Lower bounds for k-DNF Resolution on random 3-CNFs

Sergey Nurk

Mathematics and Mechanics Faculty
Saint-Petersburg State University

JASS, 2009

Outline

Resolution and Res(k)

Switching Lemma

Expanders

Random Restriction Lemma

Lower Bound for Res(k)

Resolution

Resolution Rule
A, B - clauses $\frac{A \vee x \neg x \vee B}{A \vee B}$
Definition

- The width $\omega(C)$ of a clause C is the number of literals in C.
- The width $\omega(\tau)$ of a set of clauses τ (in particular the width of a resolution proof) is the maximal width of the clauses appearing in this set.
- The size of a resolution proof is the number of different clauses in it.

Resolution

Definition

Consider an unsatisfiable set of clauses τ. Denote by $S_{R}(\tau)$ the size of minimal refutation of τ. Denote by $\omega_{R}(\tau)$ the minimal refutation width over all possible proofs of τ.

Weakening
We will extend Resolution with weakening inferences:
A, B-clauses. If $A \subseteq B$, then $\frac{A}{B}$.

What is $\operatorname{Res}(k)$?

k-DNF Resolution $(\operatorname{Res}(k))$ is a generalization of Resolution that operates with k-DNFs instead of clauses.
Res(k) Inference Rules
A, B are k-DNFs, $1 \leq j \leq k$ and I, l_{1}, \ldots, l_{j} are literals

- Weakening: $\frac{A}{A \vee I}$
- Cut: $\frac{A \vee \bigwedge_{i=1}^{j} I_{i} B \vee \bigvee_{i=1}^{j} \neg l_{i}}{A \vee B}$
- AND-introduction: $\frac{A \vee I_{1} \ldots A \vee I_{j}}{A \vee \bigwedge_{i=1}^{j} I_{i}}$
- AND-elimination: $\frac{A \vee \bigwedge_{i=1}^{j} I_{i}}{A \vee I_{i}}$

Remark: Resolution $=\operatorname{Res}(1)$.

Strong Soundness

Important property: $\operatorname{Res}(k)$ is strongly sound. If k-DNF F is inferred from k-DNFs F_{1}, \ldots, F_{j}, and t_{1}, \ldots, t_{j} are mutually consistent terms of F_{1}, \ldots, F_{j} respectively, then there is a term t of F implied by $\bigwedge_{i=1}^{j} t_{i}$.

Related Definitions

Definition
$\operatorname{Res}(k)$ refutation of unsatisfiable CNF τ is the inference of the empty clause from the clauses in τ using inference rules.

Definition
The size of $\operatorname{Res}(k)$ refutation is the number of lines it contains.
Definition
$S_{R(k)}(\tau)$ denotes the minimal size of a $\operatorname{Res}(k)$ refutation of CNF τ.

$\operatorname{Res}(k)$ vs $\operatorname{Res}(k+1)$

Fact:
$\operatorname{Res}(k+1)$ is exponentially more powerful than $\operatorname{Res}(k)$.

Decision Tree

Definition
Decision tree:

- Rooted binary tree.
- Every internal node labeled with variable.
- Edges leaving node correspond to whether the variable is set to 0 or 1 .
- Leaves are labeled with either 0 or 1.

Remark: Every path from the root to a leaf may be viewed as a partial assignment.

Related Definitions

$v \in\{0,1\}$, decision tree T, DNF F
Definition
$B r_{v}(T)$ denotes the set of paths that lead from the root to a leaf labeled v.

Definition
T strongly represents F if for every $\pi \in B r_{0}(T)$, for all
$t \in F,\left.t\right|_{\pi}=0$ and for every $\pi \in B r_{1}(T)$ there exists
$t \in F,\left.t\right|_{\pi}=1$.

Definition
Representation height of $F, h(F)$, is the minimal height of a decision tree strongly representing F.

Switching Lemma

Definition

DNF F, set of variables S.
If every term of F contains a variable from S, then S is a cover of F. The covering number of $F, c(F)$, is the minimal cardinality of a cover of F.

