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Pseudorandom Generators in Complexity Theory

Informally, a pseudorandom generator is a (computable) function

Gn : {0, 1}n → {0, 1}m (n < m)

which stretches a short random string x to a long random string
Gn(x) such that a deterministic polytime algorithm f cannot
distinguish them, i. e. the difference between

Pr
x∈{0,1}n

[f (Gn(x)) = 1] and

Pr
y∈{0,1}m

[f (y) = 1]

is small.

Hence, a random generator for size m can be replaced by a random
generator for size n together with Gn without affecting f essentially.
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Pseudorandom Generators in Proof Complexity

Definition
A generator is a family (Gn)n∈N such that
Gn : {0, 1}n → {0, 1}m for some m > n.

Definition
A generator (Gn : {0, 1}n → {0, 1}m)n∈N is hard for a propositional
proof system P iff
for all n ∈ N and for any string b ∈ {0, 1}m \ Image(Gn)
there is no efficient P-proof of the statement pGn(x1, . . . , xn) 6= bq.

(x1, . . . , xn are propositional variables)



Purpose

To establish a lower bound, it suffices to . . .

I . . . find a generator Gn.

I . . . find an encoding of pGn(x1, . . . , xn) 6= bq.
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Nisan-Wigderson Generator

Let A = (ai ,j) be matrix of dimension m × n over {0, 1}.
For any row number i ∈ [m] let

Ji (A) := {j ∈ [n] | ai ,j = 1} and

Xi (A) := {xj | j ∈ Ji (A)}.

Let g1(x1, . . . , xn), . . . , gm(x1, . . . , xn) be boolean functions such
that Vars(gi ) ⊆ Xi (A) for all i ∈ [m].

We are interested in the system of boolean equations:

g1(x1, . . . , xn) = 1

...

gm(x1, . . . , xn) = 1
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Divide and Conquer

Using Nisan-Wigderson generators, the construction of a hard
generator can be decomposed into four aspects:

I combinatorial properties of matrix A,

I hardness conditions for the base functions ~g ,

I encoding of the equation system ~g(~x) = ~1, and

I a lower bound.



Combinatorial Properties of Matrix A

For a set of rows I ⊆ [m], its boundary is the set

∂A(I ) := {j ∈ [n] | ∃!i ∈ I .ai ,j = 1}.

Remark: ∂A(I ) defines a function ∂A(I )→ I .

A is an (r , s, c)-expander iff

I for all i ∈ [m]: |Ji (A)| ≤ s, and

I for all I ⊆ [m]: |I | ≤ r implies |∂A(I )| ≥ c |I |.



Encoding of A and ~g

There are many possible encodings. All share one common
property.

Informal Equation on Encodings

Complexity of a proof for p~g(~x) 6= ~1q =
Complexity of the functions ~g(~x) –
Complexity of the encoding p·q



Functional Encoding of A and ~g

For every Boolean function f satisfying Vars(f ) ⊆ Xi (A) for some
i ∈ [m], an extension variable yf is presumed, living in Vars(A).

The functional encoding τ(A, ~g) is the CNF over the variables
Vars(A) consisting of clauses

y ε1f1
∨ . . . ∨ y εwfw

for which a row i ∈ [m] exists such that

I Vars(f1) ∪ . . . ∪ Vars(fw ) ⊆ Xi (A), and

I gi |= f ε11 ∨ . . . ∨ f εww .

Lemma
The system ~g(~x) = ~1 is satisfiable iff τ(A, ~g) is satisfiable.
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Examples of Clauses Generated by One Row

I ygi

Since f (x ,~x) ≡
(
¬x ∧ f (0,~x)

)
∨
(

x ∧ f (1,~x)
)

for any boolean

function f (Shannon-expansion):

I y¬f (x ,~x) ∨ yx∧f (0,~x) ∨ yx∧f (1,~x)

I y¬(¬x∧f (0,~x)) ∨ yf (x ,~x)

I y¬(x∧f (1,~x)) ∨ yf (x ,~x)



Size of Functional Encoding

Lemma
If τ(A, ~g) is unsatisfiable then it has an unsatisfiable sub-CNF of
size O(2sm) provided that |Ji (A)| ≤ s for all i ∈ [m] for some s.



