Razborov's theorem, interpolation method, and lower bounds for Resolution and Cutting Planes

Author: Alisa Knizel

Plan

- Proof of Razborov's theorem.
- Lower bounds for the resolution proof system.
- Lower bounds for the cutting planes.

Monotone circuits

Definition Boolean circuit :

- directed acyclic graph
- nodes (gates) labelled by: inputs, AND, OR, NOT
- computes a function of its n input bit in the natural way

Conjecture: NP-complete problems have no polynomial circuits.

- the best lower bounds we are able to prove are kn (for small constants k)
- let's prove in a weaker circuit model
- the most natural model is the monotone circuits (that is, ones without NOT gates)

Monotone circuits

- Monotone circuits can only compute monotone functions($x \leq y \Rightarrow f(x) \leq f(y))$, and \forall monotone function can be computed by monotone circuit.
- There are monotone NP-complete problems (CLIQUE n, k)

CLIQUE

Definition: $C L I Q U E_{n, k}$ is the Boolean function. $\operatorname{CLIQUE}(\mathrm{G}(\mathrm{V}, \mathrm{E}))=1$ if G has a clique of size k.

- CLIQUE n, k is a monotone function.
- CLIQUE n, k is NP-complete

Monotone circuit for $C L I Q U E_{n, k}$

- input gate $g_{[i, j]}$ is set to true $\Leftrightarrow[i, j] \in E$
- $\forall S \subseteq V$ with $|S|=k$ test with AND gates whether S forms a clique
- repeat $\forall S \subseteq V$ with $|S|=k$ and take a big OR of the outcomes

Definition: Crude circuit is a circuit testing whether a family of subsets of V form a clique and returning true \Leftrightarrow one of the sets does. The above circuit is denoted $C C\left(S_{1}, . . S_{\binom{n}{k}}\right)$

Razborov's Theorem:

Razborov's Theorem: There is a constant c such that for large enough n all monotone circuits for $C L I Q U E_{n, k}$ with $k=\sqrt[4]{n}$ have size at least $2 \sqrt[8]{n}$

Plan

- approximate any monotone circuit for $C L I Q U E_{n, k}$ by a restricted kind of crude circuit.
- show that each step introduces rather few errors
- show that the resulting crude circuit has exponentially many errors.
- Thus the approximation takes exponentially many steps \Rightarrow the original monotone circuit has exponentially many gates.

The Erdös-Rado Lemma

Defenition: A sunflower is a family of p sets $\left\{P_{1}, \ldots, P_{p}\right\}$, called petals, each of cardinality at most ℓ, such that all pairs of sets in the family have the same intersection (called the core of sunflower).

The Erdös-Rado Lemma: Let \mathbf{Z} be a family of more than $M=(p-1)^{\ell} \ell$! nonempty sets, each of cardinality ℓ or less. Then \mathbf{Z} must contain a sunflower.

Proof:

Induction on ℓ.

- $\ell=1 \Leftrightarrow$ different singletons form a sunflower. \mathbf{D} is a maximal subset of \mathbf{Z} of disjoint sets.
- $|D| \geq p$ sets, then it constitutes a sunflower with empty core.
- $\mathbf{F}=\bigcup H_{i}, H_{i} \in \mathbf{D}$. We know: $|\mathbf{F}| \leq(p-1) \ell$ and that \mathbf{D} intersects every set in \mathbf{Z}.
- There is an element $d \in \mathbf{D}$ which intersects more than $\frac{M}{(p-1) \ell}=(p-1)^{\ell}(\ell-1)!$ sets.
- $\mathbf{G}=\{\mathbf{S}-d: \mathbf{S} \in \mathbf{Z}$ and $d \in \mathbf{Z}\}$
- \mathbf{G} has more than $(p-1)^{\ell}(\ell-1)$! sets \Rightarrow by induction it contains a sunflower P_{1}, \ldots, P_{p}. Then $\left\{P_{1} \cup\{d\}, \ldots, P_{p} \cup\{d\}\right\}$ is a sunflower in Z. \square
- Definition: Plucking a sunflower entails replacing the sets in the sunflower by its core.

$$
Z_{1}, . ., Z_{p} \longrightarrow Z
$$

- Remark:If there are $>\mathrm{M}$ sets in a family, we can reduce their number by repeatedly finding a sunflower and plucking it.

Approximation

- do it inductively (any monotone circuit is considered as the OR or AND of two subcircuits).
- there are two circuits $C C(\mathbf{X}), C C(\mathbf{Y}), \mathbf{X}, \mathbf{Y}$ are families of $\leq M$ sets of nodes. $\left(M=(p-1)^{\ell} \ell!(\mathrm{p}\right.$ is about $\left.\sqrt[8]{n})\right)$.
- each set with $\leq \ell(=\sqrt[8]{n})$ nodes.

