Pseudorandom generators hard for propositional proof systems

Markus Latte

April 3 and 4, 2009
JASS09
Санкт Петербург

Pseudorandom Generators in Complexity Theory

Informally, a pseudorandom generator is a (computable) function

$$
G_{n}:\{0,1\}^{n} \rightarrow\{0,1\}^{m} \quad(n<m)
$$

which stretches a short random string x to a long random string $G_{n}(\mathbf{x})$ such that a deterministic polytime algorithm f cannot distinguish them, i.e. the difference between

$$
\begin{aligned}
& \underset{\mathbf{x} \in\{0,1\}^{n}}{\operatorname{Pr}_{\mathbf{y}}}\left[f\left(G_{n}(\mathbf{x})\right)=1\right] \quad \text { and } \\
& \mathbf{y} \in\{0,1\}^{m}
\end{aligned}
$$

is small.

Pseudorandom Generators in Complexity Theory

Informally, a pseudorandom generator is a (computable) function

$$
G_{n}:\{0,1\}^{n} \rightarrow\{0,1\}^{m} \quad(n<m)
$$

which stretches a short random string \mathbf{x} to a long random string $G_{n}(\mathbf{x})$ such that a deterministic polytime algorithm f cannot distinguish them, i.e. the difference between

$$
\begin{aligned}
& \underset{\mathbf{x} \in\{0,1\}^{n}}{\operatorname{Pr}_{\mathbf{y}}}\left[f\left(G_{n}(\mathbf{x})\right)=1\right] \quad \text { and } \\
& \mathbf{y} \in\{0,1\}^{m}
\end{aligned}
$$

is small.
Hence, a random generator for size m can be replaced by a random generator for size n together with G_{n} without affecting f essentially.

Pseudorandom Generators in Complexity Theory

Informally, a pseudorandom generator is a (computable) function

$$
G_{n}:\{0,1\}^{n} \rightarrow\{0,1\}^{m} \quad(n<m)
$$

which stretches a short random string \mathbf{x} to a long random string $G_{n}(\mathbf{x})$ such that a deterministic polytime algorithm f cannot distinguish them, i.e. the difference between

$$
\begin{aligned}
& \underset{\mathbf{x} \in\{0,1\}^{n}}{\operatorname{Pr}_{\mathbf{y}}}\left[f\left(G_{n}(\mathbf{x})\right)=1\right] \quad \text { and } \\
& \mathbf{y} \in\{0,1\}^{m}
\end{aligned}
$$

is small.
Hence, a random generator for size m can be replaced by a random generator for size n together with G_{n} without affecting f essentially.

Pseudorandom Generators in Proof Complexity

Definition

A generator is a family $\left(G_{n}\right)_{n \in \mathbb{N}}$ such that
$G_{n}:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$ for some $m>n$.
Definition
A generator $\left(G_{n}:\{0,1\}^{n} \rightarrow\{0,1\}^{m}\right)_{n \in \mathbb{N}}$ is hard for a propositional proof system P iff for all $n \in \mathbb{N}$ and for any string $b \in\{0,1\}^{m} \backslash \operatorname{Image}\left(G_{n}\right)$ there is no efficient P-proof of the statement $\left\ulcorner G_{n}\left(x_{1}, \ldots, x_{n}\right) \neq b\right\urcorner$.
$\left(x_{1}, \ldots, x_{n}\right.$ are propositional variables)

Purpose

To establish a lower bound, it suffices to ...

- ... find a generator G_{n}.
- ... find an encoding of $\left\ulcorner G_{n}\left(x_{1}, \ldots, x_{n}\right) \neq b\right\urcorner$.

Table of contents

Nisan-Wigderson Generators

Width Lower Bound for Resolution

Existence of Expander

Size Lower Bounds for Resolution

Nisan-Wigderson Generator

Let $A=\left(a_{i, j}\right)$ be matrix of dimension $m \times n$ over $\{0,1\}$.
For any row number $i \in[m]$ let

$$
\begin{aligned}
J_{i}(A) & :=\left\{j \in[n] \mid a_{i, j}=1\right\} \text { and } \\
X_{i}(A) & :=\left\{x_{j} \mid j \in J_{i}(A)\right\} .
\end{aligned}
$$

Nisan-Wigderson Generator

Let $A=\left(a_{i, j}\right)$ be matrix of dimension $m \times n$ over $\{0,1\}$.
For any row number $i \in[m]$ let

$$
\begin{aligned}
J_{i}(A) & :=\left\{j \in[n] \mid a_{i, j}=1\right\} \text { and } \\
X_{i}(A) & :=\left\{x_{j} \mid j \in J_{i}(A)\right\} .
\end{aligned}
$$

Let $g_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, g_{m}\left(x_{1}, \ldots, x_{n}\right)$ be boolean functions such that $\operatorname{Vars}\left(g_{i}\right) \subseteq X_{i}(A)$ for all $i \in[m]$.