Width Lower Bound for Resolution

Definition
A boolean function f is `-robust if every restriction ρ holds:
if f |ρ is constant then |ρ| ≥ `.

Theorem
Let A be an (r , s, c)-expander matrix of size m × n and
let g1, . . . , gm be `-robust functions such that Vars(gi ) ⊆ Xi (A).
Then every resolution refutation of τ(A, ~g) must have width at
least

r(c + `− s)

2`

provided that a certain restriction holds on c, ` and s.

Later on the theorem is used with c = 3
4s and ` = 5

8s, say.
Thus the width lower bound is ≈ r .
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Proof of the Width Lower Bound for Resolution

The proof follows the method developed by Ben-Sasson and
Wigderson:

Define a measure µ on clauses such that

I µ(C ) ≤ µ(C0) + µ(C1) for any resolution step

C0 C1

C
,

I µ(C ) = 1 for any axiom C , and

I µ(⊥) > r .

Hence there is a clause C with r/2 < µ(C ) ≤ r .

Finally, it suffices that the clause is wide.
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Proof of the Width Lower Bound for Resolution

Definition
The measure µ(C ) for a clause C is the size of a minimal I ⊆ [m]
such that

I ∀y εf ∈ C ∃i ∈ I . Vars(f ) ⊆ Xi (A), and (µ-cover)

I {gi | i ∈ I} |= ‖C‖. (µ-sem)

Lemma
The measure µ exhibits the first two demanded properties.
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Proof of the Width Lower Bound for Resolution

Lemma

I If r/2 < µ(C ) ≤ r then the width of C is at least r(c+`−s)
2` .

I µ(⊥) > r provided that c + ` ≥ s + 1.



Claim: for all i1 ∈ I1: |Ji1 ∩ ∂A(I )| ≤ s − `
Proof sketch:

I {gi | i ∈ I \ {i1}} 6|= ‖C‖.
I α witnessing assignment.

I Define a partial restriction ρ by

ρ(xj) :=

{
α(xj) if j /∈ Ji1 ∩ ∂A(I )

undefined otherwise

I ρ is total for Vars(gi ) for i 6= i1.

I ρ is total on Vars(‖C‖) since i1 /∈ I0
I gi |ρ = 1 for i 6= i1, and ‖C‖ |ρ = 0

I By (µ-sem): gi1 |ρ = 0.

I Let ρ1 be ρ restricted to the domain of gi1 , i.e. to Ji1(A).

I Since ρ undef. on Ji1 ∩ ∂A(I ): domain of ρ1 is Ji1 \ ∂A(I ).

I As gi is `-robust: |Ji1 \ ∂A(I )| ≥ `



Proof (Auxiliary estimations).

I Since A is an (r , s, c)-expander:

c |I | ≤ |∂A(I )|
≤ s |I0| + (s − `) |I1|
= (s − `) |I | + ` |I0|
≤ (s − `) |I | + ` · width(C )

I Using |I | > r/2:

width(C ) ≥ (c + `− s) |I |
`

>
(c + `− s)r

2`



From Width Lower Bound to Size Lower Bound

Theorem
Let τ be an unsatisfiable CNF in n variable and clauses the width
of which is at most w. Then every refutation of τ of size S has a
clause of width w +O(

√
n log S).

Proof.
See ”Short proofs are narrow – resolution made simple” by
Ben-Sasson and Wigderson.



Size Lower Bound for Resolution

Corollary

Let ε > 0 be an arbitrary constant,
let A be a (r , s, εs)-expander of size m × n, and
let g1, . . . , gm be (1− ε/2)s-robust functions such that
Vars(gi ) ⊆ Xi (A).

Then every resolution refutation of τ(A, ~g) has size at least

exp

(
Ω

(
r2

m 22s

))
/2s .