Switching Lemma

Let $k \geq 1$, let s_{0}, \ldots, s_{k-1} and p_{1}, \ldots, p_{k} be sequences of positive numbers, and let D be a distribution on partial assignments so that for every $i \leq k$ and every i-DNF G, if $c(G)>s_{i-1}$, then $\operatorname{Pr}_{\rho \in D}\left[\left.G\right|_{\rho} \neq 1\right] \leq p_{i}$. Then for every k-DNF F :

$$
\operatorname{Pr}_{\rho \in D}\left[h\left(\left.F\right|_{\rho}\right)>\sum_{i=0}^{k-1} s_{i}\right] \leq \sum_{i=1}^{k} 2^{\left(\sum_{j=i}^{k-1} s_{j}\right)} p_{i}
$$

Proof of Switching Lemma

Proof.

- Induction on k.
- $k=1$: If $c(F) \leq s_{0}$ then at most s_{0} variables appear in F. If $c(F)>s_{0}$ then $\operatorname{Pr}\left(h\left(\left.F\right|_{\rho}\right) \neq 0\right) \leq \operatorname{Pr}_{\rho \in D}\left[\left.F\right|_{\rho} \neq 1\right] \leq p_{1}$
- $k \rightarrow k+1:(k+1)$-DNF F.
- If $c(F)>s_{k}$ then $\operatorname{Pr}\left(h\left(\left.F\right|_{\rho}\right) \neq 0\right) \leq \operatorname{Pr}_{\rho \in D}\left[\left.F\right|_{\rho} \neq 1\right] \leq p_{k+1}$
- Consider $c(F) \leq s_{k}$. S is a cover of size at most s_{k}. π-assignment to the variables in $S .\left.F\right|_{\pi}$ is a k-DNF.
$\operatorname{Pr}_{\rho \in D}\left[\exists \pi \in\{0,1\}^{S}: h\left(\left.\left(\left.F\right|_{\rho}\right)\right|_{\pi}\right)>\sum_{i=0}^{k-1} s_{i}\right] \leq$
$2^{s_{k}}\left(\sum_{i=1}^{k} 2^{\left(\sum_{j=i}^{k-1} s_{j}\right)} p_{i}\right)<\sum_{i=1}^{k+1} 2^{\left(\sum_{j=i}^{k} s_{j}\right)} p_{i}$
- If $\forall \pi \in\{0,1\}^{S} h\left(\left.\left(\left.F\right|_{\rho}\right)\right|_{\pi}\right) \leq \sum_{i=0}^{k-1} s_{i}$ then we may construct a decision tree of height at most $\sum_{j=i}^{k} s_{j}$ strongly representing $\left.F\right|_{\rho}$.

One More Switching Lemma

Corollary

k, s, d are positive integers, $\gamma, \delta \in(0,1]$. D is a distribution on partial assignments s.t. $\forall k-D N F G \operatorname{Pr}_{\rho \in D}\left[\left.G\right|_{\rho} \neq 1\right] \leq$ $d 2^{-\delta(c(G))^{\gamma}}$. For every $k-D N F F$:

$$
\operatorname{Pr}_{\rho \in D}\left[h\left(\left.F\right|_{\rho}\right)>2 s\right] \leq d k 2^{-\delta^{\prime} s^{\gamma^{\prime}}}
$$

where $\delta^{\prime}=2(\delta / 4)^{k}$ and $\gamma^{\prime}=\gamma^{k}$.

Proof of the Corollary

Proof.

- $s_{i}=(\delta / 4)^{i} \boldsymbol{s}^{\gamma^{i}}, p_{i}=d 2^{-4 s_{i}}$.
- $s_{i-1} / 4 \geq(\delta / 4) s_{i-1}=(\delta / 4)^{i} s^{\gamma^{i-1}} \geq s_{i}$. So $\sum_{j=i}^{k} s_{j} \leq \sum_{j \geq i} s_{i} / 4^{j-i} \leq 2 s_{i}$
- For any i-DNF G with $c(G) \geq s_{i-1} \quad \operatorname{Pr}_{\rho \in D}\left[\left.G\right|_{\rho} \neq 1\right] \leq$ $d 2^{-\delta(c(G))^{\gamma}} \leq d 2^{-\delta s_{i-1}^{\gamma}}=2^{-\delta(\delta / 4)^{i-1}\left(s^{\gamma^{i-1}}\right)^{\gamma}}=d 2^{-4 s_{i}}$
- After applying previous theorem we have that:

