]{n})$ nodes.

イロト イポト イヨト イヨト 三日

Approximation steps

- $A[CC(X) \lor CC(Y)] = CC(pluck(X \cup Y))$
- A[CC(X) \land CC(Y)] = CC(pluck ({ $U_i \cup V_j : U_i \in X, V_i \in Y$, and $|U_i \cup V_j| \le \ell$ }))

Positive and negative examples

- Definition: A positive example is simply a graph with {k \choose 2} edges connecting k nodes in all possible ways. There are {n \choose k} such graphs, and they all should elicit the "true".
- The negative examples are outcomes of following experiment: color the nodes with k - 1 different colors. Then join by an edge any two nodes that are colored differently. Such a graph has no k-clique. There are $(k - 1)^n$ negative examples overall.

False negatives and false positives

- E is a positive example. CC₁(E) = true, CC = A[CC₁ ∨ CC₂] and CC(E) = false ⇒ the approximation step has introduced a false negative.
- N is a negative example.
 CC₁(N) = false, CC₂(N) = false, CC = A[CC₁ ∨ CC₂] and
 CC(N) = true ⇒ the approximation step has introduced a false positive.
- E is a positive example.
 CC₁(E) = true, CC₂(N) = true, CC = A[CC₁ ∧ CC₂] and
 CC(E) = false ⇒ the approximation step has introduced a false negative.
- N is a negative example. CC₁(N) = false, CC = (AND)A[CC₁ ∧ CC₂] and CC(N) = true ⇒ the approximation step has introduced a false positive.

Lemma: Each approximation step introduces $\leq M^2 2^{-p} (k-1)^n$ false positives.

Proof: First for an OR.

A false positive introduced by plucking (the replacement of sunflower $\{Z_1, ..., Z_p\}$ by its core **Z**) is a coloring such that there is a pair of identically colored nodes in each petal, but at least one node from each petal was plucked away. Let's count such colorings.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 $\mathsf{R}(\mathsf{X})$ is the probability of the event that there are repeated colors in set $\mathsf{X}.$ We have:

 $\operatorname{\mathsf{prob}}[R(Z_1) \wedge ... \wedge R(Z_\rho) \wedge \neg R(Z)] \leq \operatorname{\mathsf{prob}}[R(Z_1) \wedge ... \wedge R(Z_\rho) | \neg R(Z)] =$

 $\mathsf{R}(\mathsf{X})$ is the probability of the event that there are repeated colors in set $\mathsf{X}.$ We have:

 $\operatorname{\mathsf{prob}}[R(Z_1) \wedge ... \wedge R(Z_\rho) \wedge \neg R(Z)] \leq \operatorname{\mathsf{prob}}[R(Z_1) \wedge ... \wedge R(Z_\rho) | \neg R(Z)] =$

 $\mathsf{R}(\mathsf{X})$ is the probability of the event that there are repeated colors in set $\mathsf{X}.$ We have:

 $\operatorname{\mathsf{prob}}[R(Z_1) \wedge ... \wedge R(Z_\rho) \wedge \neg R(Z)] \leq \operatorname{\mathsf{prob}}[R(Z_1) \wedge ... \wedge R(Z_\rho) | \neg R(Z)] =$

$$=\prod_{i=1}^{p} \operatorname{prob}[R(Z_i)|\neg R(Z)] \leq \prod_{i=1}^{p} \operatorname{prob}[R(Z_i)]$$

Proof(OR):

• Consider two nodes in Z_i , prob[they have the same color] $=\frac{1}{k-1}$. Then

$$\operatorname{prob}[R(Z_i)] \leq \frac{\binom{|Z_i|}{2}}{k-1} \leq \frac{\binom{\ell}{2}}{k-1} \leq \frac{1}{2}$$

- Thus the probability that a randomly chosen coloring is a new false negative is at most 2^{-p}
- There are $(k-1)^n$ different coloring \Rightarrow each plucking introduces $\leq 2^{-p}(k-1)^n$ false positives. The approximation step entails up to $\frac{2M}{p-1}$ pluckings, the lemma holds for the OR approximation step.

