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Definition 1

I x - variable over {0, 1}, 1 - True, 0 - False

I A literal over x: x (also x1) or x (x0)

I A clause: a disjunction of literals

I A CNF formula: conjunction of clauses

Example 2

CNF: (x1 ∨ x2) ∧ (x2 ∨ x3 ∨ x4)
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Definition 3
Let F = {C1,C2, ...Cm} be a CNF formula over n variables. A
Resolution derivation of a clause A from F is a sequence of clauses
π = {D1,D2, ...DS} with

I DS = A

I Each line Di is either initial clause Cj ∈ F or derived from
previous lines used one of derivation rules

I (1) The Resolution Rule

E ∨ x F ∨ x

E ∨ F

I (2) The Weakening Rule

E

E ∨ F
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I (1) The Resolution Rule

E ∨ x F ∨ x

E ∨ F

I (2) The Weakening Rule

E

E ∨ F

Where x ∈ {x1, x2, ..., xn} and E, F - arbitrary clauses.

Example 4

Application of resolution rule:

(x1 ∨ x2) ∧ (x2 ∨ x3 ∨ x4) ⇒ (x1 ∨ x3 ∨ x4)
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Definition 5
A resolution refutation is a resolution derivation of the empty
clause 0.

Example 6

F = { (x1 ∨ x3), (x3 ∨ x2), x2, x1 }

1) (x1 ∨ x3) (x3 ∨ x2) ⇒ (x1 ∨ x2)
2) (x1 ∨ x2) x2 ⇒ x1

3) x1 x1 ⇒ 0

π = { (x1 ∨ x3), (x3 ∨ x2), x2, x1, (x1 ∨ x2), x1, 0 }
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Graph Gπ:

I Nodes - clauses of derivation

I Edges - derivation steps, from assumption clause to
consequence clause

I Gπ is a DAG

I if Gπ is a tree, derivation π is called tree-like

I we may make copies of original clauses in F to make π
tree-like
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Definition 7
Sπ, the size of a derivation π is the number of lines (clauses) in it.

I S(F) is the minimal size of a refutation of F

I ST (F) is the minimal size of a tree-like refutation of F
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Definition 8

I w(C) - the width of a clause C: number of literals in it

I The width of a set of clauses F:

w(F) = maxC∈F{w(C )}

In most cases input tautologies F have w(F) = O(1)

I w(F ` A) - the width of deriving a clause A from F:

w(F ` A) = minπ{w(π)}

F `w A means that A can be derived from F in width w. In our
scope:

w(F ` 0)
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The Width

In this section will be shown, that if F has a short resolution
refutation then it has a refutation with small width.

Definition 9
For C a clause, x a variable and a ∈ {0, 1}, restriction of x on a is:

C |x=a=def


C , x /∈ C
1, xa ∈ C
C \ {x1−a}, otherwise

For F,
F |x=a=def {C |x=a: C ∈ F}
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The Width

For π = {C1, ...CS} a derivation of CS from F and a ∈ {0, 1}, let
π |x=a = {C ′1, ...C ′S} be the restriction of π on x = a, with:

C |x=a=def



Ci |x=a Ci ∈ C
C ′j1 ∨ C ′j2 Ci was derived from

Cj1 ∨ y and Cj2 ∨ y via resolution step,
for j1 < j2 < i

C ′j ∨ A |x=a, Ci = Cj ∨ A via the weakening rule,

for j < i
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The Width

Theorem 10
w(F ` 0) ≤ w(F) + log ST (F)

Proof.
Induction on Size of refutation.

I Base case. ST (F) = 1, clear.

I Inductive step. Assume:
For all F′ with a tree-like refutation of size S ′ < S exists a
tree-like resolution refutation π′ with

w(π′) ≤ dlog2 S ′e+ w(F′)
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The Width

Proof.

I Consider tree-like resolution refutation of F, size S.

I Let x be the last variable resolved.

I W.l.o.g.: x derived with size at most S/2, x - with size strictly
smaller than S (the sum of them is S-1).

I Refutation of F |x=1:
S(F ` x) ≤ S/2 ⇒ S(F |x=1` 0) ≤ S/2

I Applying induction hypotheses:
w(F |x=1` 0) = dlog2(S/2)e+ w(F) = dlog2(S)e+ w(F)− 1

I Adding x to each clause lets us derive x with width
dlog2(S)e+ w(F)
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The Width

Proof.

I Another subtree: w(F |x=0` 0) = dlog2(S)e+ w(F).

I Use a copy of x-subtree to eliminate x in a bottom of
x-subtree.