For every k-DNF $F \quad \operatorname{Pr}_{\rho \in D}\left[h\left(\left.F\right|_{\rho}\right)>2 s\right] \leq$
$\operatorname{Pr}_{\rho \in D}\left[h\left(\left.F\right|_{\rho}\right)>\sum_{i=0}^{k-1} s_{i}\right] \leq \sum_{i=1}^{k} 2^{\left(\sum_{j=i}^{k-1} s_{j}\right)} p_{i} \leq$
$\sum_{i=1}^{k} 2^{2 s_{i}}\left(d 2^{-4 s_{i}}\right) \leq d k 2^{-2 s_{k}}=d k 2^{-\delta^{\prime} s^{\gamma^{\prime}}}$

$\operatorname{Res}(k) \rightarrow$ Resolution

Theorem
Let τ be a set of clauses s.t. $\omega(\tau) \leq h$. If τ has a $\operatorname{Res}(k)$ refutation s.t. for each line F of the refutation $h(F) \leq h$, then $\omega_{R}(\tau) \leq k h$.

Proof:

- T_{C} is a decision tree for $C \in \tau$. For any line $F T_{F}$ is a min height tree for F. For any partial assignment πC_{π} is a clause that contains negations of every literal in π.
- For $\pi \in B r_{0}\left(T_{\emptyset}\right), C_{\pi}=\emptyset$ and for each $C \in \tau$ for the unique $\pi \in \operatorname{Br}_{0}\left(T_{C}\right), C_{\pi}=C$. We construct narrow resolution refutation by deriving C_{π} for each line F and each $\pi \in B r_{0}\left(T_{F}\right)$.

Proof part 2

Proof.

- Consider F inferred from previously derived F_{1}, \ldots, F_{j}, $j \leq k$. We construct a decision tree T of height $\leq k h$ that represents $\bigwedge_{i=1}^{j} F_{i}$.
- The set $\left\{C_{\sigma} \mid \sigma \in B r_{0}(T)\right\}$ can be derived using the weakening rule.
- For every $\sigma \in B r_{1}(T)$ there exists $t \in F$ satisfied by σ.
- Let $\pi \in B r_{0}\left(T_{F}\right)$ be given. For all $\sigma \in \operatorname{Br}(T)$ consistent with $\pi \sigma \in B r_{0}(T)$.
- For each node ν in $T \sigma_{\nu}$ is the path from the root to ν. From the leaves to the root, we derive $C_{\sigma_{\nu}} \vee C_{\pi}$ for each ν so that σ_{ν} is consistent with π. When we reach the root we will have derived C_{π}.

Random 3-CNF's and Linear Systems

Definition

Denote by $\phi_{n, \Delta n}$ the random $3-C N F$ with Δn clauses and n variables, in which every clause is chosen independently from the set of all $2^{3} C_{n}^{3}$ clauses.

Definition
For each $\phi_{n, \Delta}$ we consider a $\Delta n \times n$ matrix $A_{n, \Delta n}$ and a vector $b \in\{0,1\}^{\Delta n}$ s.t.:

- $A_{n, \Delta n}[i, j]=1$ iff the i-th clause of $\phi_{n, \Delta}$ contains the variable x_{j}.
- $b[i]=$ (number of positive variables in the i-th clause) mod 2.
Remark: Each clause of $\phi_{n, \Delta n}$ is a semantical corollary of some linear equation of the system $A_{n, \Delta n} X=b$

Expanders

$A \in\{0,1\}^{m \times n}, I \subseteq[m], A_{i}-i$ th row of A.
Definition
Boundary of $I, \partial I$, is a set of all $j \in[n]$ s.t. $\exists!i \in I: j \in A_{i}$
Definition
A is an (r, c)-boundary expander if

$$
\forall I \subseteq[m] \quad(|I| \leq r \Rightarrow|\partial I| \geq c|I|)
$$

Fact:
$\forall \Delta>0, c<1 \exists \delta$ s.t. with probability $1-o(1) A_{n, \Delta n}$ is
($\delta n, c$)-boundary expander.

