Course "Propositional Proof Complexity", JASS'09

Width-based lower bounds for resolution

Mykola Protsenko

Fakultät für Informatik TU München

May 9, 2009

Mykola Protsenko: Width-based lower bounds for resolution

Introduction

The Size-Width Relations

The Width The Expansion

Lover bounds for Tseitin and PHP

Tseitin formulas The Pigeonhole Principle

Conclusion

Mykola Protsenko: Width-based lower bounds for resolution

Definition 1

- > x variable over $\{0,1\}$, 1 True, 0 False
- A literal over x: x (also x^1) or $\overline{x}(x^0)$
- A clause: a disjunction of literals
- ► A CNF formula: conjunction of clauses

Example 2 CNF: $(\overline{x}_1 \lor x_2) \land (\overline{x}_2 \lor x_3 \lor x_4)$ Definition 3 Let $\mathfrak{F} = \{C_1, C_2, ..., C_m\}$ be a CNF formula over n variables. A Resolution derivation of a clause A from \mathfrak{F} is a sequence of clauses $\pi = \{D_1, D_2, ..., D_S\}$ with

- $\blacktriangleright D_S = A$
- ► Each line D_i is either initial clause $C_j \in \mathfrak{F}$ or derived from previous lines used one of derivation rules
 - (1) The Resolution Rule

$$\frac{E \lor x \quad F \lor \overline{x}}{E \lor F}$$

(2) The Weakening Rule

Mykola Protsenko: Width-based lower bounds for resolution

▶ (1) The Resolution Rule

$$\frac{E \lor x \quad F \lor \overline{x}}{E \lor F}$$

(2) The Weakening Rule

 $\frac{E}{E \lor F}$

Where $x \in \{x_1, x_2, ..., x_n\}$ and E, F - arbitrary clauses.

Example 4

Application of resolution rule:

$$(\overline{x}_1 \lor x_2) \land (\overline{x}_2 \lor x_3 \lor x_4) \quad \Rightarrow \quad (\overline{x}_1 \lor x_3 \lor x_4)$$

Definition 5

A resolution refutation is a resolution derivation of the empty clause 0.

Example 6

$$\mathfrak{F} = \{ (\overline{x}_1 \lor \overline{x}_3), (x_3 \lor \overline{x}_2), x_2, x_1 \}$$
1) $(\overline{x}_1 \lor \overline{x}_3) (x_3 \lor \overline{x}_2) \Rightarrow (\overline{x}_1 \lor \overline{x}_2)$
2) $(\overline{x}_1 \lor \overline{x}_2) x_2 \Rightarrow \overline{x}_1$
3) $\overline{x}_1 x_1 \Rightarrow 0$
 $\pi = \{ (\overline{x}_1 \lor \overline{x}_3), (x_3 \lor \overline{x}_2), x_2, x_1, (\overline{x}_1 \lor \overline{x}_2), \overline{x}_1, 0 \}$

Graph G_{π} :

- Nodes clauses of derivation
- Edges derivation steps, from assumption clause to consequence clause
- G_{π} is a **DAG**
- if G_{π} is a **tree**, derivation π is called **tree-like**
- \blacktriangleright we may make copies of original clauses in $\mathfrak F$ to make π tree-like

Definition 7

 S_{π} , the size of a derivation π is the number of lines (clauses) in it.

- $S(\mathfrak{F})$ is the minimal size of a refutation of \mathfrak{F}
- $S_T(\mathfrak{F})$ is the minimal size of a **tree-like** refutation of \mathfrak{F}

Definition 8

- \blacktriangleright w(C) the width of a clause C: number of literals in it
- The width of a set of clauses \mathfrak{F} :

$$w(\mathfrak{F}) = max_{C \in \mathfrak{F}} \{w(C)\}$$

In most cases input tautologies \mathfrak{F} have $w(\mathfrak{F}) = O(1)$

• $w(\mathfrak{F} \vdash A)$ - the width of deriving a clause A from \mathfrak{F} :

$$w(\mathfrak{F} \vdash A) = min_{\pi}\{w(\pi)\}$$

 $\mathfrak{F} \vdash_w A$ means that A can be derived from \mathfrak{F} in width w. In our scope:

$$w(\mathfrak{F} \vdash 0)$$

Introduction	The Size-Width Relations	Lover bounds for Tseitin and PHP 00000 000000000000000	Conclusion
The Width			

In this section will be shown, that if $\mathfrak F$ has a short resolution refutation then it has a refutation with small width.

