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Abstract. This paper describes author’s talk during JASS’2009 on course
Proposisional Proofs and presents some proofs and remarks that were
omitted in the presentation. Readers are refered to presentation and orig-
inal papers for detailed definition of k-transformations and their prop-
erties. As stated in [BSH03] the version of Switching Lemma used for
proving the existanse of k-transformations can be proved by similar to
[Bea94] methods and also is a restatement of switching lemma of [UF96].

1 Introduction

The proof of lower bound for bounded depth Frege is the hardest proof of lower
bound for proof sytems since there are no known super-polynomial lower bounds
proved even for unbounded Frege [Urq95].

This paper could also be interesting for researchers both from areas of math-
ematical logic (propositional proofs) and computational complexity, because it
is presented here very simple and natural relation between bounded depth Frege
and Buss-Pudlák Games. This result was originally proved by [PR95] for Frege
proof systems and then their proof was applied to bounded Frege in [BSH03].

2 Preliminaries

In this section are presented some basic definitions and remarks on them.

Definition 1. Frege system H is complete proof system over the basis {∨,¬}

1. Excluded Middle axiom: A∨¬A

2. Weakening Rule: A
A∨B

3. Merging Rule: ∨({∨Γ}∪∆)
∨(Γ∪∆)

4. Unmerging Rule: ∨(Γ∪∆)
∨({∨Γ}∪∆)

5. Cut Rule: (A∨B), (¬A∨C)
B∨C

By φ1...φk
ψ we denote that ψ can be derived from {φ1, . . . φk}.



Remark 1. As it was noticed by one of participants after the talk, this Frege
proof system is rather special. In sense that it has only one splitting rule, and
hence for this proof system Cut Rule couldn’t be eliminated.

Fix sets D,R: D ∩R = ∅, |D| = n+ 1, |R| = n, and denote S = D ∪R.

Definition 2. The pigeonhole principle of size n, denoted PHPn, is the dis-
junction of four sets of formulas over the variable set pij, i ∈ D, j ∈ R:

¬
∨
j∈R pij , i ∈ D pik ∧ pjk, i 6= j ∈ D, k ∈ R

¬
∨
i∈D pij , j ∈ R pij ∧ pik, i ∈ D, j 6= k ∈ R

Where each variable pij states whether pigeon i occupies pigeonhole j.

3 Buss-Pudlák Games

Here are listed notions and theorems from the talk. But some important technical
details are ommited. They could be found in slides or in original papers.

Definition 3. The Frege proof of a tautology Φ is a two player game:

– Pavel claimes that Φ is a tautology.
– Sam says that he knows an assignment α setting Φ to 0.
– In round t Pavel presents Sam a Boolean formula φt.
– Sam answers with a bit bt, wich is the “value” of φt(α).
– Pavel needs to present an immediate contradiction from Definition 4.

Let B be a set of Boolean gates. In our case B = {¬,∨}.

Definition 4. An immediate contradiction with respect to B is a set of formulas
ψ, φ1, . . . , φk and a set of bits a, b1, . . . , bk:

1. ψ is g(φ1, . . . , φk), where g ∈ B.
2. Sam was asked formulas ψ, φ1, . . . , φk, and gave answers a, b1, . . . , bk.
3. a 6= g(b1, . . . , bk).

Theorem 1. For any Frege system F there exist integer c: If Φ has a standard
F-proof of size S and maximal depth d, then Φ has a Buss-Pudlák proof of height
log(S) +O(1) and depth d+ c and each query is of size at most S.

Proof. Let φ1, . . . φS = Φ be a standard Frege proof, where each φi has depth at
most d. Now we construct from it Buss-Pudlák Game:

– At first round Pavel query for value of Φ. Sam must answer with 0.
– Then Pavel asks Sam about formula ∧(φ1, . . . φS). Again Sam answers 0.
– Pavel makes log(S) queries for finding the smallest k such that the answer

on ∧(φ1, . . . φk) was 1 and the answer on ∧(φ1, . . . φk+1) was 0.



If there is no such k, then Sam’s answer on φ1 was 0, and this is immediate
contradiction. The case when φk+1 is an axiom is similar.

Otherwise, φk+1 was derived by some derivation rule from some previous
formulas φi1 , . . . φic .

– Then Pavel queries φi1 , . . . φic , Sam must answer with 1 or it will contradicts
with his answer to ∧(φ1, . . . φk)

But even in this case there is immediate contradiction with aplied rule.

Definition 5. Let S be a set, D ⊆ S and f : D → {0, 1} a function on D. The
ordered pair (D, f) is called a partial Boolean function on S. The set D is the
domain of f , denoted by Dom(f). For any set S, let

∆S = {(D, f)|D ⊆ S, f : D → {0, 1}}

For any (D, f) and b ∈ {0, 1}, f−1(b) = {x ∈ D|f(x) = b}.

