
Course ”Propositional Proof Complexity“, JASS’09

Width-based lower bounds for resolution

Mykola Protsenko

9.5.2009

Contents

1 Notation and definitions 1

2 The Size-Width Relations 3

3 Expansion 5

4 Lover bounds for Tseitin and PHP 5
4.1 Tseitin Formulas . 7
4.2 The Pigeonhole Principle . 8

5 Conclusion 11

1 Notation and definitions

In this section we will introduce some notation used in in this paper.
x will denote a variable over {0, 1}, 1 corresponds to True and 0 - to False.
A literal over x is either x (also x1) or x (x0).
A clause is defined as a disjunction of literals.
A CNF formula is conjunction of clauses.

Example 1 CNF: (x1 ∨ x2) ∧ (x2 ∨ x3 ∨ x4)

Definition 1 Let F = {C1, C2, ...Cm} be a CNF formula over n variables. A Resolution
derivation of a clause A from F is a sequence of clauses π = {D1, D2, ...DS} with DS =
A and each line Di is either initial clause Cj ∈ F or derived from previous lines used one
of derivation rules

• (1) The Resolution Rule
E ∨ x F ∨ x

E ∨ F

1

• (2) The Weakening Rule
E

E ∨ F

where x ∈ {x1, x2, ..., xn} and E, F - arbitrary clauses.

The Weakening rule is not essential, as even without it the Resolution proof system is
complete.

Example 2 Application of resolution rule:

(x1 ∨ x2) ∧ (x2 ∨ x3 ∨ x4) ⇒ (x1 ∨ x3 ∨ x4)

Definition 2 A resolution refutation is a resolution derivation of the empty clause 0.

Example 3 F = { (x1 ∨ x3), (x3 ∨ x2), x2, x1 }

1) (x1 ∨ x3) (x3 ∨ x2) ⇒ (x1 ∨ x2)
2) (x1 ∨ x2) x2 ⇒ x1

3) x1 x1 ⇒ 0 π = { (x1 ∨ x3), (x3 ∨ x2), x2, x1, (x1 ∨ x2), x1, 0 }

The Graph Gπ of a derivation π is a DAG with the clauses of the derivation as nodes
and derivation steps as edges, from the assumption clauses to the consequence clause. If
Gπ is a tree, derivation π is called tree-like. We may make copies of original clauses in F

to make π tree-like.
The size of a derivation π, denoted Sπ, is the number of lines (clauses) in it. S(F) is

the minimal size of a refutation of F, and ST (F) is the minimal size of a tree-like refutation
of F.

Definition 3 The width of a clause C, denoted w(C), is the number of literals in it. The
width of a set of clauses F is the maximal width of a clause in the set:

w(F) = maxC∈F{w(C)}

In most cases input tautologies F have constant width w(F) = O(1).
The width of deriving a clause A from the formula F, denoted w(F ` A), is defined

as
w(F ` A) = minπ{w(π)}

where the minimum is taken over all derivations π of A from F. The notation F `w A
means also that A can be derived from F in width w.

In our scope: width of refutations, namely

w(F ` 0)

2

Definition 4 For C a clause, x a variable and a ∈ {0, 1}, restriction of x on a is:

C |x=a=
def

C, x /∈ C
1, xa ∈ C
C \ {x1−a}, otherwise

Similarly, for F

F |x=a=
def {C |x=a: C ∈ F}

For π = {C1, ...CS} a derivation of CS from F and a ∈ {0, 1}, let π |x=a = {C ′1, ...C ′S}
be the restriction of π on x = a, defined inductively by:

C |x=a=
def

Ci |x=a Ci ∈ C
C ′j1 ∨ C

′
j2

Ci was derived from
Cj1 ∨ y and Cj2 ∨ y via resolution step,
for j1 < j2 < i

C ′j ∨ A |x=a, Ci = Cj ∨ A via the weakening rule,
for j < i

2 The Size-Width Relations

Theorem 1 w(F ` 0) ≤ w(F) + logST (F)

Proof.
We show this by induction on the size of the resolution proof.
The claim holds for ST (F) = 1. Now assume that for all sets F′ of clauses with a

tree-like resolution refutation of size ST (F′) < S, there is tree-like resolution refutation π′

of F with
w(π′) ≤ dlog2 S

′e+ w(F′)

.
Consider a tree-like resolution refutation of F with ST (F) = S. Let x be the last variable

resolved on to derive 0. So, we have two subtrees: one that derives x, and another one
that derives x. One of the two subtrees has size size at most S/2 and the other has size
strictly less that S. Assume W.l.o.g that these are left (deriving x) and right (deriving x)
subtree, respectively.