Approximation steps

- $\mathrm{A}[C C(\mathbf{X}) \vee C C(\mathbf{Y})]=C C(\operatorname{pluck}(\mathbf{X} \cup \mathbf{Y}))$
- $\mathrm{A}[C C(\mathbf{X}) \wedge C C(\mathbf{Y})]=C C\left(\right.$ pluck $\left(\left\{U_{i} \cup V_{j}: U_{i} \in \mathbf{X}, V_{i} \in \mathbf{Y}\right.\right.$, and $\left.\left.\left.\left|U_{i} \cup V_{j}\right| \leq \ell\right\}\right)\right)$

Positive and negative examples

- Definition: A positive example is simply a graph with $\binom{k}{2}$ edges connecting k nodes in all possible ways. There are $\binom{n}{k}$ such graphs, and they all should elicit the "true".
- The negative examples are outcomes of following experiment: color the nodes with $k-1$ different colors. Then join by an edge any two nodes that are colored differently. Such a graph has no k-clique. There are $(k-1)^{n}$ negative examples overall.

False negatives and false positives

- E is a positive example. $C C_{1}(E)=$ true, $C C=A\left[C C_{1} \vee C C_{2}\right]$ and $C C(E)=$ false \Rightarrow the approximation step has introduced a false negative.
- N is a negative example.
$C C_{1}(N)=$ false, $C C_{2}(N)=$ false, $C C=A\left[C C_{1} \vee C C_{2}\right]$ and $C C(N)=$ true \Rightarrow the approximation step has introduced a false positive.
- E is a positive example.
$C C_{1}(E)=$ true, $C C_{2}(N)=$ true, $C C=A\left[C C_{1} \wedge C C_{2}\right]$ and $C C(E)=$ false \Rightarrow the approximation step has introduced a false negative.
- N is a negative example. $C C_{1}(N)=$ false, $C C=(A N D) A\left[C C_{1} \wedge C C_{2}\right]$ and $C C(N)=$ true \Rightarrow the approximation step has introduced a false positive.

Lemma 1 (about false positives)

Lemma: Each approximation step introduces $\leq M^{2} 2^{-p}(k-1)^{n}$ false positives.

Proof: First for an OR.
A false positive introduced by plucking (the replacement of sunflower $\left\{Z_{1}, \ldots, Z_{p}\right\}$ by its core \mathbf{Z}) is a coloring such that there is a pair of identically colored nodes in each petal, but at least one node from each petal was plucked away. Let's count such colorings.

Proof (OR):

$R(X)$ is the probability of the event that there are repeated colors in set X. We have:
$\operatorname{prob}\left[R\left(Z_{1}\right) \wedge \ldots \wedge R\left(Z_{p}\right) \wedge \neg R(Z)\right]$

Proof (OR):

$R(X)$ is the probability of the event that there are repeated colors in set X. We have:
$\operatorname{prob}\left[R\left(Z_{1}\right) \wedge \ldots \wedge R\left(Z_{p}\right) \wedge \neg R(Z)\right] \leq \operatorname{prob}\left[R\left(Z_{1}\right) \wedge \ldots \wedge R\left(Z_{p}\right) \mid \neg R(Z)\right]=$

Proof (OR):

$R(X)$ is the probability of the event that there are repeated colors in set X. We have:
$\operatorname{prob}\left[R\left(Z_{1}\right) \wedge \ldots \wedge R\left(Z_{p}\right) \wedge \neg R(Z)\right] \leq \operatorname{prob}\left[R\left(Z_{1}\right) \wedge \ldots \wedge R\left(Z_{p}\right) \mid \neg R(Z)\right]=$

$$
=\prod_{i=1}^{p} \operatorname{prob}\left[R\left(Z_{i}\right) \mid \neg R(Z)\right] \leq \prod_{i=1}^{p} \operatorname{prob}\left[R\left(Z_{i}\right)\right]
$$

Proof(OR):

- Consider two nodes in Z_{i}, prob[they have the same color] $=\frac{1}{k-1}$. Then

$$
\operatorname{prob}\left[R\left(Z_{i}\right)\right] \leq \frac{\binom{\left|Z_{i}\right|}{2}}{k-1} \leq \frac{\binom{\ell}{2}}{k-1} \leq \frac{1}{2}
$$

- Thus the probability that a randomly chosen coloring is a new false negative is at most 2^{-p}
- There are $(k-1)^{n}$ different coloring \Rightarrow each plucking introduces $\leq 2^{-p}(k-1)^{n}$ false positives. The approximation step entails up to $\frac{2 M}{p-1}$ pluckings, the lemma holds for the OR approximation step.