I It allows us to refute F with width dlog2(S)e+ w(F)
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The Width

Solving the inequality for ST :

Corollary 11

ST (F) ≥ 2w(F`0)−w(F)
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The Width

Theorem 12
w(F ` 0) ≤ w(F) + O(

√
n ln S(F))

Idea of proof

I find the most popular literals appearing in large clauses

I resolving on these literals at the beginning allows to keep the
width of whole proof small
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The Width

Corollary 13

S(F) = exp(Ω(w(F ` 0)− w(F))2n
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The Expansion

Definition 14
Let

I F be a set of unsatisfiable clauses.

I s(F) the size of the minimum unsatisfiable subset of F

Define

I the boundary δF of F - the set of variables appearing in
exactly one clause of F.

I the sub-critical expansion of F:

e(F) = max
s≤s(F)

min{| δG | : G ⊆ F, s/2 ≤ |G | < s}
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The Expansion

For clause C ∈ π and collection of clauses G ⊆ F. Notation
G ⇒π C means that all clauses in G are used in π to derive C.

Definition 15
Define complexity compπ(C ) to be the size of set G ⊆ F with
G ⇒π C .

I compπ(0) ≥ s(F) (By definition)

I compπ(C ) = 1 for C ∈ F (By definition)

I compπ is subadditive: compπ(C ) ≤ compπ(A) + compπ(B) if
C is a resolvent of A and B.
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The Expansion

Lemma 16
If π is a resolution refutation of F, then w(π) ≥ e(F).

Proof.

I If G ⇒π C then w(C ) ≥| δG |.
I For any s ≤ s(F) the last clause C in π with compπ < s

satisfies w(C ) ≥| δG | for some G ⊆ F with s/2 ≤| G |< s.

I Maximizing over all choices of s ≤ s((F )) we become
w(π) ≥ e(F)

Reminder:

e(F) = max
s≤s(F)

min{| δG | : G ⊆ F, s/2 ≤ |G | < s}
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Tseitin formulas

A Tseitin contradiction is an unsatisfiable CNF based on
combinatorial principle that for every graph, the sum of degrees of
all vertices is even.
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Tseitin formulas

Definition 17

I Fix G a finite connected graph, with |V (G )| = n.

I Fix f : V (G )→ {0, 1} a function with odd-weight, i.e.∑
v∈V (G) f (v) = 1 (mod 2)

I dG (v) - degree of v in G

I Assign distinct variable xe to each e ∈ E (G ).

I For v ∈ V (G ) define
PARITYv =def (

⊕
v∈e xe ≡ f (v) (mod 2))

The Tseitin Contradiction of G and f is:

τ(G , f ) =
∧

v∈V (G)

PARITYv

Mykola Protsenko: Width-based lower bounds for resolution 21/ 40



Introduction The Size-Width Relations Lover bounds for Tseitin and PHP Conclusion

Tseitin formulas

If the maximal degree of G is constant, then initial size and width
of τ(G , f ) is also small:

Lemma 18
If d is the maximal degree of G, then τ(G , f ) is a d-CNF with at
most n · 2d−1 clauses, and nd/2 variables.
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Tseitin formulas

Definition 19
For G a finite graph, the Expansion of G is:

e(G ) =def min{|E (V ′,V \V ′)| : V ′ ⊆ V , |V |/3 ≤ |V ′| ≤ 2|V |/3}
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Tseitin formulas

The width of refuting τ(G , f ) is a bounded from below by the
expansion of the graph G.

Theorem 20
For G a connected graph and f an odd-weight function on V(G),

w(τ(G , f ) ` 0) ≥ e(G )

Corollary 21

For G a 3-regular connected Expander ( i.e. e(G ) = Ω(|V |) ) and f
an odd-weight function on V (G ),

S(τ(G , f )) = 2Ω(|V |)
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The Pigeonhole Principle

The Pigeonhole Principle:

I m pigeons

I n pigeonholes

I m ≥ n ⇒ there is no 1-1 map from m to n

Can be stated as formula on n ·m variables xij , 1 ≤ i ≤ m,
1 ≤ j ≤ n, where xij = 1 means that i is mapped to j.
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The Pigeonhole Principle

Definition 22
PHPm

n is the conjunction of the set of clauses:

Pi =def
∨

1≤j≤n

xij

for 1 ≤ i ≤ m
H j

i ,i ′ =def x ij ∨ x i ′j

for 1 ≤ i < i ′ ≤ m, 1 ≤ j ≤ n.
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The Pigeonhole Principle

PHPm
n is a CNF:

I unsatisfiable for m > n

I m · n ≥ n2 variables

I O(m2) clauses

I initial width n

Mykola Protsenko: Width-based lower bounds for resolution 27/ 40



Introduction The Size-Width Relations Lover bounds for Tseitin and PHP Conclusion

The Pigeonhole Principle

Example 23

PHP3
2 : m = 3 pigeons, n = 2 holes

P1 = (x11 ∨ x12) P2 = (x21 ∨ x22) P3 = (x31 ∨ x32)
H1

12 = (x11 ∨ x21) H1
13 = (x11 ∨ x31) H1

23 = (x21 ∨ x31)

H2
12 = (x11 ∨ x21) H2

13 = (x11 ∨ x31) H2
23 = (x21 ∨ x31)
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The Pigeonhole Principle

Resolution of PHPm
n :

w(PHPm
n ` 0) ≤ n

Example 24

I Take (x11 ∨ x12 ∨ x13 ∨ ... ∨ x1n) (*)
and (x11 ∨ x21), (x12 ∨ x22), ... (x1n ∨ x2n).