イロト 不得下 イヨト イヨト 三日

Consider now an AND approximation step. It can be broken down in 3 phases:

- we form $CC(\{U \cup V : U \in \mathbf{X}, V \in \mathbf{Y}\}) \rightarrow$ no false positives.
- \bullet the second phase omits from the approximator circuit several sets \rightarrow no false positives.
- the third phase entails a sequence $\langle M^2 \rangle$ pluckings, during each of which $\leq 2^{-p}(k-1)^n$ false positives are introduced. \Box

イロト 不得下 イヨト イヨト 三日

Lemma 2(about false negatives)

- Lemma: Each approximation step introduce ≤ M² (^{n-ℓ-1}_{k-ℓ-1}) false negatives.
- Proof:
- plucking can introduce no false negatives
- \Rightarrow the approximation of an OR introduces no false negatives.
- Consider now an AND approximation step.
- when we form $CC(\{U \cup V : U \in \mathbf{X}, V \in \mathbf{Y}\})$ no f. n. can be introduced.

Proof:

- each deletion of a set W which is larger than ℓ can introduce several false negatives, namely the cliques that contain $W \Rightarrow$ at most $\binom{n-\ell-1}{k-\ell-1}$ f. n. can be introduced by each deletion.
- there are at most M^2 sets to be deleted. \Box

Conclusion

Lemma 1 and 2 show that each approximation step introduces "few"false positives and false negatives. We'll next show that the resulting crude circuit must have "a lot".

(日) (同) (三) (三)

Lemma 3: Every crude circuit is not identically **false**(and thus is wrong on all positive examples), or outputs **true** on at least half of the negative examples.

- If the crude circuit is not identically false, then it accepts at least those graphs that have a clique on some set X of nodes, with |X| ≤ ℓ.
- But from Lemma 1 at least half of the colorings assign different colors to the nodes of X ⇒ half of the negative examples have a clique at X and are accepted. □

The last step of the proof of Razborov's theorem:

•
$$p = \sqrt[8]{n} \log n, \ \ell = \sqrt[8]{n} \Rightarrow$$

$$M = (p-1)^{\ell} \ell! < n^{\frac{1}{3}\sqrt[6]{n}}$$

for large enough n.

- If the final crude circuit is identically false⇒ all possitive examples were introduced as false negatives at some step
- \Rightarrow the original monotone circuit for $CLIQUE_{n,k}$ had \leq (Lemma 2)

$$\frac{\binom{n}{k}}{M^2\binom{n-\ell-1}{k-\ell-1}}$$

$$\geq \frac{1}{M^2(\frac{n-\ell}{k})^\ell} \geq n^{c\sqrt[3]{n}},$$

with $c = \frac{1}{12}$

Alisa Knizel ()

The proof of Razborov's theorem:

- Lemma 3 states that there are $\geq \frac{1}{2}(k-1)^n$ false positives, each approximation step introduces $\leq M^2 2^{-p}(k-1)^n$ (Lemma 1) of them.
- \Rightarrow the original monotone circuit had at least $2^{p-1}M^{-2} > n^{c\sqrt[8]{n}}$, with $c = \frac{1}{3}$.

Definition The propositional resolution proof system is the one which uses elementary disjunctions i. e., disjunctions of literals, as formulas, and the cut rule as the only one rule

$$\frac{\Gamma \lor p, \Delta \lor \neg p}{\Gamma \lor \Delta}$$

Where Γ, Δ are elementary disjunctions.

Effective interpolation for Resolution

The ternary connective sel (selector) is defined by sel(0, x, y) = x and sel(1, x, y) = y

Theorem 1: Let P be a resolution proof of the empty clause from clauses A_i(p̄, q̄), i ∈ I, B_j(p̄, r̄), j ∈ J where p̄, q̄, r̄ are disjoint sets of propositional variables. Then there exists a circuit C(p̄) such that for every 0 − 1 assignment ā for p̄

$$C(\bar{a}) = 0 \Rightarrow A_i(\bar{p}, \bar{q}), i \in I$$

are unsatisfiable, and

$$C(\bar{a}) = 1 \Rightarrow B_j(\bar{p},\bar{r}), j \in J$$

are unsatisfiable;

the circuit C is in basis $\{0, 1, \lor, \land\}$ and its underlying graph is the graph of the proof P.