Let T be the game-tree for tautology Φ, proposed by Pavel. Sam applies a
transformation, mapping each formula φ ∈ ΣT to partial function (Dφ, fφ), that
satisfies the conditions:

1. ∀x ∈ DΦ, fΦ(x) = 0.
2. There exists a branch ((φ1, b1), . . . , (φs, bs)) in the game-tree T :

s⋂
i=1

(fφi)
−1(bi) 6= 0

3. For any Ω ⊆ ΣT , if there exists x ∈ ∩φ∈ΩDΦ, then the answers (fφ(x))φ∈Ω
to the queries (φ)φ∈Ω are locally consistent.

Theorem 2. Let Φ be a formula and T a game-tree for Φ. If there exists a set
S and a transformation φ

Γ7→ (Dφ, fφ): conditions 1,2 and 3 are satisfied, then
the game-tree does not convict Sam.

Proof. Lines of our proof following [BSH03]:

– Consider a branch ((φ1, b1), . . . , (φs, bs)) of T provided by 2.
– Choose any x ∈

⋂s
i=1(fφi)

−1(bi). Sam answers Pavel’s queries φ1, . . . φs along
this branch with b1, . . . , bs respectively.

– By 1 Sam answers Pavel’s first query φ1 = Φ with b1 = 0.
– Since x ∈

⋂s
i=1 Dom(fφi), Sam’s responses to Pavel’s queries along this

branch are locally consistent by 3.



4 k-transformations

At this section are defined notions of k-transformations and covering partial
functions. It follows from Switching lemma that k-transformation exists. And
this is almost the same transformation that could be used by Sam. Hence, we
could prove the existing of such transformation for Theorem 2. Together with the
Theorem 1 this implies the lower bound for bounded depth Frege proof systems.

Definition 6. Let D,R be some sets such that D∩R = ∅, |D| = n+1, |R| = n,
and let S = D ∪R. MS denotes the set of matchings between D and R.
For any I ⊆ S such that D 6⊆ I, define

Cover(I) = {π ∈MS | matching π covers all vertices in I}

MinCover(I) = {π ∈MS |π is a minimal matching that covers I}

Note that for all π ∈ MinCover(I), |π| ≤ |I|.

Lemma 1. Consider I ⊆ S and ρ a matching in MS such that |ρ|+ |I| ≤ n.
Then there exists π ∈ MinCover(I) such that π ∪ ρ ∈MS.

Definition 7. A covering partial function is an ordered pair (I, f) such that

– (Cover(I), f) is a partial function on MS.
– If π, π′ ∈ Cover(I) and π ⊆ π′, then f(π′) = f(π).

Let Σ be closed under taking subformula.

Definition 8. A k-transformation T is a mapping of formulas φ ∈ Σ to cover-
ing partial functions (Iφ, fφ) over S such that

1. For all φ, |Iφ| ≤ k.
2. I0 = I1 = ∅,
∀π ∈ Cover(I0), f0(π) = 0,
∀π ∈ Cover(I1), f1(π) = 1.

3. Ipij = {i, j},
if {i, j} ∈ π, fpij (π) = 1, otherwise fpij (π) = 0.

4. [Negation]
I¬φ = Iφ, ∀π ∈ Cover(Iφ), f¬φ(π) = ¬fφ(π).

5. [Disjunction]
If φ is a disjunction and ∨j∈Jφj is the merged form of φ,

then (Iφ, fφ) satisfies Disj
[⋃

j∈J{(Iφj , fφj )}
]

Proposition 1. Let Σ be a set of formulas closed under the operation of taking
subformula. Let T be a k-transformation mapping formulas φ ∈ Σ, to covering
partial funcitons (Iφ, fφ) over S. If for Ω ⊂ Σ, there exists a π ∈

⋂
φ∈Ω Dom(fφ),

then the answers (fφ(π))φ∈I to the queries (φ)φ∈I are locally consistent.

Proposition 2. If T is k-transformation for a set of formulas containing PHPn,
k < n− 1, then fPHPn(π) = 0 for all π ∈ Cover(IPHPn).



Proof. PHPn is the disjunction of formulas of the form ¬φ, where φ ranges over∨
j∈R pij , i ∈ D ¬pik ∨ ¬pjk, i 6= j ∈ D, k ∈ R∨
i∈D pij , j ∈ R ¬pij ∨ ¬pik, i ∈ D, j 6= k ∈ R

From the definition of a k-transformation, it suffices to show that
fφ(π) = 1,∀π ∈ Cover(Iφ) for each of the above φ.

Let i ∈ D and φ =
∨
j∈R pij . Suppose fφ(π) = 0 for some π ∈ Cover(Iφ).

|Iφ| ≤ k,π ∈ MinCover(Iφ) and k < n− 1, imply |π| < n− 1. Hence, there exists
a π′ ∈ MS such that π ⊆ π′ and π′ covers i. Let {i, j} ∈ π′ for some j ∈ R.
But then fpij (π

′) = 1 while fφ(π′) = fφ(π) = 0 contradicts the definition of a
k-transformation. Hence, fφ(π) = 1,∀π ∈ Cover(Iφ) for φ of the specified type.