Nisan-Wigderson Generator

Let $A=\left(a_{i, j}\right)$ be matrix of dimension $m \times n$ over $\{0,1\}$.
For any row number $i \in[m]$ let

$$
\begin{aligned}
J_{i}(A) & :=\left\{j \in[n] \mid a_{i, j}=1\right\} \text { and } \\
X_{i}(A) & :=\left\{x_{j} \mid j \in J_{i}(A)\right\} .
\end{aligned}
$$

Let $g_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, g_{m}\left(x_{1}, \ldots, x_{n}\right)$ be boolean functions such that $\operatorname{Vars}\left(g_{i}\right) \subseteq X_{i}(A)$ for all $i \in[m]$.
We are interested in the system of boolean equations:

$$
\begin{gathered}
g_{1}\left(x_{1}, \ldots, x_{n}\right)=1 \\
\vdots \\
g_{m}\left(x_{1}, \ldots, x_{n}\right)=1
\end{gathered}
$$

Divide and Conquer

Using Nisan-Wigderson generators, the construction of a hard generator can be decomposed into four aspects:

- combinatorial properties of matrix A,
- hardness conditions for the base functions \vec{g},
- encoding of the equation system $\vec{g}(\vec{x})=\overrightarrow{1}$, and
- a lower bound.

Combinatorial Properties of Matrix A

For a set of rows $I \subseteq[m]$, its boundary is the set

$$
\partial_{A}(I):=\left\{j \in[n] \mid \exists!i \in I . a_{i, j}=1\right\} .
$$

Remark: $\partial_{A}(I)$ defines a function $\partial_{A}(I) \rightarrow I$.
A is an (r, s, c)-expander iff

- for all $i \in[m]:\left|J_{i}(A)\right| \leq s$, and
- for all $I \subseteq[m]:|I| \leq r$ implies $\left|\partial_{A}(I)\right| \geq c|I|$.

Encoding of A and \vec{g}

There are many possible encodings. All share one common property.

Informal Equation on Encodings
Complexity of a proof for $\ulcorner\vec{g}(\vec{x}) \neq \overrightarrow{1}\urcorner=$
Complexity of the functions $\vec{g}(\vec{x})-$
Complexity of the encoding

Functional Encoding of A and \vec{g}

For every Boolean function f satisfying $\operatorname{Vars}(f) \subseteq X_{i}(A)$ for some $i \in[m]$, an extension variable y_{f} is presumed, living in $\operatorname{Vars}(A)$.

Functional Encoding of A and \vec{g}

For every Boolean function f satisfying $\operatorname{Vars}(f) \subseteq X_{i}(A)$ for some $i \in[m]$, an extension variable y_{f} is presumed, living in $\operatorname{Vars}(A)$.

The functional encoding $\tau(A, \vec{g})$ is the CNF over the variables $\operatorname{Vars}(A)$ consisting of clauses

$$
y_{f_{1}}^{\varepsilon_{1}} \vee \ldots \vee y_{f_{w}}^{\varepsilon_{w}}
$$

for which a row $i \in[m]$ exists such that

- $\operatorname{Vars}\left(f_{1}\right) \cup \ldots \cup \operatorname{Vars}\left(f_{w}\right) \subseteq X_{i}(A)$, and
- $g_{i} \models f_{1}^{\varepsilon_{1}} \vee \ldots \vee f_{w}^{\varepsilon_{w}}$.

Lemma
The system $\vec{g}(\vec{x})=\overrightarrow{1}$ is satisfiable iff $\tau(A, \vec{g})$ is satisfiable.