Cl

$A \in\{0,1\}^{m \times n}, J \subseteq[n], \quad I, l_{1} \subseteq[m]$

$$
I \vdash_{J} I_{1} \Longleftrightarrow\left|I_{1}\right| \leq r / 2 \wedge \partial\left(I_{1}\right) \subseteq\left[\bigcup_{i \in I} A_{i} \cup J\right]
$$

Definition
Closure $\mathrm{J}, \mathrm{Cl}(\mathrm{J})$, is a set of all rows which can be inferred from the empty set.

Lemma
If $|\mathrm{J}| \leq c r / 2$ then $|C I(J)| \leq c^{-1}|J|$

Proof

Proof.

- $\left\{I_{k}\right\}$ s.t. $I_{1} \cup \cdots \cup I_{\nu-1} \vdash_{J} I_{\nu}$.
- Consider the smallest k s.t. $\left|\bigcup_{\nu=1}^{k} I_{\nu}\right|>C^{-1}|J|$
- Since $|J| \leq c r / 2 \quad\left|\bigcup_{\nu=1}^{k} I_{\nu}\right| \leq r$ and since we are dealing with expander $\left|\partial\left(\bigcup_{\nu=1}^{k} I_{\nu}\right)\right|>c\left(c^{-1}|J|\right)=|J|$
- But $\partial\left(\bigcup_{\nu=1}^{k} I_{\nu}\right) \subseteq J$

C^{e}

$A \in\{0,1\}^{m \times n}, J \subseteq[n], \quad I, I_{1} \subseteq[m]$

$$
I \vdash_{j}^{e} I_{1} \Longleftrightarrow\left|I_{1}\right| \leq r / 2 \wedge\left|\partial\left(I_{1}\right) \backslash\left[\bigcup_{i \in I} A_{i} \cup J\right]\right|<(c / 2)\left|I_{1}\right|
$$

Algorithm $\mathrm{Cl}^{e}(\mathrm{~J})$
$I:=\emptyset R:=[m]$
while (there exists $I_{1} \in R$ s.t. $I \vdash{ }_{J} I_{1}$)
$I:=I \cup I_{1}$
$R:=R \backslash I_{1}$
end
output $/$;
Lemma
If $|J|<c r / 4$ then $\left|C l^{e}(J)\right|<2 c^{-1}|J|$

Proof

Proof.

- Consider the sequence $I_{1} \ldots l_{/}$appearing in the cleaning procedure. These sets are pairwise disjoint.
- $C_{t}:=\bigcup_{k=1}^{t} I_{k}$. By T denote the first $t:\left|C_{t}\right|>2 c^{-1}|J|$
- Since $|J|<c r / 4 \quad\left|C_{T}\right| \leq r$
- Due to expansion $\left|\partial C_{T}\right|>c\left|C_{T}\right|$, so $\left|\partial C_{T} \backslash J\right|>c\left|C_{T}\right|-|J| \geq c\left|C_{T}\right| / 2$
- But $\left|\partial C_{T} \backslash J\right| \leq c / 2 \sum_{k=1}^{T}\left|I_{k}\right|=c / 2\left|C_{T}\right|$

A little more about Cl^{e}

$A \in\{0,1\}^{m \times n}, J \subseteq[n]$
$I^{\prime}=C I^{e}(J), J^{\prime}=\bigcup_{i \in l^{\prime}} A_{i}$.
Lemma
Obtain Â by removing the rows corresponding to I' and columns to J^{\prime}. \hat{A} is either empty or $(r / 2, c / 2)$-boundary expander.

Proof.