Addendum to the proof: Size Lower Bound for Resolution

Example for yf1
∨ yf2

∨ yf3
∨ yf4

yf1
∨ yf2∨f3∨f4

y f2∨f3∨f4 ∨ f2 ∨ yf3∨f4
f2 ∨ f3 ∨ f4 → f2 ∨ (f3 ∨ f4)

y f3∨f4 ∨ yf3
∨ yf4

similar

yf1
∨ yf2

∨ yf3
∨ yf4



Existence of Expanders

Theorem
For any parameters s and n there exists an (r , s, 3

4s)-expander of
size n2 × n where

r =
εn

s
n−

1
sε

for some constant ε.



Addendum to the proof: Existence of Expanders

I To show:

Pr
[
A is not an (r , s, 3

4s)-expander
]
≤

r∑
`=1

(
n2

`

)
p`

≤
r∑
`=1

n2`p`

where p` is the probability that any given ` rows violate the
second expansion property.

I To estimate p`, fix a set I of rows such that ` = |I | ≤ r .

I each column j ∈
⋃

i∈I Ji (A) \ ∂A(I ) “belongs” to at least two
rows.

I Since ∂A(I ) ⊆
⋃

i∈I Ji (A):

∣∣⋃
i∈I Ji (A)

∣∣ ≤ |∂A(I )|+ 1

2

(∑
i∈I

|Ji (A)| − |∂A(I )|

)
.



Addendum to the proof: Existence of Expanders (Cont.)

I So, the violation of the the second expansion property, i.e.
|∂A(I )| < 3

4s`, implies
∣∣⋃

i∈I Ji (A)
∣∣ ≤ 7

8s`.

I p` ≤ Pr
[∣∣⋃

i∈I Ji (A)
∣∣ ≤ 7

8s`
]
.

I See picture on the black board.

I Thus:

Pr
[∣∣⋃

i∈I Ji (A)
∣∣ ≤ 7/8s`

]
≤

( s`
s`/8

)
· n7/8s` · (s`)s`/8

ns`

≤
(

s`

s`/8

)(
s`

n

)s`/8

≤
(

28 · s`
n

)s`/8



Addendum to the proof: Existence of Expanders (Cont.)2

I Putting all together:

Pr [A is not an (r , s, c)-expander] ≤
r∑
`=1

n2`

(
28 · s`

n

)s`/8

≤
r∑
`=1

n2`

(
28 · sr

n

)s`/8

I This geometric progression is bounded by 1
2 if

n2

(
28 · sr

n

)s/8

<
1

2

I This inequality is satisfied for

r =
ε

s
n−

1
sε

for ε = 2−16.



Size Lower Bounds for Resolution

Definition
Let A be a matrix over {0, 1} of dimension m × n. A sequence of
functions g1, . . . , gm is good for A iff for each i ∈ [m] the
following holds.

I gi is 5
16 log log n-robust and

I Vars(gi ) ⊆ Xi (A).

Corollary (First version)

There exists a family of m × n matrices, A(m,n), such that
for any sequence of functions ~g good for A(m,n) and
for any resolution refutation π of τ(A(m,n), ~g),
the size of π is at least

exp

(
n2−O(1/ log log n)

m

)
/
√

log(n).
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Proof.

I With loss of generality, m ≤ n2.

I Apply the expander construction with s = 1
2 log log n to get an

(r , s, 3
4s)-expander.

I Cross out all rows but m rows arbitrarily. The resulting matrix
is still an (r , s, 3

4s)-expander.

I Recall size lower bounds for τ(A, ~g) resolution refutations:

exp

(
Ω

(
r2

m · 22s

))
/2s

. . .



Proof (cont.)

Using 22s
= 2

√
log n ≤ n1/ log log n and 1/s ≥ n−1/s the exponent

gets:

r2

m · 22s ≥
r2

m · n1/ log log n

=
ε2n2n−

2
sε

s2 m n1/ log log n
(expand r)

=
ε2n2n−( 4

ε
+1)/ log log n

s2 m
(expand s)

≥ ε2n2n−( 4
ε
+5)/ log log n

m
(sec. inequal.)