Examples of Clauses Generated by One Row

- $y_{g_{i}}$

Since $f(x, \vec{x}) \equiv(\neg x \wedge f(0, \vec{x})) \vee(x \wedge f(1, \vec{x}))$ for any boolean function f (Shannon-expansion):

- $y_{\neg f(x, \vec{x})} \vee y_{x \wedge f(0, \vec{x})} \vee y_{x \wedge f(1, \vec{x})}$
- $y_{\neg(\neg x \wedge f(0, \vec{x}))} \vee y_{f(x, \vec{x})}$
- $y_{\neg(x \wedge f(1, \vec{x}))} \vee y_{f(x, \vec{x})}$

Size of Functional Encoding

Lemma

If $\tau(A, \vec{g})$ is unsatisfiable then it has an unsatisfiable sub-CNF of size $\mathcal{O}\left(2^{s} m\right)$ provided that $\left|J_{i}(A)\right| \leq s$ for all $i \in[m]$ for some s.

Width Lower Bound for Resolution

Definition
A boolean function f is ℓ-robust if every restriction ρ holds:
if $\left.f\right|_{\rho}$ is constant then $|\rho| \geq \ell$.

Width Lower Bound for Resolution

Definition

A boolean function f is ℓ-robust if every restriction ρ holds:
if $\left.f\right|_{\rho}$ is constant then $|\rho| \geq \ell$.
Theorem
Let A be an (r, s, c)-expander matrix of size $m \times n$ and let g_{1}, \ldots, g_{m} be ℓ-robust functions such that $\operatorname{Vars}\left(g_{i}\right) \subseteq X_{i}(A)$. Then every resolution refutation of $\tau(A, \vec{g})$ must have width at least

$$
\frac{r(c+\ell-s)}{2 \ell}
$$

provided that a certain restriction holds on c, ℓ and s.
Later on the theorem is used with $c=\frac{3}{4} s$ and $\ell=\frac{5}{8} s$, say.
Thus the width lower bound is $\approx r$.

Proof of the Width Lower Bound for Resolution

The proof follows the method developed by Ben-Sasson and Wigderson:
Define a measure μ on clauses such that

- $\mu(C) \leq \mu\left(C_{0}\right)+\mu\left(C_{1}\right)$ for any resolution step

$$
\frac{C_{0} \quad C_{1}}{C}
$$

- $\mu(C)=1$ for any axiom C, and
- $\mu(\perp)>r$.

Proof of the Width Lower Bound for Resolution

The proof follows the method developed by Ben-Sasson and Wigderson:
Define a measure μ on clauses such that

- $\mu(C) \leq \mu\left(C_{0}\right)+\mu\left(C_{1}\right)$ for any resolution step

$$
\frac{C_{0} \quad C_{1}}{C}
$$

- $\mu(C)=1$ for any axiom C, and
- $\mu(\perp)>r$.

Hence there is a clause C with $r / 2<\mu(C) \leq r$.

Proof of the Width Lower Bound for Resolution

The proof follows the method developed by Ben-Sasson and Wigderson:
Define a measure μ on clauses such that

- $\mu(C) \leq \mu\left(C_{0}\right)+\mu\left(C_{1}\right)$ for any resolution step

$$
\frac{C_{0} \quad C_{1}}{C}
$$

- $\mu(C)=1$ for any axiom C, and
- $\mu(\perp)>r$.

Hence there is a clause C with $r / 2<\mu(C) \leq r$.
Finally, it suffices that the clause is wide.

Proof of the Width Lower Bound for Resolution

Definition

The measure $\mu(C)$ for a clause C is the size of a minimal $I \subseteq[m]$ such that

- $\forall y_{f}^{\varepsilon} \in C \exists i \in I . \operatorname{Vars}(f) \subseteq X_{i}(A)$, and
(μ-cover)
- $\left\{g_{i} \mid i \in I\right\} \models\|C\|$.
(μ-sem)

Proof of the Width Lower Bound for Resolution

Definition

The measure $\mu(C)$ for a clause C is the size of a minimal $I \subseteq[m]$ such that

- $\forall y_{f}^{\varepsilon} \in C \exists i \in I . \operatorname{Vars}(f) \subseteq X_{i}(A)$, and
- $\left\{g_{i} \mid i \in I\right\} \models\|C\|$.

Lemma
The measure μ exhibits the first two demanded properties.