- Consider $I \in \hat{A}:|I| \leq r / 2 . \partial_{A} I \subseteq \partial_{\hat{A}} I \cup J \cup J^{\prime}$
- If $\left|\partial_{\hat{A}} I\right|<(c / 2)|I|$ then $\left|\partial_{A} I \backslash\left(J^{\prime} \cup J\right)\right|<(c / 2)|I|$ and $I^{\prime} \vdash_{J}^{e} I$.

Local Consistence

For a term $t C l(t):=C l(\operatorname{Vars}(t))$ and $C l^{e}(t):=C l^{e}(\operatorname{Vars}(t))$
$A \in\{0,1\}^{m \times n}, b \in\{0,1\}^{m}$
Definition
Term t is locally consistent w.r.t. $A x=b$ if the formula $t \wedge\left[A_{I} x=b_{l}\right]$ is satisfiable, where $I=C I(t)$.

Lemma
If t is locally consistent then $\forall I \subseteq[m]:|I|<r / 2$ the formula $t \wedge\left[A_{l} x=b_{l}\right]$ is satisfiable.

Proof.
If not then $\exists t^{\prime} \in t, I^{\prime} \in I$ s.t. $\sum_{i \in I^{\prime}}\left(A_{i} x-b_{i}\right)+\sum_{x_{j} \in t^{\prime}}\left(x_{j}-\epsilon\right) \equiv 1$
Then $\partial\left(I^{\prime}\right) \in \operatorname{Vars}\left(t^{\prime}\right)$, hence $I^{\prime} \in C /(t)$ and t is inconsistent. \square
$A \in\{0,1\}^{m \times n}$
Definition
$G(A)$ is the bipartite graph between m row vertices and n column vertices with incidence matrix A. $d_{A}\left(V_{1}, V_{2}\right)$ denotes the shortest path between sets V_{1}, V_{2} in $G(A)$

Lemma
A is an expander. $I \in[m]:|I|<r / 2$. Term $t: t \wedge\left[A_{l} x=b_{l}\right]$ is satisfiable. Then:
\forall I.c. term t_{1} with $\left|t_{1}\right| \leq k$ s.t. $d_{A}\left(C^{e}(t), t_{1}\right)>4 c^{-1} k$ the formula $t_{1} \wedge t \wedge\left[A_{l} x=b_{l}\right]$ is also satisfiable.

Proof.

- If not then $\exists t^{\prime} \in t, t_{1}^{\prime} \in t_{1}, I^{\prime} \in I$ s.t.

$$
\sum_{i \in I^{\prime}}\left(A_{i} x-b_{i}\right)+\sum_{x_{j}^{\epsilon} \in t^{\prime}}\left(x_{j}-\epsilon\right)+\sum_{x_{j}^{\epsilon} \in t_{1}^{\prime}}\left(x_{I}-\epsilon\right) \equiv 1
$$

- We consider such $L=\left(I, t^{\prime}, t_{1}^{\prime}\right)$ with minimal number of equations. G_{L} is connected.
- $\partial\left(I^{\prime}\right) \subseteq \operatorname{Vars}\left(t^{\prime}\right) \cup \operatorname{Vars}\left(t_{1}^{\prime}\right) . t, t_{1}$ are both consistent with $A_{I} x=b_{l}$, so t, t_{1} are both non-empty.
- Case1. $\left|I^{\prime} \backslash C I^{e}(t)\right|>2 c^{-1} k$ $\left|\partial\left(I^{\prime}\right) \backslash\left[\bigcup_{i \in C l^{e}(t)} A_{i} \cup \operatorname{Vars}(t)\right]\right| \leq k \leq(c / 2)\left|I^{\prime} \backslash C I^{e}(t)\right|$
- Case2. $\left|I^{\prime} \backslash C^{e}(t)\right| \leq 2 c^{-1} k$. Consider the minimal path in G_{L} that connects equations, corresponding to t with those corresponding to t_{1} it goes along I^{\prime}. Construct path of length $2\left|I^{\prime} \backslash C I^{e}(t)\right|$ between t_{1} and $C I^{e}(t)$ in $G(A)$.