Since we can prove x from F in size S/2, we can also prove 0 from F |x=1 in size at most
S/2. The induction hypotheses implies that we can also derive 0 from F |x=1 with width
at most w-1:

w(F |x=1` 0) = dlog2(S/2)e+ w(F) = dlog2(S)e+ w(F)− 1

We add x to each of clauses in this proof, so we derive x from F in width w = dlog2(S)e+
w(F).

3

In similar way, starting with another subtree, which has size strictly smaller than S, we
can derive 0 from F |x=0 in width at most w = dlog2(S)e+ w(F).

We can use a copy of the left-sub tree (that derives x) to resolve with each leaf clause
of the right subtree that contains x. This allows us to eliminate x right at the bottom of
the right subtree, and we are effectively left with F |x=0. So, we can derive 0 from this in
width dlog2(S)e+ w(F).

2

Solving the inequality for ST :

Corollary 1 ST (F) ≥ 2w(F`0)−w(F)

Theorem 2 w(F ` 0) ≤ w(F) +O(
√
n lnS(F))

Proof.
The key idea behind this proof is to repeatedly find the popular literals appearing in

large clauses in the given resolution proof. Resolving on these literals at the very beginning
allows us to keep the width of whole proof small.

We call a clause large if it has width at least W =
√

2n lnS. Since there are at most
2n literals and at least W of them appear in any large clause, an average literal must occur
in at least W/2n fraction of large clauses. Let k be such that (1−W/2n)kS ≤ 1. It holds
if k ≤

√
2n lnS. We show by induction on n and k that any F with at most S large clauses

has a proof of width ≤ k + w(F).
The base case is trivial. Assume now that the theorem holds for all smaller values of n

and k.
Choose the literal x that occurs most frequently in large clauses and set it to 1. This,

by what we already observed, will satisfy at least a W/2n fraction of large clauses . What
we get as a result is a refutation of F |x=1 with at most S(1−W/2n) large clauses. By our
induction hypothesis, F |x=1 has a refutation of width at most k − 1 + w(F). Hence there
is a derivation of x from F of width at most k + w(F).

Now consider F |x=0. If we restrict the proof of F which has at most S large clauses,
we get a proof of F |x=0 with at most S large clauses and involving one less variable.
The induction hypothesis implies that there is a refutation of F |x=0 with width at most
k + w(F).

As in the proof of tree-like resolution case, we can use the derivation of x from F in
width at most k + w(F) at each leaf of the proof and resolve x with each clause of F

containing x to get F |x=0. We now use the refutation of the latter set in width k + w(F).
2

Corollary 2 S(F) = exp(Ω(w(F ` 0)− w(F))2n

4

3 Expansion

Let F be a set of unsatisfiable clauses and s(F) - the size of the minimum unsatisfiable
subset of F. We define boundary δF of F to be the set of variable appearing in exactly
one clause of F. Let the sub-critical expansion of F be

e(F) = max
s≤s(F)

min{| δG | : G ⊆ F, s/2 ≤ |G| < s}

For clause C ∈ π and collection of clauses G ⊆ F. Notation G ⇒π C means that all
clauses in G are used in π to derive C.

Definition 5 Define complexity compπ(C) to be the size of set G ⊆ F with G ⇒π C.
By definition compπ(0) ≥ s(F) and compπ(C) = 1 for C ∈ F. compπ is subadditive:

compπ(C) ≤ compπ(A) + compπ(B)

if C is a resolvent of A and B.

The main tool, used in proving lower bounds on width, is the relationship between
width and expansion.

Theorem 3 If π is a resolution refutation of F, then w(π) ≥ e(F).

Proof.
If G ⇒π C then every variable in δG appears in C and so w(C) ≥| δG |. For any

s ≤ s(F) the last clause C in π with compπ < s satisfies w(C) ≥| δG | for some G ⊆ F

with s/2 ≤| G |< s. Maximizing over all choices of s ≤ s((F)) we get w(π) ≥ e(F).
2

4 Lover bounds for Tseitin and PHP

All lower bounds on width follow the same strategy:
(1) Define a complexity measure µ : clauses→ N such that µ(Axiom) ≤ 1
(2) Prove µ(0) is large
(3) Infer that in any refutation there is some clause C with medium size µ(C)
(4) Prove that if µ(C) is medium, then w(C) is large.