= ε2
n2−O(1/ log log n)

m



Corollary (First version—just a reminder)

There exists a family of m × n matrices, A(m,n), such that
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for any resolution refutation of τ(A(m,n), ~g) has a size at least

exp
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m

)
/
√

log(n).

Corollary (Second version)

There exists a family of m × n matrices, A(m,n), such that
for any sequence of functions ~g good for A(m,n):

I τ(A(m,n), ~g ⊕ ~b) is unsatisfiable for some ~b ∈ {0, 1}m if
m > n, and

I for any ~b ∈ {0, 1}m, any resolution refutation of
τ(A(m,n), ~g ⊕ ~b) has a size at least

exp

(
n2−O(1/ log log n)

m

)
/
√

log(n).
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Proof.

I For any ~b ∈ {0, 1}m the following is true.

τ(A(m,n), ~g ⊕ ~b) unsatisfiable

⇐⇒ ~g(~x)⊕ ~b = 1 is unsatisfiable wrt. ~x

⇐⇒ ~g(~x) = ¬~b is unsatisfiable wrt. ~x

⇐⇒ ~g(~x) 6= ¬~b for all ~x ∈ {0, 1}n

⇐⇒ ¬~b /∈ Image(~g)
Indeed, ~g : {0, 1}n → {0, 1}m is not surjective, since m > n.

I Note that the robustness is invariant under negation.



Lemma
Let 0 < ε < 1. For any sufficiently large k, any random function
over k variables is εk-robust which a probability ≥ 1

2 .

Proof.
A function f is not εk-robust iff there exists a restriction ρ such
that |ρ| < εk and f |ρ is constant. In particular, there exists a
restriction ρ such that |ρ| = εk and f |ρ is constant. Thus its truth
table contains a ”block” of |ρ| columns and 2k−|ρ| rows such that
the result values are constant. . . .
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Proof (cont.).

Pr [f is not εk-robust] ≤
( k
εk

)
2εk 22k−2k−εk+1

22k

=
( k
εk

)︸︷︷︸
≤2k

2εk−2(1−ε)k+1

≤ 2(1+ε)k−2(1−ε)k+1

!
< 2−1

For the last inequality, (1 + ε)k + 2 < 2(1−ε)k suffices. For
sufficiently large ks, this is true.



Definition
Let A be a matrix over {0, 1} of dimension m × n.
The characteristic function, χ⊕i (A), of the row i ∈ [m] is
~x 7→ ⊕Xi (A).

Definition
For any m × n matrix A and b ∈ {0, 1}m:

τχ(A,~b) := τ(A,
−−−−→
χ⊕(A)⊕ ~b)



Corollary (Third version)

There exists a family of m × n matrices, A(m,n), such that:

I τχ(A(m,n),~b) is unsatisfiable for some ~b ∈ {0, 1}m if m > n,
and

I for any ~b ∈ {0, 1}m, any resolution refutation of τχ(A(m,n),~b)
has a size at least

exp

(
n2−O(1/ log log n)

m

)
/
√

log(n).

Proof (as patch).

Its remains to show that the functions χ⊕i (A) are good for A.
During the construction of the expander, the 1s in each rows are
chosen randomly. The cancellation of its rows to get A is at
random. Hence any χ⊕i (A) is a random function on at most
1/2 log log n variables. With high probability, these are
5/8 · 1/2 log log n robust, therefore also good for A.

Remark: This is a superpolynominal lower bound.



Conclusion — Open Problems

I Improve the I/O-ration of the constructed pseudorandom
generators to quadratic.

I Improve the size lower bound for functional encodings, in
particular get rid of the 2ss

denominator.



Conclusion — Road Not Taken

I Other encodings are possible such as the circuit encoding and
the linear encoding.

I The method of pseudorandom generators admits degree and
size lower bounds for the Polynomial Calculus and the
Polynomial Calculus with Resolution.



Conclusion – Lesson Learned

I The technique of pseudorandom generator can separate the
task of proving lower bounds into —more or less—
independent subtasks.

I Other approaches like Tseitin tautologies fit into this
framework.

I Concepts used in complexity theory might be also used in
proof complexity.
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