Definition 9

For C a clause, x a variable and $a \in \{0, 1\}$, restriction of x on a is:

$$C \mid_{x=a} = {}^{def} \begin{cases} C, & x \notin C \\ 1, & x^a \in C \\ C \setminus \{x^{1-a}\}, & \text{otherwise} \end{cases}$$

For \mathfrak{F} ,

$$\mathfrak{F}\mid_{x=a}=^{def} \{C\mid_{x=a}: C \in \mathfrak{F}\}$$

Introduction

The Size-Width Relations

Lover bounds for Tseitin and PHP

Conclusion

The Width

For $\pi = \{C_1, ..., C_S\}$ a derivation of C_S from \mathfrak{F} and $a \in \{0, 1\}$, let $\pi \mid_{x=a} = \{C'_1, ..., C'_S\}$ be the restriction of π on x = a, with:

$$C \mid_{x=a} = {}^{def} \begin{cases} C_i \mid_{x=a} & C_i \in C \\ C'_{j_1} \lor C'_{j_2} & C_i \text{ was derived from} \\ & C_{j_1} \lor y \text{ and } C_{j_2} \lor \overline{y} \text{ via resolution step}, \\ & \text{for } j_1 < j_2 < i \\ C'_j \lor A \mid_{x=a}, \quad C_i = C_j \lor A \text{ via the weakening rule}, \\ & \text{for } j < i \end{cases}$$

Theorem 10 $w(\mathfrak{F} \vdash 0) \leq w(\mathfrak{F}) + \log S_T(\mathfrak{F})$ Proof.

Induction on Size of refutation.

- **Base case.** $S_T(\mathfrak{F}) = 1$, clear.
- Inductive step. Assume:
 For all β' with a tree-like refutation of size S' < S exists a tree-like resolution refutation π' with

$$w(\pi') \leq \lceil \log_2 S' \rceil + w(\mathfrak{F}')$$

Proof.

- Consider tree-like resolution refutation of \mathfrak{F} , size S.
- Let **x** be the last variable resolved.
- ► W.I.o.g.: x̄ derived with size at most S/2, x with size strictly smaller than S (the sum of them is S-1).
- ► Refutation of $\mathfrak{F} \mid_{x=1}$: $S(\mathfrak{F} \vdash \overline{x}) \leq S/2 \implies S(\mathfrak{F} \mid_{x=1} \vdash 0) \leq S/2$
- Applying induction hypotheses: $w(\mathfrak{F}|_{x=1} \vdash 0) = \lceil \log_2(S/2) \rceil + w(\mathfrak{F}) = \lceil \log_2(S) \rceil + w(\mathfrak{F}) - 1$
- Adding \overline{x} to each clause lets us derive \overline{x} with width $\lceil \log_2(S) \rceil + w(\mathfrak{F})$

Proof.

- Another subtree: $w(\mathfrak{F} \mid_{x=0} \vdash 0) = \lceil \log_2(S) \rceil + w(\mathfrak{F}).$
- ► Use a copy of x̄-subtree to eliminate x in a bottom of x-subtree.
- ▶ It allows us to refute \mathfrak{F} with width $\lceil \log_2(S) \rceil + w(\mathfrak{F})$

Solving the inequality for S_T :

Corollary 11 $S_T(\mathfrak{F}) \ge 2^{w(\mathfrak{F} \vdash 0) - w(\mathfrak{F})}$

Mykola Protsenko: Width-based lower bounds for resolution

Theorem 12 $w(\mathfrak{F} \vdash 0) \le w(\mathfrak{F}) + O(\sqrt{n \ln S(\mathfrak{F})})$

Idea of proof

- find the most popular literals appearing in large clauses
- resolving on these literals at the beginning allows to keep the width of whole proof small

Introduction	The Size-Width Relations	Lover bounds for Tseitin and PHP	Conclusion
	000000 000	00000 0000000000000	
The Width			

Corollary 13

$$S(\mathfrak{F}) = \exp(\Omega(w(\mathfrak{F} \vdash 0) - w(\mathfrak{F}))^2 n$$