First we need to define a measure that will satisfy conditions (1)-(3).
For f a Boolean function, let Vars(f) denote the set of variables appearing in f. Let

α ∈ {0, 1}V ars(f) be an assignment to f. We say that α satisfies f, if f(α) = 1. For C

5

a clause and Γ a set of Boolean functions, let V = V ars(Γ)
⋃
V ars(C). We say that Γ

implies C, denoted Γ |= C, if every assignment satisfying every function γ ∈ Γ satisfies C
as well.

Definition 6 Let A be an unsatisfiable set of Boolean functions, that is, A |= 0, and let
C be a clause.

µA(C) =def min{| A′ |: A′ ⊆ A,A |= C}

µA is a subadditive complexity measure with respect to resolution steps:

Lemma 1 Suppose D was inferred from B, C by a single resolution step. Then for any
set of boolean functions A:

µA(D) ≤ µA(B) + µA(C)

To assure Condition (1), we want µ(Axiom) to be small:

Definition 7 For F a nonsatisfiable CNF we say that A is compatible with F if A |= 0
and ∀C ∈ F µ(C) ≤ 1.

The condition (2) is intuitively for ”hard” tautologies.
The condition (3) can be deduced from the definitions:

Lemma 2 If A is compatible with F, then in every refutation of F there must be a clause
C with

µ(0)

3
≤ µ(C) ≤ 2µ(0)

3

Definition 8 A Boolean function f is called Sensitive if any two distinct falsifying as-
signments α, β ∈ f−1(0), have Hamming distance greater than 1.

Examples of Sensitive functions are PARITY (see below) and OR.

Definition 9 For A a set of Boolean functions, and f ∈ A, a Critical Assignment for
f is an assignment α ∈ {0, 1}V arsA such that

g(α) =

{
0 g = f
1 g 6= f, g ∈ A

For α, β ∈ {0, 1}V ars(A), we say that β is the result of flipping α on the variable x, if

g(α) =

{
1− α(y) y = x
α(y) otherwise

Definition 10 For f a Boolean function and x a variable, we say that f is dependent on
x, if there is some assignment α such that f(α) = 0, but flipping α on x satisfies f.

For A a set of Boolean functions, the Boundary of A, denoted δA, is the set of
variables x such that there is a unique function f ∈ A that is dependent on x.

Note: for F a set of clauses, we have defined a Boundary of F as set of variables
appearing in exactly one clause. These definitions are essentially equivalent.

6

4.1 Tseitin Formulas

A Tseitin contradiction is an unsatisfiable CNF based on combinatorial principle that
for every graph, the sum of degrees of all vertices is even.

Definition 11 Fix G a finite connected graph, with |V (G)| = n. Fix f : V (G) → {0, 1}
a function which is odd-weight, i.e.

∑
v∈V (G) f(v) = 1 (mod 2). Denote by dG(v) the

degree of v in G. Assign distinct variable xe to each e ∈ E(G). For v ∈ V (G) define

PARITYv =def (
⊕
v∈e

xe ≡ f(v) (mod 2))

The Tseitin Contradiction of G and f is:

τ(G, f) =
∧

v∈V (G)

PARITYv

If the maximal degree of G is constant, then initial size and width of τ(G, f) is also
small:

Lemma 3 If d is the maximal degree of G, then τ(G, f) is a d-CNF with at most n · 2d−1

clauses, and nd/2 variables.

One very important lemma:

Lemma 4 If G is connected, then τ(G, f) is contradictory iff f is an odd weight function.

Definition 12 For G a finite graph, the Expansion of G is:

e(G) =def min{|E(V ′, V \V ′)| : V ′ ⊆ V, |V |/3 ≤ |V ′| ≤ 2|V |/3}

The width of refuting τ(G, f) is a bounded from below by the expansion of the graph
G.

Theorem 4 For G a connected graph and f an odd-weight function on V(G),

w(τ(G, f) ` 0) ≥ e(G)

Proof.
Set AV = {PARITYv : v ∈ V (G)} and denote µ(C) = µAV

(C). Every axiom C is one
of the defining axioms of PARITYv. Clearly for this v PARITYv |= C. So, for any axiom
C, µ(C) = 1. We have shown, that AV is compatible for τ(G, f).