Proof of the Width Lower Bound for Resolution

Lemma

- If $r / 2<\mu(C) \leq r$ then the width of C is at least $\frac{r(c+\ell-s)}{2 \ell}$.
- $\mu(\perp)>r$ provided that $c+\ell \geq s+1$.

Claim: for all $i_{1} \in I_{1}:\left|J_{i_{1}} \cap \partial_{A}(I)\right| \leq s-\ell$ Proof sketch:

- $\left\{g_{i} \mid i \in I \backslash\left\{i_{1}\right\}\right\} \not \vDash\|C\|$.
- α witnessing assignment.
- Define a partial restriction ρ by

$$
\rho\left(x_{j}\right):= \begin{cases}\alpha\left(x_{j}\right) & \text { if } j \notin J_{i_{1}} \cap \partial_{A}(I) \\ \text { undefined } & \text { otherwise }\end{cases}
$$

- ρ is total for $\operatorname{Vars}\left(g_{i}\right)$ for $i \neq i_{1}$.
- ρ is total on $\operatorname{Vars}(\|C\|)$ since $i_{1} \notin I_{0}$
- $\left.g_{i}\right|_{\rho}=1$ for $i \neq i_{1}$, and $\left.\|C\|\right|_{\rho}=0$
- By (μ-sem): $\left.g_{i 1}\right|_{\rho}=0$.
- Let ρ_{1} be ρ restricted to the domain of $g_{i_{1}}$, i.e. to $J_{i_{1}}(A)$.
- Since ρ undef. on $J_{i_{1}} \cap \partial_{A}(I)$: domain of ρ_{1} is $J_{i_{1}} \backslash \partial_{A}(I)$.
- As g_{i} is ℓ-robust: $\left|J_{i_{1}} \backslash \partial_{A}(I)\right| \geq \ell$

Proof (Auxiliary estimations).

- Since A is an (r, s, c)-expander:

$$
\begin{aligned}
c|I| & \leq\left|\partial_{A}(I)\right| \\
& \leq s\left|I_{0}\right|+(s-\ell)\left|I_{1}\right| \\
& =(s-\ell)|I|+\ell\left|I_{0}\right| \\
& \leq(s-\ell)|I|+\ell \cdot \text { width }(C)
\end{aligned}
$$

- Using $|I|>r / 2$:

$$
\operatorname{width}(C) \geq \frac{(c+\ell-s)|I|}{\ell}>\frac{(c+\ell-s) r}{2 \ell}
$$

From Width Lower Bound to Size Lower Bound

Theorem

Let τ be an unsatisfiable CNF in n variable and clauses the width of which is at most w. Then every refutation of τ of size S has a clause of width $w+\mathcal{O}(\sqrt{n \log S})$.

Proof.
See "Short proofs are narrow - resolution made simple" by Ben-Sasson and Wigderson.

Size Lower Bound for Resolution

Corollary

Let $\epsilon>0$ be an arbitrary constant, let A be a $(r, s, \epsilon s)$-expander of size $m \times n$, and let g_{1}, \ldots, g_{m} be $(1-\epsilon / 2)$ s-robust functions such that $\operatorname{Vars}\left(g_{i}\right) \subseteq X_{i}(A)$.
Then every resolution refutation of $\tau(A, \vec{g})$ has size at least

$$
\exp \left(\Omega\left(\frac{r^{2}}{m 2^{2^{s}}}\right)\right) / 2^{s}
$$

Addendum to the proof: Size Lower Bound for Resolution

Example for $y_{f_{1}} \vee y_{f_{2}} \vee y_{f_{3}} \vee y_{f_{4}}$
$y_{f_{1}} \vee y_{f_{2} \vee f_{3} \vee f_{4}}$

$$
\bar{y}_{f_{2} \vee f_{3} \vee f_{4} \vee f_{2} \vee y_{f_{3} \vee f_{4}} \quad f_{2} \vee f_{3} \vee f_{4} \rightarrow f_{2} \vee\left(f_{3} \vee f_{4}\right), ~}^{\text {l }}
$$

$$
\bar{y}_{f_{3} \vee f_{4}} \vee y_{f_{3}} \vee y_{f_{4}} \quad \text { similar }
$$

$y_{f_{1}} \vee \quad y_{f_{2}} \vee \quad y_{f_{3}} \vee y_{f_{4}}$

Existence of Expanders

Theorem
For any parameters s and n there exists an ($r, s, \frac{3}{4} s$)-expander of size $n^{2} \times n$ where

$$
r=\frac{\epsilon n}{s} n^{-\frac{1}{s \epsilon}}
$$

for some constant ϵ.