イロト 不得下 イヨト イヨト 三日

Moreover, we can construct in polynomial time a resolution proof of the empty clause from clauses $A_i(\bar{p}, \bar{q}), i \in I$ if $C(\bar{a}) = 0$, respectively $B_j(\bar{p}, \bar{r}), j \in J$ if $C(\bar{a}) = 1$; the length of this proof is less than or equal to the length of P.

The transformation of the proof for a given assignment $\bar{p} \to \bar{a}$

• 1. We replace each clause of *P* by a subclause so that each clause in the proof is either q-clause or r-clause. We start with initial clause, which are left unchanged and continue along the derivation *P*.

$$\frac{\Gamma \lor p_k, \Delta \lor \neg p_k}{\Gamma \lor \Delta}$$

and we have replaced $\Gamma \lor p_k$ by Γ' and $\Delta \lor \neg p_k$ by Δ' . Then we replace $\Gamma \lor \Delta$ by Γ' if $p_k \to 0$ and by Δ' if $p_k \to 1$

Proof:

• Case 2.

$$\frac{\Gamma \vee q_k, \Delta \vee \neg q_k}{\Gamma \vee \Delta}$$

and we have replaced $\Gamma \lor q_k$ by Γ' and $\Delta \lor \neg q_k$ by Δ' . If one of Γ' , Δ' is an r-clause \rightarrow replace $\Gamma \lor \Delta$ by this clause. If both Γ' and Δ' are q-clauses \rightarrow resolve along q_k , or take one without q_k .

• Case 3.

$$\frac{\Gamma \vee r_k, \Delta \vee \neg r_k}{\Gamma \vee \Delta}$$

This is the dual case to case 2.

- 2.Delete the clauses which contain a \bar{p} literal with value 1, and remove all \bar{p} literals from the remaining clauses.
- We got a valid derivation of the final empty clause from the reduced initial clauses. If this final clause is a q-clause, the proof contains a subproof using only the reduced clauses A_i, i ∈ I; if an r-clause ⇒ B_j, j ∈ J

Proof:

- Construction of C:
- The value computed at a gate corresponding to a clause Γ will determine if it is transformed into a q(r)-clause. We assign 0 to q-clauses and 1 to r-clauses.
- Put constant 0 gates on clauses A_i, i ∈ I and constant 1 gates on clauses B_j, j ∈ J.

- Now consider 3 cases as above.
- Case 1. If the gate on Γ ∨ pk gets value x and the gate on Δ ∨ ¬pk gets value y, then the gate on Γ ∨ Δ should get the value z = sel(pk, x, y). We place the sel gate on Γ ∨ Δ.
- Case 2. If the gate on Γ ∨ q_k gets value x and the gate on Δ ∨ ¬q_k gets value y, then the gate on Γ ∨ Δ should get the value z = x ∨ y). We place the ∨ gate on Γ ∨ Δ.
- Case 3. This is dual to case 2.

Theorem 2:

Suppose moreover that either all variables \bar{p} occur in $A_i(\bar{p}, \bar{q}), i \in I$ only positively or all variables \bar{p} occur in \bar{p} occur in $B_j(\bar{p}, \bar{r}), j \in J$ only negatively, then one can replace the selector connective sel by a monotone ternary connective.

イロト 不得下 イヨト イヨト 三日

- W. I. o. g. assume that all \bar{p} 's are positive in clauses $A_i, i \in I$.
- Hence in case 1, if Δ' is a q-clause, it cannot contain ¬p_k, hence we can take it for Γ ∨ Δ, even if p_k → 0.
- Thus we can replace sel(p_k, x, y) by (p_k ∨ x) ∧ y which is monotone and differs from selector exactly on one input (p_k = 0, x = 1, y = 0) which corresponds to the above situation.