Now we claim that µ(0) =| V (G) |, because for any | V ′ |<| V (G() | AV is satisfiable.
This can be explained as follows: let v be some vertex in V
V ′. The formula τ(G, f ′) for

f ′(u) =

{
1− f(uy) u = v
f(u) otherwise

7

So by Lemma 5, τ(G, f ′) is satisfiable. AV is a subformula of τ(G, f ′), and hence satis-
fiable as well. AV (G) is a collection of PARITY functions, which are sensitive. Finally, for
V ′ ⊆ V, δAV ′ = {xe : e ∈ E(V ′, V
V ′)}. This is true because, if e=(v,u), v ∈ V ′, u ∈ V
V ′, then PARITYv is the only function of AV ′ dependent on xe. Hence, e(AV) ≥ e(G) and
we can apply Theorem 3 to complete the proof. 2

4.2 The Pigeonhole Principle

The Pigeonhole Principle with m pigeons and n pigeonholes states that for m > n there
is no 1-1 map from m to n.

This can be stated as formula on n · m variables xij, 1 ≤ i ≤ m, 1 ≤ j ≤ n, where
xij = 1 means that i is mapped to j.

Definition 13 PHPm
n is the conjunction of the sets of clauses:

Pi =def
∨

1≤j≤n

xij

for 1 ≤ i ≤ m
Hj
i,i′ =def xij ∨ xi′j

for 1 ≤ i < i′ ≤ m, 1 ≤ j ≤ n.

For m > n, PHPm
n is unsatisfiable CNF with m · n ≥ n2 variables, O(m2) clauses and

initial width n.

Example 4 PHP 3
2 : m = 3 pigeons, n = 2 holes

P1 = (x11∨x12) P2 = (x21∨x22) P3 = (x31∨x32) H1
12 = (x11∨x21) H1

13 = (x11∨x31)

H1
23 = (x21 ∨ x31) H2

12 = (x11 ∨ x21) H2
13 = (x11 ∨ x31) H2

23 = (x21 ∨ x31)

Resolution of PHPm
n :

w(PHPm
n ` 0) ≤ n

8

Example 5 • Take (x11 ∨ x12 ∨ x13 ∨ ... ∨ x1n) (*)

and (x11 ∨ x21), (x12 ∨ x22), ... (x1n ∨ x2n).

• Apply resolution rue consecutively, to achieve (x11 ∨ x12 ∨ x13 ∨ ... ∨ x1n)

• Then apply the resolution rule with (*) to become 0.

w(PHPm
n ` 0) ≤ n, therefore we cannot achieve lower bound on size via size-width

relation:
ST (F) ≥ 2w(F`0)−w(F)

ST (PHPm
n) ≥ 2w(PHPm

n `0)−w(PHPm
n)

ST (PHPm
n) ≥ 2w(PHPm

n `0)−n

ST (PHPm
n) ≥ 1

There are 2 different ways to generalize the pigeonhole tautologies to reduce the initial
width.

Definition 14 A Nondeterministic Extension of a Boolean function f(−→x) is a func-
tion g(−→x ,−→y) with:

f(−→x) = 1 iff ∃−→y g(−→x ,−→y) = 1

The −→x variables are called Original variables, and the −→y - Extension variables.

Definition 15 EPHPm
n , a Row-Extension of PHPm

n is derived by replacing every row
axiom Pi with some nondeterministic extension CNF formula EPi, using distinct
extension variables −→y i for distinct rows.

One standard extension:

Example 6 Replace each Pi with:

yi0 ∧
n∧
j=1

(yij−1 ∨ xij ∨ yij) ∧ yin

- 3-CNF over n+2 clauses and 2n+1 variables

Theorem 5 For m > n, w(EPHPm
n ` 0) ≥ n/3

9

Proof.
Define A = {Ai : 1 ≤ i ≤ m} where Ai is the conjunction of EPi and all hole axioms

H i,i′

j . We denote AI =
∧
i∈I Ai. Set µ(C) = µA(C).

Clearly, µ(Axiom) ≤ 1, µ(0) = n+ 1, and µ is subadditive. Hence, in every refutation
π there must be a clause C with n/3 ≤ µ(C) < 2n/3. Fix such a C and fix a minimal
I ⊂ [m] such that AI |= C. Let R(C) be the set of rows who have a literal in C.