I Apply resolution rue consecutively, to achieve
(x11 ∨ x12 ∨ x13 ∨ ... ∨ x1n)

I Then apply the resolution rule with (*) to become 0.
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The Pigeonhole Principle

w(PHPm
n ` 0) ≤ n

⇒ we cannot achieve lower bound on size via size-width relation:

ST (F) ≥ 2w(F`0)−w(F)

ST (PHPm
n ) ≥ 2w(PHPm

n `0)−w(PHPm
n )

ST (PHPm
n ) ≥ 2w(PHPm

n `0)−n

ST (PHPm
n ) ≥ 1
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The Pigeonhole Principle

Definition 25
A Nondeterministic Extension of a Boolean function f (−→x ) is a
function g(−→x ,−→y ) with:

f (−→x ) = 1 iff ∃−→y g(−→x ,−→y ) = 1

I −→x - Original variables

I −→y - Extension variables
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The Pigeonhole Principle

Definition 26
EPHPm

n , a Row-Extension of PHPm
n :

derived by replacing every Pi with some nondeterministic
extension CNF formula EPi , using distinct extension variables −→y i

for distinct rows.
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The Pigeonhole Principle

One standard extension:

Example 27

Replace each Pi with:

y i0 ∧
n∧

j=1

(yij−1 ∨ xij ∨ y ij) ∧ yin

- 3-CNF over n+2 clauses and 2n+1 variables
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The Pigeonhole Principle

Theorem 28
For m > n, w(EPHPm

n ` 0) ≥ n/3

Corollary 29

For all m > n and any Row Extension of PHPm
n ,

ST (EPHPm
n ) = 2Ω(n)
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The Pigeonhole Principle

Definition 30
Generalized PHP:

I G = ((V
⊎

U),E ) - bipartite graph

I |V | = m, |U| = n

I xe - distinct variable assigned to each edge

G - PHP is the conjunction of

I Pv =def
∨

v∈e xe for v ∈ V

I Hu
v ,v ′ =def xe ∨ xe′ for e = (v , u), e ′ =

(v ′, u), v , v ′ ∈ V , v 6= v ′, u ∈ U

Note: PHPm
n = Km,n − PHP
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The Pigeonhole Principle

Lemma 31
For any two bipartite graphs G, G’ mit V(G) = V(G’):

E (G ′) ⊆ E (G ), ⇒ S(G ′ − PHP) ≤ S(G − PHP)

It means:
S(PHPm

n ) ≥ S(G − PHP)

Mykola Protsenko: Width-based lower bounds for resolution 36/ 40



Introduction The Size-Width Relations Lover bounds for Tseitin and PHP Conclusion

The Pigeonhole Principle

Definition 32
Bipartite Expansion. For a vertex u ∈ U, let N(u) be its set of
neighbors. For a subset V ′ ⊂ V let its boundary be

δV ′ =def {u ∈ U : |N(u)
⋂

V ′| = 1}

A bipartite graph G is a (m,n,d,r,e)-Expander if:

I |V | = m, |U| = n

I dG (v) ≤ d for ∀v ∈ V

I ∀ V ′ ⊂ V , |V ′| ≤ r |δV ′| ≥ e|V ′|
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The Pigeonhole Principle

Theorem 33
For every bipartite graph G that is an (m,n,d,r,e)-expander

w(G − PHP ` 0) ≥ (r · e)/2
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The Pigeonhole Principle

For m = n + 1 there exist (m, n, 5, n/c , 1)-expanders for some
constant c ≥ 1

Corollary 34

S(PHPn+1
n ) = 2Ω(n)

For m� n there exist (m, n, log m,Ω(n/ log m), 3
4 log m)-expanders

Corollary 35

S(PHPm
n ) = 2Ω(n2/m log m)

Mykola Protsenko: Width-based lower bounds for resolution 39/ 40



Introduction The Size-Width Relations Lover bounds for Tseitin and PHP Conclusion

For τ a contradiction over n variables:

I if exists tree-like refutation of size ST , then there is a
refutation of maximal width log2 ST .

I if it has a general refutation of size S, then it has a refutation
of maximal width O(

√
n log S)

This relations can be useful to

I prove size lover bounds by proving width lover bounds

I develop automatic provers
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