Proof (AND):

Consider now an AND approximation step. It can be broken down in 3 phases:

- we form $C C(\{U \cup V: U \in \mathbf{X}, V \in \mathbf{Y}\}) \rightarrow$ no false positives.
- the second phase omits from the approximator circuit several sets \rightarrow no false positives.
- the third phase entails a sequence $<M^{2}$ pluckings, during each of which $\leq 2^{-p}(k-1)^{n}$ false positives are introduced. \square

Lemma 2(about false negatives)

- Lemma: Each approximation step introduce $\leq M^{2}\binom{n-\ell-1}{k-\ell-1}$ false negatives.
- Proof:
- plucking can introduce no false negatives
- \Rightarrow the approximation of an OR introduces no false negatives.
- Consider now an AND approximation step.
- when we form $C C(\{U \cup V: U \in \mathbf{X}, V \in \mathbf{Y}\})$ no f. n. can be introduced.

Proof:

- each deletion of a set W which is larger than ℓ can introduce several false negatives, namely the cliques that contain $W \Rightarrow$ at most $\binom{n-\ell-1}{k-\ell-1}$
f. n. can be introduced by each deletion.
- there are at most M^{2} sets to be deleted. \square

Conclusion

Lemma 1 and 2 show that each approximation step introduces "few"false positives and false negatives. We'll next show that the resulting crude circuit must have "a lot".

Lemma 3 (number of errors)

Lemma 3: Every crude circuit is not identically false(and thus is wrong on all positive examples), or outputs true on at least half of the negative examples.

- If the crude circuit is not identically false, then it accepts at least those graphs that have a clique on some set X of nodes, with $|X| \leq \ell$.
- But from Lemma 1 at least half of the colorings assign different colors to the nodes of $X \Rightarrow$ half of the negative examples have a clique at X and are accepted. \square

The last step of the proof of Razborov's theorem:

- $p=\sqrt[8]{n} \log n, \ell=\sqrt[8]{n} \Rightarrow$

$$
M=(p-1)^{\ell} \ell!<n^{\frac{1}{3}} \sqrt[8]{n}
$$

for large enough n.

- If the final crude circuit is identically false \Rightarrow all possitive examples were introduced as false negatives at some step
- \Rightarrow the original monotone circuit for $C L I Q U E_{n, k}$ had \leq (Lemma 2)

$$
\begin{gathered}
\frac{\binom{n}{k}}{M^{2}\binom{n-\ell-1}{k-\ell-1}} \\
\geq \frac{1}{M^{2}\left(\frac{n-\ell}{k}\right)^{\ell}} \geq n^{c \sqrt[8]{n}},
\end{gathered}
$$

with $c=\frac{1}{12}$

The proof of Razborov's theorem:

- Lemma 3 states that there are $\geq \frac{1}{2}(k-1)^{n}$ false positives, each approximation step introduces $\leq M^{2} 2^{-p}(k-1)^{n}$ (Lemma 1) of them.
- \Rightarrow the original monotone circuit had at least $2^{p-1} M^{-2}>n^{c} \sqrt[8]{n}$, with $c=\frac{1}{3}$.

Resolution

Definition The propositional resolution proof system is the one which uses elementary disjunctions i. e., disjunctions of literals, as formulas, and the cut rule as the only one rule

$$
\frac{\Gamma \vee p, \Delta \vee \neg p}{\Gamma \vee \Delta}
$$

Where Γ, Δ are elementary disjunctions.

Effective interpolation for Resolution

The ternary connective sel (selector) is defined by $\operatorname{sel}(0, x, y)=x$ and $\operatorname{sel}(1, x, y)=y$

- Theorem 1: Let P be a resolution proof of the empty clause from clauses $A_{i}(\bar{p}, \bar{q}), i \in I, B_{j}(\bar{p}, \bar{r}), j \in J$ where $\bar{p}, \bar{q}, \bar{r}$ are disjoint sets of propositional variables. Then there exists a circuit $C(\bar{p})$ such that for every $0-1$ assignment \bar{a} for \bar{p}

$$
C(\bar{a})=0 \Rightarrow A_{i}(\bar{p}, \bar{q}), i \in I
$$

are unsatisfiable, and

$$
C(\bar{a})=1 \Rightarrow B_{j}(\bar{p}, \bar{r}), j \in J
$$

are unsatisfiable; the circuit C is in basis $\{0,1, \vee, \wedge\}$ and its underlying graph is the graph of the proof P.