Addendum to the proof: Existence of Expanders

- To show:

$$
\begin{aligned}
\operatorname{Pr}\left[A \text { is not an }\left(r, s, \frac{3}{4} s\right) \text {-expander }\right] & \leq \sum_{\ell=1}^{r}\binom{n^{2}}{\ell} p_{\ell} \\
& \leq \sum_{\ell=1}^{r} n^{2 \ell} p_{\ell}
\end{aligned}
$$

where p_{ℓ} is the probability that any given ℓ rows violate the second expansion property.

- To estimate p_{ℓ}, fix a set I of rows such that $\ell=|I| \leq r$.
- each column $j \in \bigcup_{i \in I} J_{i}(A) \backslash \partial_{A}(I)$ "belongs" to at least two rows.
- Since $\partial_{A}(I) \subseteq \bigcup_{i \in I} J_{i}(A)$:

$$
\left|\bigcup_{i \in I} J_{i}(A)\right| \leq\left|\partial_{A}(I)\right|+\frac{1}{2}\left(\sum_{i \in I}\left|J_{i}(A)\right|-\left|\partial_{A}(I)\right|\right) .
$$

Addendum to the proof: Existence of Expanders (Cont.)

- So, the violation of the the second expansion property, i.e. $\left|\partial_{A}(I)\right|<\frac{3}{4} s \ell$, implies $\left|\bigcup_{i \in I} J_{i}(A)\right| \leq \frac{7}{8} s \ell$.
- $p_{\ell} \leq \operatorname{Pr}\left[\left|\bigcup_{i \in I} J_{i}(A)\right| \leq \frac{7}{8} s \ell\right]$.
- See picture on the black board.
- Thus:

$$
\begin{aligned}
\operatorname{Pr}\left[\left|\bigcup_{i \in I} J_{i}(A)\right| \leq 7 / 8 s \ell\right] & \leq \frac{\binom{s \ell}{s \ell / 8} \cdot n^{7 / 8 s \ell} \cdot(s \ell)^{s \ell / 8}}{n^{s \ell}} \\
& \leq\binom{ s \ell}{s \ell / 8}\left(\frac{s \ell}{n}\right)^{s \ell / 8} \\
& \leq\left(\frac{2^{8} \cdot s \ell}{n}\right)^{s \ell / 8}
\end{aligned}
$$

Addendum to the proof: Existence of Expanders (Cont.) ${ }^{2}$

- Putting all together:

$$
\begin{aligned}
\operatorname{Pr}[A \text { is not an }(r, s, c) \text {-expander }] & \leq \sum_{\ell=1}^{r} n^{2 \ell}\left(\frac{2^{8} \cdot s \ell}{n}\right)^{s \ell / 8} \\
& \leq \sum_{\ell=1}^{r} n^{2 \ell}\left(\frac{2^{8} \cdot s r}{n}\right)^{s \ell / 8}
\end{aligned}
$$

- This geometric progression is bounded by $\frac{1}{2}$ if

$$
n^{2}\left(\frac{2^{8} \cdot s r}{n}\right)^{s / 8}<\frac{1}{2}
$$

- This inequality is satisfied for

$$
r=\frac{\epsilon}{s} n^{-\frac{1}{s \epsilon}}
$$

for $\epsilon=2^{-16}$.

Size Lower Bounds for Resolution

Definition

Let A be a matrix over $\{0,1\}$ of dimension $m \times n$. A sequence of functions g_{1}, \ldots, g_{m} is good for A iff for each $i \in[m]$ the following holds.

- g_{i} is $\frac{5}{16} \log \log n$-robust and
- $\operatorname{Vars}\left(g_{i}\right) \subseteq X_{i}(A)$.

Size Lower Bounds for Resolution

Definition

Let A be a matrix over $\{0,1\}$ of dimension $m \times n$. A sequence of functions g_{1}, \ldots, g_{m} is good for A iff for each $i \in[m]$ the following holds.

- g_{i} is $\frac{5}{16} \log \log n$-robust and
- $\operatorname{Vars}\left(g_{i}\right) \subseteq X_{i}(A)$.