Partial Assignments over Affine Subspaces

Lemma
Let $Y \subset X$ be a set of variables. Assume that b is a partial assignment on Y uniformly distributed on some affine subspace $A \subseteq\{0,1\}^{Y}$. Then for any term t in Y variables either $\operatorname{Pr}\left[\left.t\right|_{b} \equiv 1\right]=0$ or $\operatorname{Pr}\left[\left.t\right|_{b} \equiv 1\right] \geq 2^{-|t|}$.

Random Restriction

Definition

A DNF ϕ is in normal form w.r.t. A, b if each of its terms is locally consistent.

Definition

$X=\left\{x_{1}, \ldots, x_{n}\right\}$ is the set of all variables. $D_{A, b}$ is a distribution over partial assignments over X that results from the experiment:

- Choose a random $X_{1} \subset X$ of size cr/4
- $\hat{l}=C l^{e}\left(X_{1}\right), \quad \hat{X}=X_{1} \cup\left\{x_{j} \mid \exists i \in \hat{l}: A_{i j}=1\right\}$
- Uniformly choose ρ from all $\hat{x} \in\{0,1\}^{\hat{x}}$ satisfying $A_{i} \hat{x}=b_{l}$.

Restriction Lemma

Theorem

Assume that every column of A contains at most $\hat{\Delta}$ ones, b is arbitrary vector and $r=\Omega(n / \hat{\Delta})$. For any $k-D N F \phi$ in normal form holds:

$$
\operatorname{Pr}\left[\left.\phi\right|_{\rho} \neq 1\right]<\left(1-2^{-k}\right)^{c(\phi) / \hat{\Delta}^{O(k)}}
$$

Corollary
There exists an absolute constant D s.t. under the assumption of the theorem for any normal form k-DNF ϕ

$$
\operatorname{Pr}\left[\left.\phi\right|_{\rho} \neq 1\right]<2^{-c(\phi) / \hat{\Delta}^{D k}}
$$

Proof

Proof.

- Observe $\hat{x} \in\{0,1\}^{\hat{x}}$ given by ρ.
- Assume that all bits of \hat{x} are hidden. Consider a term t_{1}.
- Event E_{1} denotes that t_{1} is satisfied. Since t_{1} is I.c. $\operatorname{Pr}\left[E_{1}\right] \geq 2^{-k}$. If E_{1} happens - success, otherwise:
- Step I: $t^{(I)}$ is a term corresponding to the partial assignment of revealed bits of $\hat{x} .\left|t^{(I)}\right| \leq l k$
- $Y^{(I)} \subseteq \hat{X}: d_{A}\left(Y^{(I)}, C I^{e}\left(t^{(I)}\right)\right) \leq 4 c^{-1} k$
- Term t_{l+1} free of these variables. If there is no - terminate, else reveal the corresponding bits.
- $\operatorname{Pr}\left[E_{l+1} \mid t^{(/)}\right] \geq 2^{-k}$

Digression

- There are at least $C_{0}=c(\phi) / k$ variable disjoint terms.
- Each of them will be covered by X_{1} with probability at least $(c r / 4 n)^{k}$.
- The expected number of covered variable disjoint terms is $C_{0}(c r / 4 n)^{k}$.
- By Chernoff bound we may assume that there exist $C_{1}=C_{0} / \hat{\Delta}^{O(k)}$ variable disjoint terms covered by X_{1}.

Proof part 2

Proof.

- T - stopping time
- Case 1: $k T \leq c r / 4 \quad C l^{e}\left(t^{(T)}\right) \leq 2 c^{-1} T k$
- Then $\left|Y^{(T)}\right| \leq 2 c^{-1} T k \hat{\Delta}^{4 c^{-1} k}$
- Since $Y^{(T)}$ is a hitting set for $\phi \quad C_{1} \leq\left|Y^{(T)}\right|$ and $T \geq C_{1} / \hat{\Delta}^{O(k)}$
- Case 2: $T>c r /(4 k)$. Because $r=\Omega(n / \hat{\Delta})$ and $c(\phi) \leq n$ $T \geq c(\phi) / \hat{\Delta}^{O(k)}$

With high probability $A_{n, \Delta}$ is ($r, 0.8$)-boundary expander for some $r=\Omega(n)$.