Theorem 1

Moreover, we can construct in polynomial time a resolution proof of the empty clause from clauses $A_{i}(\bar{p}, \bar{q}), i \in I$ if $C(\bar{a})=0$, respectively $B_{j}(\bar{p}, \bar{r}), j \in J$ if $C(\bar{a})=1$; the length of this proof is less than or equal to the length of P.

Proof:

The transformation of the proof for a given assignment $\bar{p} \rightarrow \bar{a}$

- 1. We replace each clause of P by a subclause so that each clause in the proof is either q-clause or r-clause. We start with initial clause, which are left unchanged and continue along the derivation P.
- Case 1.

$$
\frac{\Gamma \vee p_{k}, \Delta \vee \neg p_{k}}{\Gamma \vee \Delta}
$$

and we have replaced $\Gamma \vee p_{k}$ by Γ^{\prime} and $\Delta \vee \neg p_{k}$ by Δ^{\prime}. Then we replace $\Gamma \vee \Delta$ by Γ^{\prime} if $p_{k} \rightarrow 0$ and by Δ^{\prime} if $p_{k} \rightarrow 1$

Proof:

- Case 2.

$$
\frac{\Gamma \vee q_{k}, \Delta \vee \neg q_{k}}{\Gamma \vee \Delta}
$$

and we have replaced $\Gamma \vee q_{k}$ by Γ^{\prime} and $\Delta \vee \neg q_{k}$ by Δ^{\prime}. If one of $\Gamma^{\prime}, \Delta^{\prime}$ is an r-clause \rightarrow replace $\Gamma \vee \Delta$ by this clause. If both Γ^{\prime} and Δ^{\prime} are q-clauses \rightarrow resolve along q_{k}, or take one without q_{k}.

- Case 3.

$$
\frac{\Gamma \vee r_{k}, \Delta \vee \neg r_{k}}{\Gamma \vee \Delta}
$$

This is the dual case to case 2.

- 2.Delete the clauses which contain a \bar{p} literal with value 1 , and remove all \bar{p} literals from the remaining clauses.
- We got a valid derivation of the final empty clause from the reduced initial clauses. If this final clause is a q-clause, the proof contains a subproof using only the reduced clauses $A_{i}, i \in I$; if an r-clause \Rightarrow $B_{j}, j \in J$

Proof:

- Construction of C:
- The value computed at a gate corresponding to a clause Γ will determine if it is transformed into a $\mathrm{q}(\mathrm{r})$-clause. We assign 0 to q-clauses and 1 to r-clauses.
- Put constant 0 gates on clauses $A_{i}, i \in I$ and constant 1 gates on clauses $B_{j}, j \in J$.

Proof:

- Now consider 3 cases as above.
- Case 1. If the gate on $\Gamma \vee p_{k}$ gets value x and the gate on $\Delta \vee \neg p_{k}$ gets value y, then the gate on $\Gamma \vee \Delta$ should get the value $z=\operatorname{sel}\left(p_{k}, x, y\right)$. We place the sel gate on $\Gamma \vee \Delta$.
- Case 2. If the gate on $\Gamma \vee q_{k}$ gets value x and the gate on $\Delta \vee \neg q_{k}$ gets value y, then the gate on $\Gamma \vee \Delta$ should get the value $z=x \vee y$). We place the \vee gate on $\Gamma \vee \Delta$.
- Case 3. This is dual to case 2.

Theorem 2

Theorem 2:

Suppose moreover that either all variables \bar{p} occur in $A_{i}(\bar{p}, \bar{q}), i \in I$ only positively or all variables \bar{p} occur in \bar{p} occur in $B_{j}(\bar{p}, \bar{r}), j \in J$ only negatively, then one can replace the selector connective sel by a monotone ternary connective.

Proof:

- W. I. o. g. assume that all \bar{p} 's are positive in clauses $A_{i}, i \in I$.
- Hence in case 1 , if Δ^{\prime} is a q-clause, it cannot contain $\neg p_{k}$, hence we can take it for $\Gamma \vee \Delta$, even if $p_{k} \rightarrow 0$.
- Thus we can replace $\operatorname{sel}\left(p_{k}, x, y\right)$ by $\left(p_{k} \vee x\right) \wedge y$ which is monotone and differs from selector exactly on one input ($p_{k}=0, x=1, y=0$) which corresponds to the above situation.