Let i 6= j ∈ D, k ∈ R and φ = ¬pik ∨ ¬pjk. Suppose fφ(π) = 0 for some
π ∈ Cover(Iφ). As before, we have |π| < n − 1. Since π is a matching, either
{i, k} /∈ π or {j, k} /∈ π. Assume {i, k} /∈ π. Since |π| < n − 1, there exists a
π′ ∈MS : π ⊆ π′ and {i, r}, {s, k} ∈ π′ for some r 6= k ∈ R and s 6= i ∈ D.
We have π′ ∈ Cover(Ipik) and fpik(π′) = 0. Hence, f¬pik(π′) = 1.
But fφ(π′) = fφ(π) = 0 again contradicts definition.

The other two types of formulas are proved similarly.

Definition 9. We define I|ρ = I \ V (ρ) for any I ⊆ S. For (I, f) a covering
partial function over S, we define f |ρ : Cover(I|ρ)→ {0, 1} as f |ρ(π) = f(π∪ρ)
for all π ∈ Cover(I|ρ).

Proposition 3. Let T be a game-tree of height r for PHPn. Let T be a k-
transformation mapping formulas φ to covering partial functions (Iφ, fφ) over
S|ρ for some matching ρ ∈ MS of size n − m. If kr ≤ m, then there exists a
branch ((φ1, b1), . . . , (φs, bs)) in the game-three T :

s⋂
i=1

(fφi)
−1(bi) 6= 0

Proof. Consider the following procedure Walk(T ), outputing branch of T

1. Set π ← ∅ and i← 1.
2. Walk along T from the root till a leaf reached:

– (a) Set φi ← label of current node.
– (b) Choose a πi ∈ MinCover(Iφi): π ∪ πi ∈MS|ρ .
– (c) Set bi ← fφi(πi) and π ← π ∪ πi.
– (d) Walk along edge labeled bi leading out of current node.
– (e) Increment i.

3. Output ((φ1, b1), . . . , (φs, bs)).

– Since T is a game-tree for PHPn, φ1 = PHPn and b1 = 0 for any branch.
– By Proposition 1, fPHPn(π) = 0 for all π ∈ Cover(PHPn).



– Walk algorithm choose some matching π ∈ MinCover(IPHPn).
– A matching πi can be chosen in the loop at Step 2b as long as |π|+ k ≤ m.
– |π| is extended at most r times by at most k, and rk ≤ m.

Hence, the condition |π|+ k ≤ m is true.

Let π be the matching at the final step of Walk .
The branch ((φ1, b1), . . . , (φs, bs)) satisfies bi = fφi(π).
Hence, π ∈

⋂s
i=1(fφi)

−1(bi) and
⋂s
i=1(fφi)

−1(bi) 6= ∅.

Theorem 3. (Switching Lemma) Let (Ij , fj) be covering partial functions over
S, |Ij | ≤ r for all j ∈ J . Let ` ≥ 10 and p = `/n. If r ≤ ` and p4n3 ≤ 1/10, then
for random ρ ∈MS , |ρ| = n−`, Pr{“There exists a covering partial function (I, f)
over S|ρ : (I, f) satisfies Disj

[⋃
j∈J{(Ij |ρ, fj |ρ)}

]
and |I| < 2s”} ≥ 1−(11p4n3r)s.

Theorem 4. Let d be an integer, 0 < ε < 1/5, 0 < δ < εd and Σ a set of
formulas of depth d. If |Σ| < 2n

δ

, q = nε
δ

and n is sufficiently large, then there
exists a matching ρ ∈ MS of size n − nε

δ

: there is a 2nδ-transformation T
mapping formulas φ ∈ Σ, to covering partial functions (Iφ, fφ) over S|ρ.

Theorem 5. (Main result) Let F be a Frege system and let c be the constant
that occurs in theorem about Buss-Pudlák Games. Then for sufficiently large n,
every depth d proof in F of PHPn must have size at least 2n

µ

, for µ < 1
2 ( 1

5 )d+c.

Proof. Let 0 < ε < 1
5 and 0 < µ < εd+c/2. Suppose PHPn has a depth d proof in

F of size 2n
µ

. By the Theorem 1, there exists Buss-Pudlák game-tree T of height
nµ consisting of formulas of size at most 2n

µ

and depth at most d+ c convicting
Sam on PHPn. Let Σ be the set of all formulas in T . Clearly, |Σ| ≤ 22nµ .

– Choose δ: µ < δ < εd/2. For sufficiently large n, |Σ| < 2n
δ

.
– By the previous theorem, there exists a partial matching ρ of size n − nεd :
Σ has a 2nδ-transformation T mapping formulas φ ∈ Σ to covering partial
functions, (Iφ, fφ) over S|ρ.

– By Proposition 2, we have that condition 1 is satisfied since 2nδ < nε
d − 1.

– Also 2nδ · nµ ≤ nεd and the conditions of Proposition 3 are satisfied.
– Hence, 2nδ-transformation satisfies condition 2.
– By Proposition 1, we have that condition 3 is also satisfied.
– Thus, by the Theorem 2, game-tree T does not convict Sam.
– And there exists no depth d proof of PHPn in F of size less then 2n

µ

.
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