Definition

For matrix $A_{n, \Delta}$ let J be a set of $0.2 r$ columns of the largest hamming weight. $I^{\prime}=C l^{e}(J), J^{\prime}=\bigcup_{i \in I^{\prime}} A_{j}$. By $\hat{A}_{n, \Delta}$ we denote matrix $A_{n, \Delta}$ with columns J^{\prime} and rows I^{\prime} removed. Similarly define \hat{b}.

Lemma
$\hat{A}_{n, \Delta}$ is ($r / 2,0.4$)-boundary expander in which every column has weight bounded by some $\hat{\Delta}$ that depends on Δ only.

Proof.

- We already proved that such matrix is either empty or ($r / 2, c / 2$)-boundary expander. It is not empty since $\left|I^{\prime}\right|<r / 2$.
- Our matrix contains at most $3 \Delta n /(0.2 r)$ ones in each column and $r=\Omega(n)$.

Lemma
Every Res(k) refutation of $\phi_{n, \Delta}$ can be transformed into Res(k) refutation of the system $\hat{A}_{n, \Delta} x=\hat{b}$ in which every line is in normal form with only polynomial increase of the size.

Proof.

- Refutation of $\phi_{n, \Delta}$ also fits for the 3-CNF corresponding to $A_{n, \Delta} x=b$.
- We may assign values to $x_{J^{\prime}}$ so that all the equations in $A_{l^{\prime}} x=b_{l^{\prime}}$ are satisfied. Then we get a $\operatorname{Res}(k)$ refutation of $\hat{A}_{n, \Delta} x=\hat{b}$. Now we should transform it into a normal form.
- For every term t that is not I.c. we may infer \bar{t} from $2.5 k$ axioms in polynomial size in Resolution. Thus we may substitute any occurrence of locally inconsistent terms with \perp with the polynomial increase of the size of proof.

Lemma(Ben-Sasson-Wigderson)

Assume that the matrix $\hat{A}_{n, \Delta}$ is (r, c)-boundary expander. Then every resolution refutation of the system $\hat{A}_{n, \Delta x}=\hat{b}$ requires width ϵr, where ϵ depends only on c.

Theorem
For any constant Δ with probability $1-o(1)$ every Res (k) refutation of $\phi_{n, \Delta}$ for $k<\sqrt{\log n / \log \log n}$ has size $2^{n^{1-o(1)}}$.

Proof of the Lower Bound

Proof.

- If there exists $\operatorname{Res}(k)$ refutation of $\phi_{n, \Delta}$ of size S then there exists $\operatorname{Res}(k)$ refutation P of the system $\hat{A}_{n, \Delta} x=\hat{b}$ of size $S n^{O(1)}$ which is in normal form.
- Apply restriction $\rho_{\hat{A}_{n, \Delta}, b}$ constructed in the previous section to the whole refutation P. Due to the Corollary of Restiction Lemma for each line F of $P \operatorname{Pr}\left[\left.F\right|_{\rho} \neq 1\right]<2^{-c(F) / \hat{\Delta}^{D k}}$.
- Applying Switching Lemma plugging in parameters $d=1, \gamma=1, \delta=(1 / \hat{\Delta})^{D k}, s=\epsilon r /(2 k)$ we have that $\operatorname{Pr}\left[h\left(\left.F\right|_{\rho}\right)>\epsilon r / k\right] \leq k 2^{-\epsilon r(1 / \hat{\Delta})^{2 D k^{2}}}$
- Converting Res(k) refutation to Resolution refutation we get that the restricted proof $\left.P\right|_{\rho}$ has width less than ϵr with probability at least $1-S k 2^{-\epsilon r / k(1 / \hat{\Delta})^{2 D k^{2}}}>1-S 2^{-n / 2^{O\left(k^{2}\right)}}$.

The Very Last Step

Proof.

On the other hand it is still refutation of the system which matrix is ($r / 4,0.2$)-boundary expander, so according to
Ben-Sasson-Wigderson lemma the probability of this event must be 0 .
At last we have $S>2^{n / 2^{0\left(k^{2}\right)}}$ and the theorem follows.