If | C |≥ n/3, we are done. Otherwise, there must be some i ∈ I\R(C). Take
any assignment α such that AI\i(α) = 1, Ai(α) = C(α) = 0, which must exist by the
minimality of I. Without loss of generality, α sets all variables outside R(C)

⋃
I\i to 0. By

the definition of the Ak’s the 1’s of original variables in α must be a partial matching. But
as | C |< n/3 and | I |≤ 2n/3, there must be a column j in which no original variable is set
to 1. Flip the assignment α to set xij to 1, and extend the nondeterministic variables yi in
any way to set EPi to 1. Call this new assignment β. It is easy to verify, that AI(β) = 1,
C(β) = 0. This is a contradiction.

2

Corollary 3 For all m > n and any Row Extension of PHPm
n , ST (EPHPm

n) = 2Ω(n)

Definition 16 Generalized PHP: Let G = ((V
⊎
U), E) be a bipartite graph, |V | =

m, |U | = n. We assign a distinct variable xe to each edge. G - PHP is the conjunction
of following clauses:

• Pv =def
∨
v∈e xe for v ∈ V

• Hu
v,v′ =def xe ∨ xe′ for e = (v, u), e′ = (v′, u), v, v′ ∈ V, v 6= v′, u ∈ U

Note: PHPm
n = Km,n − PHP

Lemma 5 For any two bipartite graphs G, G’ mit V(G) = V(G’):

E(G′) ⊆ E(G), ⇒ S(G′ − PHP) ≤ S(G − PHP)

It means:
S(PHPm

n) ≥ S(G − PHP)

Definition 17 Bipartite Expansion. For a vertex u ∈ U , let N(u) be its set of neigh-
bors. For a subset V ′ ⊂ V let its boundary be

δV ′ =def {u ∈ U : |N(u)
⋂

V ′| = 1}

A bipartite graph G is a (m,n,d,r,e)-Expander if:

10

• |V | = m, |U | = n

• dG(v) ≤ d for ∀v ∈ V

• ∀ V ′ ⊂ V, |V ′| ≤ r |δV ′| ≥ e|V ′|

Theorem 6 For every bipartite graph G that is an (m,n,d,r,e)-expander

w(G − PHP ` 0) ≥ (r · e)/2

Proof.
We define A = {Av : v ∈ V } with Av as the conjunction of Pv and all hole axioms

Hv,v′
u . Let us denote AV ′ =

∧
v∈V ′ Av. Set µ(C) = µA(C).

µ(Axiom) ≤ 1, µ(0) ≥ r (because every V’ of size | V ′ |≤ r has a matching into
U), and µ is subadditive. Hence, in every refutation π there must be a clause C with
r/2 ≤ µ(C) < r. Fix such a C and fix a minimal V ′ ⊂ V such that AV ′ |= C.

We claim that for each u ∈ δV ′, there must appear in C some variable x(v̂,u), for some
v̂ ∈ V (but not necessarily in V’). Indeed, for such a boundary u, let v be its only neighbor
in V’. Assume for the sake of contradiction that C has no variable x(v̂,u). Let α be the
assignment satisfying AV ′\{v} and falsifying Av and C. Clearly α assigns zero to xv,u. We
assume without loss of generality that α sets to zero all variables x(v̂,u), because this cannot
falsify any axiom Pv, for v′ ∈ V ′ (recall that x(v,u) is a boundary variable). Thus, we may
flip α on x(v,u), and get an assignment satisfying AV ′ , without changing the value of C
(zero), so we get a contradiction. This means, that the width of C is at least the size of
its boundary, and the theorem is proven.

2

5 Conclusion

For τ a contradiction over n variables:

• if exists tree-like refutation of size ST , then there is a refutation of maximal width
log2 ST .

• if it has a general refutation of size S, then it has a refutation of maximal width
O(
√
n logS)

This relations can be useful to

• prove size lover bounds by proving width lover bounds

• develop automatic provers

11

References

• Eli Ben-Sasson and Avi Wigderson ”Short Proofs Are Narrow - Resolution Made
Simple”

• Paul Beame, ”Proof Comlexity” (Lecture Notes)

• Samuel R. Buss ”An Introduction to Proof Theory”

12

	Notation and definitions
	The Size-Width Relations
	Expansion
	Lover bounds for Tseitin and PHP
	Tseitin Formulas
	The Pigeonhole Principle

	Conclusion