The Expansion

Definition 14

Let

- \mathfrak{F} be a set of unsatisfiable clauses.
- $s(\mathfrak{F})$ the size of the minimum unsatisfiable subset of \mathfrak{F}

Define

- ► the boundary δ𝔅 of 𝔅 the set of variables appearing in exactly one clause of 𝔅.
- the sub-critical expansion of \mathfrak{F} :

$$e(\mathfrak{F}) = \max_{s \le s(\mathfrak{F})} \min\{ | \delta G | : G \subseteq \mathfrak{F}, s/2 \le |G| < s \}$$

The Expansion

For clause $C \in \pi$ and collection of clauses $G \subseteq \mathfrak{F}$. Notation $G \Rightarrow_{\pi} C$ means that all clauses in G are used in π to derive C.

Definition 15

Define complexity $comp_{\pi}(C)$ to be the size of set $G \subseteq \mathfrak{F}$ with $G \Rightarrow_{\pi} C$.

• $comp_{\pi}(0) \geq s(\mathfrak{F})$ (By definition)

• $comp_{\pi}(C) = 1$ for $C \in \mathfrak{F}$ (By definition)

 comp_π is subadditive: comp_π(C) ≤ comp_π(A) + comp_π(B) if C is a resolvent of A and B. The Expansion

Lemma 16 If π is a resolution refutation of \mathfrak{F} , then $w(\pi) \ge e(\mathfrak{F})$.

Proof.

- If $G \Rightarrow_{\pi} C$ then $w(C) \ge |\delta G|$.
- For any s ≤ s(𝔅) the last clause C in π with comp_π < s satisfies w(C) ≥ | δG | for some G ⊆ 𝔅 with s/2 ≤ | G | < s.</p>
- Maximizing over all choices of s ≤ s((F)) we become w(π) ≥ e(𝔅)

Reminder:

$$e(\mathfrak{F}) = \max_{s \leq s(\mathfrak{F})} \min\{ \mid \delta G \mid : \ G \subseteq \mathfrak{F}, s/2 \leq |G| < s \}$$

Int				

Conclusion

Tseitin formulas

A **Tseitin contradiction** is an unsatisfiable CNF based on combinatorial principle that for every graph, the sum of degrees of all vertices is even.

Introduction	The Size-Width Relations	Lover bounds for Tseitin and PHP
	0000000	00000 00000000000000000000000000000000
Tseitin formulas		

Definition 17

- Fix G a finite connected graph, with |V(G)| = n.
- ► Fix $f : V(G) \rightarrow \{0, 1\}$ a function with **odd-weight**, i.e. $\sum_{v \in V(G)} f(v) = 1 \pmod{2}$
- $d_G(v)$ **degree** of v in G
- Assign distinct variable x_e to each $e \in E(G)$.

► For
$$v \in V(G)$$
 define
 $PARITY_v =^{def} (\bigoplus_{v \in e} x_e \equiv f(v) \pmod{2})$

The Tseitin Contradiction of G and f is:

$$\tau(G, f) = \bigwedge_{v \in V(G)} PARITY_v$$

Conclusion

Tseitin formulas

If the maximal degree of G is constant, then initial size and width of $\tau(G, f)$ is also small:

Lemma 18

If d is the maximal degree of G, then $\tau(G, f)$ is a d-CNF with at most $n \cdot 2^{d-1}$ clauses, and nd/2 variables.

Tseitin formulas

Definition 19 For G a finite graph, the Expansion of G is:

 $e(G) = def \min\{|E(V', V \setminus V')| : V' \subseteq V, |V|/3 \le |V'| \le 2|V|/3\}$

Lover bounds for Tseitin and PHP

Conclusion

Tseitin formulas

The width of refuting $\tau(G, f)$ is a bounded from below by the expansion of the graph G.

Theorem 20

For G a connected graph and f an odd-weight function on V(G),

 $w(\tau(G,f)\vdash 0)\geq e(G)$

Lover bounds for Tseitin and PHP

Conclusion

Tseitin formulas

The width of refuting $\tau(G, f)$ is a bounded from below by the expansion of the graph G.