Corollary (First version)

There exists a family of $m \times n$ matrices, $A^{(m, n)}$, such that for any sequence of functions \vec{g} good for $A^{(m, n)}$ and for any resolution refutation π of $\tau\left(A^{(m, n)}, \vec{g}\right)$, the size of π is at least

$$
\exp \left(\frac{n^{2-\mathcal{O}(1 / \log \log n)}}{m}\right) / \sqrt{\log (n)}
$$

Proof.

- With loss of generality, $m \leq n^{2}$.
- Apply the expander construction with $s=\frac{1}{2} \log \log n$ to get an ($r, s, \frac{3}{4} s$)-expander.
- Cross out all rows but m rows arbitrarily. The resulting matrix is still an $\left(r, s, \frac{3}{4} s\right)$-expander.
- Recall size lower bounds for $\tau(A, \vec{g})$ resolution refutations:

$$
\exp \left(\Omega\left(\frac{r^{2}}{m \cdot 2^{2^{s}}}\right)\right) / 2^{s}
$$

Proof (cont.)

Using $2^{2^{s}}=2^{\sqrt{\log n}} \leq n^{1 / \log \log n}$ and $1 / s \geq n^{-1 / s}$ the exponent gets:

$$
\begin{aligned}
\frac{r^{2}}{m \cdot 2^{2^{s}}} & \geq \frac{r^{2}}{m \cdot n^{1 / \log \log n}} \\
& =\frac{\epsilon^{2} n^{2} n^{-\frac{2}{s \epsilon}}}{s^{2} m n^{1 / \log \log n}} \\
& =\frac{\epsilon^{2} n^{2} n^{-\left(\frac{4}{\epsilon}+1\right) / \log \log n}}{s^{2} m} \\
& \geq \frac{\epsilon^{2} n^{2} n^{-\left(\frac{4}{\epsilon}+5\right) / \log \log n}}{m} \\
& =\epsilon^{2} \frac{n^{2-\mathcal{O}(1 / \log \log n)}}{m}
\end{aligned}
$$

(expand r)
(expand s)
(sec. inequal.)

Corollary (First version-just a reminder)

There exists a family of $m \times n$ matrices, $A^{(m, n)}$, such that for any sequence of functions \vec{g} good for $A^{(m, n)}$ and for any resolution refutation of $\tau\left(A^{(m, n)}, \vec{g}\right)$ has a size at least

$$
\exp \left(\frac{n^{2-\mathcal{O}(1 / \log \log n)}}{m}\right) / \sqrt{\log (n)} .
$$

Corollary (First version-just a reminder)

There exists a family of $m \times n$ matrices, $A^{(m, n)}$, such that for any sequence of functions \vec{g} good for $A^{(m, n)}$ and for any resolution refutation of $\tau\left(A^{(m, n)}, \vec{g}\right)$ has a size at least

$$
\exp \left(\frac{n^{2-\mathcal{O}(1 / \log \log n)}}{m}\right) / \sqrt{\log (n)}
$$

Corollary (Second version)

There exists a family of $m \times n$ matrices, $A^{(m, n)}$, such that for any sequence of functions \vec{g} good for $A^{(m, n)}$:

- $\tau\left(A^{(m, n)}, \vec{g} \oplus \vec{b}\right)$ is unsatisfiable for some $\vec{b} \in\{0,1\}^{m}$ if $m>n$, and
- for any $\vec{b} \in\{0,1\}^{m}$, any resolution refutation of $\tau\left(A^{(m, n)}, \vec{g} \oplus \vec{b}\right)$ has a size at least

$$
\exp \left(\frac{n^{2-\mathcal{O}(1 / \log \log n)}}{m}\right) / \sqrt{\log (n)}
$$

Proof.

- For any $\vec{b} \in\{0,1\}^{m}$ the following is true.

$$
\tau\left(A^{(m, n)}, \vec{g} \oplus \vec{b}\right) \text { unsatisfiable }
$$

$\Longleftrightarrow \vec{g}(\vec{x}) \oplus \vec{b}=1$ is unsatisfiable wrt. \vec{x}
$\Longleftrightarrow \vec{g}(\vec{x})=\neg \vec{b}$ is unsatisfiable wrt. \vec{x}
$\Longleftrightarrow \vec{g}(\vec{x}) \neq \neg \vec{b}$ for all $\vec{x} \in\{0,1\}^{n}$
$\Longleftrightarrow \quad \neg \vec{b} \notin$ Image (\vec{g})
Indeed, $\vec{g}:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$ is not surjective, since $m>n$.