イロト イポト イヨト イヨト 三日

- We use propositional variables \bar{p} with the interpretation 0 = false, 1 = true.
- A proof line is an inequality

$$\sum_k c_k p_k \geq C$$

• Axiom: $0 \le p_k \le 1$

(日) (同) (三) (三)

The rules

- Addition: $\sum_k c_k p_k \ge C$ and $\sum_k d_k p_k \ge D$ $\longrightarrow \sum_k (c_k + d_k) p_k \ge C + D$
- Division: $d > 0, d \in \mathbb{Z}, d | c_k$ and $\sum_k c_k p_k \ge C \longrightarrow \sum_k \frac{c_k}{d} p_k \ge \lceil \frac{C}{d} \rceil$
- Multiplication: $d > 0, d \in \mathbb{Z}$ and $\sum_k c_k p_k \ge C \longrightarrow \sum_k dc_k p_k \ge dC$

Theorem 3

Theorem 3: Let P be a cutting plane proof of the contradiction

 0 ≥ 1 from inequalities ∑_k c_{i,k}p_k + ∑_l b_{i,l}q_l ≥ A_i, i ∈ l,
 ∑_k c'_{j,k}p_k + ∑_m d_{j,m}q_m ≥ B_j, j ∈ J where p̄, q̄, r̄ are disjoint sets of
 propositional variables. Then there exists a circuit C(p̄) such that for
 every 0 - 1 assignment ā for p̄
 C(ā) = 0 ⇒ ∑_k c_{i,k}p_k + ∑_l b_{i,l}q_l ≥ A_i, i ∈ l are unsatisfiable, and
 C(ā) = 1 ⇒ ∑_k c'_{j,k}p_k + ∑_m d_{j,m}q_m ≥ B_j, j ∈ J are unsatisfiable.
 The size of the circuit is polynomial in the binary length of the
 numbers A_i, i ∈ l, B_j, j ∈ J and the number of inequalities in P.

Moreover, we can construct in polynomial time a cutting plane proof of the contradiction $0 \ge 1$ from inequalities $\sum_k c_{i,k}p_k + \sum_l b_{i,l}q_l \ge A_i, i \in I$ if $C(\bar{a}) = 0$, respectively $\sum_k c'_{j,k}p_k + \sum_m d_{j,m}q_m \ge B_j, j \in J$ if $C(\bar{a}) = 1$; the length of this proof is less than or equal to the length of P.

イロト イ得ト イヨト イヨト 三日

Proof:

Let P and assignment $\bar{p} \rightarrow \bar{a}$ be given.

- Replace $\sum_{k} e_{k} p_{k} + \sum_{l} f_{l} q_{l} + \sum_{l} f_{l} q_{l} \geq D \longrightarrow \sum_{l} f_{l} q_{l} \geq D_{0}, \sum_{m} g_{m} r_{m} \geq D_{1}$
- The pair is at least as strong as the original one $D_0 + D_1 \ge D \sum_k e_k p_k$
- $\sum_{k} c_{i,k} p_k + \sum_{l} b_{i,l} q_l \ge A_i \longrightarrow$ the pair $\sum_{l} b_{i,l} q_l \ge A_i \sum_{k} c_{i,k} p_k, 0 \ge 0$
- $\sum_{k} c'_{j,k} p_k + \sum_{m} d_{j,m} r_m \ge B_j \longrightarrow$ the pair $\sum_{m} d_{j,m} r_m \ge B_j \sum_{k} c'_{j,k} p_k, 0 \ge 0$
- The rules are performed in parallel on the 2 inequalities in the pair.

イロト 不得下 イヨト イヨト 二日

Proof:

- The pair corresponding to the last inequality $0 \ge 1$ is $0 \ge D_0$, $0 \ge D_1$ where $D_0 + D_1 \ge 1$
- \Rightarrow D₀ \ge 1 \lor D₁ \ge 1
- \Rightarrow We have a proof of contradiction either from $\sum_{k} c_{i,k} p_k + \sum_{l} b_{i,l} q_l \ge A_i, i \in I \text{ or from}$ $\sum_{k} c'_{j,k} p_k + \sum_{m} d_{j,m} q_m \ge B_j, j \in J$.
- Each proof P can be transformed in proof P' wich is at most polynomially longer and all the coefficients have polynomially bounded binary length (Clote and Buss).
- All D_i have polynomially bounded binary length ⇒ the above procedure can be done in polynomial time in the binary length of A_i, i ∈ I, B_j, j ∈ J and the number of inequalities.
- We use the transformation of polynomial time algorithms into sequences of polynomial size circuits.

The End.