Cutting planes:

- We use propositional variables \bar{p} with the interpretation $0=$ false, $1=$ true.
- A proof line is an inequality

$$
\sum_{k} c_{k} p_{k} \geq C
$$

- Axiom: $0 \leq p_{k} \leq 1$

The rules

- Addition: $\sum_{k} c_{k} p_{k} \geq C$ and $\sum_{k} d_{k} p_{k} \geq D$
$\longrightarrow \sum_{k}\left(c_{k}+d_{k}\right) p_{k} \geq C+D$
- Division: $d>0, d \in \mathbb{Z}, d \mid c_{k}$ and $\sum_{k} c_{k} p_{k} \geq C \longrightarrow \sum_{k} \frac{c_{k}}{d} p_{k} \geq\left\lceil\frac{C}{d}\right\rceil$
- Multiplication: $d>0, d \in \mathbb{Z}$ and $\sum_{k} c_{k} p_{k} \geq C \longrightarrow \sum_{k} d c_{k} p_{k} \geq d C$

Theorem 3

- Theorem 3: Let P be a cutting plane proof of the contradiction $0 \geq 1$ from inequalities $\sum_{k} c_{i, k} p_{k}+\sum_{l} b_{i, l} q_{l} \geq A_{i}, i \in I$, $\sum_{k} c_{j, k}^{\prime} p_{k}+\sum_{m} d_{j, m} q_{m} \geq B_{j}, j \in J$ where $\bar{p}, \bar{q}, \bar{r}$ are disjoint sets of propositional variables. Then there exists a circuit $C(\bar{p})$ such that for every $0-1$ assignment \bar{a} for \bar{p}
$C(\bar{a})=0 \Rightarrow \sum_{k} c_{i, k} p_{k}+\sum_{l} b_{i, l} q_{l} \geq A_{i}, i \in I$ are unsatisfiable, and $C(\bar{a})=1 \Rightarrow \sum_{k} c_{j, k}^{\prime} p_{k}+\sum_{m} d_{j, m} q_{m} \geq B_{j}, j \in J$ are unsatisfiable. The size of the circuit is polynomial in the binary length of the numbers $A_{i}, i \in I, B_{j}, j \in J$ and the number of inequalities in P.

Theorem 3

Moreover, we can construct in polynomial time a cutting plane proof of the contradiction $0 \geq 1$ from inequalities $\sum_{k} c_{i, k} p_{k}+\sum_{l} b_{i, l} q_{l} \geq A_{i}, i \in I$ if $C(\bar{a})=0$, respectively $\sum_{k} c_{j, k}^{\prime} p_{k}+\sum_{m} d_{j, m} q_{m} \geq B_{j}, j \in J$ if $C(\bar{a})=1$; the length of this proof is less than or equal to the length of P.

Proof:

Let P and assignment $\bar{p} \rightarrow \bar{a}$ be given.

- Replace

$$
\sum_{k} e_{k} p_{k}+\sum_{l} f_{l} q_{l}+\sum_{l} f_{l} q_{l} \geq D \longrightarrow \sum_{l} f_{l} q_{l} \geq D_{0}, \sum_{m} g_{m} r_{m} \geq D_{1}
$$

- The pair is at least as strong as the original one

$$
D_{0}+D_{1} \geq D-\sum_{k} e_{k} p_{k}
$$

- $\sum_{k} c_{i, k} p_{k}+\sum_{l} b_{i, l} q_{l} \geq A_{i} \longrightarrow$ the pair
$\sum_{l} b_{i, l} q_{l} \geq A_{i}-\sum_{k} c_{i, k} p_{k}, 0 \geq 0$
- $\sum_{k} c_{j, k}^{\prime} p_{k}+\sum_{m} d_{j, m} r_{m} \geq B_{j} \longrightarrow$ the pair
- The rules are performed in parallel on the 2 inequalities in the pair.

Proof:

- The pair corresponding to the last inequality $0 \geq 1$ is $0 \geq D_{0}, 0 \geq D_{1}$ where $D_{0}+D_{1} \geq 1$
- $\Rightarrow \mathrm{D}_{0} \geq 1 \vee D_{1} \geq 1$
- \Rightarrow We have a proof of contradiction either from
$\sum_{k} c_{i, k} p_{k}+\sum_{I} b_{i, l} q_{I} \geq A_{i}, i \in I$ or from
$\sum_{k} c_{j, k}^{\prime} p_{k}+\sum_{m} d_{j, m} q_{m} \geq B_{j}, j \in J$.
- Each proof P can be transformed in proof P^{\prime} wich is at most polynomially longer and all the coefficients have polynomially bounded binary length (Clote and Buss).
- All D_{i} have polynomially bounded binary length \Rightarrow the above procedure can be done in polynomial time in the binary length of $A_{i}, i \in I, B_{j}, j \in J$ and the number of inequalities.
- We use the transformation of polynomial time algorithms into sequences of polynomial size circuits.

The End.