- Note that the robustness is invariant under negation.

Lemma
Let $0<\epsilon<1$. For any sufficiently large k, any random function over k variables is ϵk-robust which a probability $\geq \frac{1}{2}$.

Lemma

Let $0<\epsilon<1$. For any sufficiently large k, any random function over k variables is ϵk-robust which a probability $\geq \frac{1}{2}$.

Proof.
A function f is not ϵk-robust iff there exists a restriction ρ such that $|\rho|<\epsilon k$ and $\left.f\right|_{\rho}$ is constant. In particular, there exists a restriction ρ such that $|\rho|=\epsilon k$ and $\left.f\right|_{\rho}$ is constant. Thus its truth table contains a "block" of $|\rho|$ columns and $2^{k-|\rho|}$ rows such that the result values are constant.

Proof (cont.).

$$
\begin{aligned}
\operatorname{Pr}[\mathrm{f} \text { is not } \epsilon k \text {-robust }] & \leq \frac{\binom{k}{\epsilon k} 2^{\epsilon k} 2^{2^{k}-2^{k-\epsilon k}+1}}{2^{2^{k}}} \\
& =\underbrace{\binom{k}{\epsilon k}}_{\leq 2^{k}} 2^{\epsilon k-2^{(1-\epsilon) k}+1} \\
& \leq 2^{(1+\epsilon) k-2^{(1-\epsilon) k}+1} \\
& ! \\
< & 2^{-1}
\end{aligned}
$$

For the last inequality, $(1+\epsilon) k+2<2^{(1-\epsilon) k}$ suffices. For sufficiently large $k s$, this is true.

Definition

Let A be a matrix over $\{0,1\}$ of dimension $m \times n$.
The characteristic function, $\chi_{i}^{\oplus}(A)$, of the row $i \in[m]$ is $\vec{x} \mapsto \oplus X_{i}(A)$.

Definition

For any $m \times n$ matrix A and $b \in\{0,1\}^{m}$:
$\tau_{\chi}(A, \vec{b}):=\tau\left(A, \overrightarrow{\chi^{\oplus}(A)} \oplus \vec{b}\right)$

Corollary (Third version)

There exists a family of $m \times n$ matrices, $A^{(m, n)}$, such that:

- $\tau_{\chi}\left(A^{(m, n)}, \vec{b}\right)$ is unsatisfiable for some $\vec{b} \in\{0,1\}^{m}$ if $m>n$, and
- for any $\vec{b} \in\{0,1\}^{m}$, any resolution refutation of $\tau_{\chi}\left(A^{(m, n)}, \vec{b}\right)$ has a size at least

$$
\exp \left(\frac{n^{2-\mathcal{O}(1 / \log \log n)}}{m}\right) / \sqrt{\log (n)}
$$

Proof (as patch).

Its remains to show that the functions $\chi_{i}^{\oplus}(A)$ are good for A. During the construction of the expander, the 1 s in each rows are chosen randomly. The cancellation of its rows to get A is at random. Hence any $\chi_{i}^{\oplus}(A)$ is a random function on at most $1 / 2 \log \log n$ variables. With high probability, these are $5 / 8 \cdot 1 / 2 \log \log n$ robust, therefore also good for A.
Remark: This is a superpolynominal lower bound.

Conclusion - Open Problems

- Improve the I/O-ration of the constructed pseudorandom generators to quadratic.
- Improve the size lower bound for functional encodings, in particular get rid of the $2^{s^{5}}$ denominator.

Conclusion - Road Not Taken

- Other encodings are possible such as the circuit encoding and the linear encoding.
- The method of pseudorandom generators admits degree and size lower bounds for the Polynomial Calculus and the Polynomial Calculus with Resolution.

Conclusion - Lesson Learned

- The technique of pseudorandom generator can separate the task of proving lower bounds into -more or lessindependent subtasks.
- Other approaches like Tseitin tautologies fit into this framework.
- Concepts used in complexity theory might be also used in proof complexity.