Theorem 20

For G a connected graph and f an odd-weight function on V(G),

 $w(\tau(G,f)\vdash 0)\geq e(G)$

Corollary 21

For G a 3-regular connected Expander (i.e. $e(G) = \Omega(|V|)$) and f an odd-weight function on V(G),

$$S(\tau(G,f))=2^{\Omega(|V|)}$$

Mykola Protsenko: Width-based lower bounds for resolution

The Pigeonhole Principle

The Pigeonhole Principle:

- m pigeons
- n pigeonholes
- $m \ge n \Rightarrow$ there is no 1-1 map from m to n

Can be stated as formula on $n \cdot m$ variables x_{ij} , $1 \le i \le m$, $1 \le j \le n$, where $x_{ij} = 1$ means that i is mapped to j.

Lover bounds for Tseitin and PHP

Conclusion

The Pigeonhole Principle

Definition 22 PHP_n^m is the conjunction of the set of clauses:

$$P_i = \stackrel{def}{\bigvee} \bigvee_{1 \le j \le n} x_{ij}$$

for
$$1 \le i \le m$$

 $H^j_{i,i'} =^{def} \overline{x}_{ij} \lor \overline{x}_{i'j}$
for $1 \le i < i' \le m, \ 1 \le j \le n.$

Lover bounds for Tseitin and PHP

The Pigeonhole Principle

 PHP_n^m is a CNF:

- unsatisfiable for m > n
- $m \cdot n \ge n^2$ variables
- ▶ O(m²) clauses
- initial width n

Lover bounds for Tseitin and PHP

Conclusion

The Pigeonhole Principle

Example 23 PHP_2^3 : m = 3 pigeons, n = 2 holes

$$P_{1} = (x_{11} \lor x_{12}) P_{2} = (x_{21} \lor x_{22}) P_{3} = (x_{31} \lor x_{32}) H_{12}^{1} = (\overline{x}_{11} \lor \overline{x}_{21}) H_{13}^{1} = (\overline{x}_{11} \lor \overline{x}_{31}) H_{23}^{1} = (\overline{x}_{21} \lor \overline{x}_{31}) H_{12}^{2} = (\overline{x}_{11} \lor \overline{x}_{21}) H_{13}^{2} = (\overline{x}_{11} \lor \overline{x}_{31}) H_{23}^{2} = (\overline{x}_{21} \lor \overline{x}_{31})$$

Mykola Protsenko: Width-based lower bounds for resolution

The Pigeonhole Principle

Resolution of PHP_n^m :

 $w(PHP_n^m \vdash 0) \leq n$

Example 24

- ► Take $(x_{11} \lor x_{12} \lor x_{13} \lor ... \lor x_{1n})$ (*) and $(\overline{x}_{11} \lor \overline{x}_{21}), (\overline{x}_{12} \lor \overline{x}_{22}), ... (\overline{x}_{1n} \lor \overline{x}_{2n}).$
- ► Apply **resolution rue** consecutively, to achieve $(\overline{x}_{11} \lor \overline{x}_{12} \lor \overline{x}_{13} \lor ... \lor \overline{x}_{1n})$
- ► Then apply the **resolution rule** with (*) to become **0**.

Introduction

The Size-Width Relations

Conclusion

The Pigeonhole Principle

$w(PHP_n^m \vdash 0) \leq n$

\Rightarrow we cannot achieve lower bound on size via size-width relation:

$$S_T(\mathfrak{F}) \geq 2^{w(\mathfrak{F} \vdash 0) - w(\mathfrak{F})}$$

$$egin{aligned} S_{\mathcal{T}}(\mathcal{PHP}_n^m) &\geq 2^{w(\mathcal{PHP}_n^m dash 0) - w(\mathcal{PHP}_n^m)} \ S_{\mathcal{T}}(\mathcal{PHP}_n^m) &\geq 2^{w(\mathcal{PHP}_n^m dash 0) - n} \ S_{\mathcal{T}}(\mathcal{PHP}_n^m) &\geq 1 \end{aligned}$$

Mykola Protsenko: Width-based lower bounds for resolution

30/40

The Pigeonhole Principle

Definition 25 A Nondeterministic Extension of a Boolean function $f(\vec{x})$ is a function $g(\vec{x}, \vec{y})$ with:

$$f(\overrightarrow{x}) = 1$$
 iff $\exists \overrightarrow{y} g(\overrightarrow{x}, \overrightarrow{y}) = 1$

- \overrightarrow{x} **Original** variables
- \overrightarrow{y} **Extension** variables

Lover bounds for Tseitin and PHP

Conclusion

The Pigeonhole Principle

Definition 26 $EPHP_n^m$, a Row-Extension of PHP_n^m : derived by replacing every P_i with some **nondeterministic extension** CNF formula EP_i , using **distinct** extension variables \overrightarrow{y}_i for distinct rows.

The Pigeonhole Principle

One standard extension:

Example 27

Replace each P_i with:

$$\overline{y}_{i0} \wedge \bigwedge_{j=1}^{n} (y_{ij-1} \lor x_{ij} \lor \overline{y}_{ij}) \land y_{in}$$

- 3-CNF over n+2 clauses and 2n+1 variables

Mykola Protsenko: Width-based lower bounds for resolution

Lover bounds for Tseitin and PHP

Conclusion

The Pigeonhole Principle

Theorem 28 For m > n, $w(EPHP_n^m \vdash 0) \ge n/3$

Mykola Protsenko: Width-based lower bounds for resolution

Lover bounds for Tseitin and PHP

Conclusion

The Pigeonhole Principle

Theorem 28 For m > n, $w(EPHP_n^m \vdash 0) \ge n/3$

Corollary 29 For all m > n and any Row Extension of PHP_n^m , $S_T(EPHP_n^m) = 2^{\Omega(n)}$

The Pigeonhole Principle

Definition 30 Generalized PHP:

•
$$G = ((V \biguplus U), E)$$
 - bipartite graph

$$\blacktriangleright |V| = m, \quad |U| = n$$

x_e - distinct variable assigned to each edge

${\bf G}$ - ${\bf PHP}$ is the conjunction of

$$P_{v} = {}^{def} \bigvee_{v \in e} x_{e} \quad for \quad v \in V$$

$$H^{u}_{v,v'} = {}^{def} \overline{x}_{e} \lor \overline{x}_{e'} \quad for \quad e = (v, u), \ e' = (v', u), \quad v, v' \in V, \ v \neq v', \ u \in U$$

Note: $PHP_n^m = K_{m,n} - PHP$

Lover bounds for Tseitin and PHP

Conclusion

The Pigeonhole Principle

Lemma 31 For any two bipartite graphs G, G' mit V(G) = V(G'):

$$E(G') \subseteq E(G), \quad \Rightarrow \quad S(G' - PHP) \leq S(G - PHP)$$

It means:

$$S(PHP_n^m) \ge S(G - PHP)$$

The Pigeonhole Principle

Definition 32 Bipartite Expansion. For a vertex $u \in U$, let N(u) be its set of neighbors. For a subset $V' \subset V$ let its **boundary** be

$$\delta V' =^{def} \{ u \in U : |N(u) \bigcap V'| = 1 \}$$

A bipartite graph G is a (m,n,d,r,e)-Expander if:

$$|V| = m, |U| = n$$

$$d_G(v) \le d \text{ for } \forall v \in V$$

$$\forall V' \subset V, |V'| \le r \quad |\delta V'| \ge e|V'$$

The Pigeonhole Principle

Theorem 33 For every bipartite graph **G** that is an (m,n,d,r,e)-expander

$$w(G - PHP \vdash 0) \geq (r \cdot e)/2$$

The Pigeonhole Principle

For $\mathsf{m}=\mathsf{n}+1$ there exist (m,n,5,n/c,1)-expanders for some constant $c\geq 1$

Corollary 34 $S(PHP_n^{n+1}) = 2^{\Omega(n)}$ For $m \gg n$ there exist $(m, n, \log m, \Omega(n/\log m), \frac{3}{4} \log m)$ -expanders Corollary 35 $S(PHP_n^m) = 2^{\Omega(n^2/m \log m)}$ For τ a contradiction over n variables:

- ▶ if exists tree-like refutation of size S_T, then there is a refutation of maximal width log₂ S_T.
- ▶ if it has a general refutation of size S, then it has a refutation of maximal width $O(\sqrt{n \log S})$

This relations can be useful to

- prove size lover bounds by proving width lover bounds
- develop automatic provers