Course "Propositional Proof Complexity", JASS'09

Polynomial Calculus

Maximilian Schlund
Fakultät für Informatik
TU München

May 7, 2009

Motivation(?)
Preliminaries
Polynomials and Propositional Logic
Nullstellensatz
Polynomial calculus

Properties of PC and Relation to other Proof systems
Simple Properties
Relation to other proof systems
Lower bounds
Seperation of NS and PC

What is "Polynomial Calculus" good for?

- proof system for refuting systems of polynomial equations
- "strong" proof system (e.g. compared to resolution)
- quite efficient algorithms for automatic proof search (Groebner Bases - Buchberger's Algorithm)

We will consider two types of algebraic proof systems:

- Nullstellensatz proof system (NS)
- Polynomial calculus (PC) - stronger than NS

Both systems try to prove that a system of polynomial equations $g(x)=0$ has no solution.

Connection to Propositional Logic: Translating a propositional formula into a system of equations $g(x)=0$ that is satisfiable if and only if the formula is satisfiable. One possibility to do this is to use the following (recursive) translation Φ :

X	$\Phi(X)$
\top	$0=0$
\perp	$1=0$
x_{i}	$\left(1-x_{i}\right)=0$
$\neg A$	$1-\Phi(A)=0$
$A \vee B$	$\Phi(A) \cdot \Phi(B)=0$

For each variable x_{i} add the equation " $x_{i}^{2}-x_{i}=0$ " (expresses $x_{i} \in\{0,1\}$) (Normally we ommit the " $=0$ ")

Connection to Propositional Logic: Translating a propositional formula into a system of equations $g(x)=0$ that is satisfiable if and only if the formula is satisfiable. One possibility to do this is to use the following (recursive) translation Φ :

X	$\Phi(X)$
\top	$0=0$
\perp	$1=0$
x_{i}	$\left(1-x_{i}\right)=0$
$\neg A$	$1-\Phi(A)=0$
$A \vee B$	$\Phi(A) \cdot \Phi(B)=0$

For each variable x_{i} add the equation " $x_{i}^{2}-x_{i}=0$ " (expresses $x_{i} \in\{0,1\}$) (Normally we ommit the " $=0$ ")

$$
x \vee y \rightarrow z \rightsquigarrow[1-(1-x)(1-y)] z \rightsquigarrow x z+y z-x y z
$$

Theorem 1 (Hilbert's (weak) Nullstellensatz)
Let F be an algebraically closed field and f_{1}, \ldots, f_{n} be a system of polynomials over F. This system of polynomials is unsatisfiable if and only if 1 is in the ideal generated by the f_{1}, \ldots, f_{n}.

$$
\nexists x \in F^{m} \cdot \forall 1 \leq i \leq n . f_{i}(x)=0 \Leftrightarrow \exists g_{1}, \ldots, g_{n}: \sum_{i=1}^{n} g_{i} f_{i}=1
$$

Nullstellensatz proof system A proof in the NS proof system of the unsatisfiability of p_{1}, \ldots, p_{n} is a system q_{1}, \ldots, q_{n} such that

$$
\sum_{i=1}^{n} p_{i} q_{i}=1
$$

A measure for the size of a NS proof is $\max _{i}\left(\operatorname{deg}\left(q_{i}\right)\right)$.

Polynomial calculus Starts with a system of polynomials and tries to prove the constant polynomial 1 (i.e. the unsatisfiable equation $1=0$) using the following inference rules:

$$
\begin{aligned}
& \frac{P Q}{a P+b Q} \quad(\text { with } a, b \in F) \\
& \frac{P}{x P} \quad\left(\text { with } x \in\left\{x_{1}, \ldots, x_{n}\right\}\right)
\end{aligned}
$$

Axioms

$$
x_{i}^{2}-x_{i} \quad\left(\text { for all Variables } x_{i}\right)
$$

These axioms force the variables to take only boolean values. By moving all calculations to the quotient ring $K\left[x_{1}, \ldots, x_{n}\right] / I$, where I is the ideal generated by the axiom polynomials we can get rid of stating and using the axioms explicitly.

The size of a PC proof is measured as the maximum degree over all polynomials appearing in the proof.
We write $p_{1}, \ldots, p_{n} \vdash_{d} q$ if q has a PC proof from the p_{i} with size at most d
A proof $p_{1}, \ldots, p_{n} \vdash_{d} q$ in PC can be expressed as a list of polynomials r_{1}, \ldots, r_{k}, q where each r_{i} is either an axiom (i.e. $x^{2}-x$), an assumption (one of the p_{j}) or it is derived from some previous (i.e. some r_{j} with $j<i$) polynomials in the proof.

Because of the axioms $x_{i}^{2}-x_{i}$ (more explicit: $x_{i}^{2}=x_{i}$) or more formally by looking at the quotient ring $K\left[x_{1}, \ldots, x_{n}\right] / I$ (with $/$ the ideal generated by the $x_{i}^{2}-x_{i}$), we can restrict ourselves to to multilinear polynomials (i.e. each variable has an exponent of at most 1) appearing in the proof. For example

$$
\begin{gathered}
x^{2} y^{2} z \rightsquigarrow x y^{2} z \rightsquigarrow x y z \\
\frac{x^{2} y^{2} z \quad \frac{x^{2}-x}{x^{2} y^{2} z-x y^{2} z}}{x y^{2} z}
\end{gathered}
$$

Obvious: The space of all multi-linear polynomials of degree at most d over F is a vector space.
Let $m(p)$ denote the mapping that maps every polynomial to the corresponding multilinear polynomial (i.e. replaces every x^{n} with x). So $m(p)$ is just the canonical (surjective) quotient map from $K\left[x_{1}, \ldots, x_{n}\right]$ to $K\left[x_{1}, \ldots, x_{n}\right] / I$.
Definition 2
Let $V_{d}\left(p_{1}, \ldots, p_{n}\right)$ denote the smallest subspace V of this space that

1) includes all p_{i} and
2) if $p \in V$ and $\operatorname{deg}(p) \leq d-1$ then $m(x p) \in V$

Characterization of formulas provable via bounded degree PC proofs.
Theorem 3
Let p_{1}, \ldots, p_{n}, q be multi-linear polynomials of degree at most d then:

$$
p_{1}, \ldots, p_{n} \vdash_{d} q \Leftrightarrow q \in V_{d}\left(p_{1}, \ldots, p_{n}\right)
$$

Proof.
Define $V:=\left\{q \mid q\right.$ multi - linear, $\left.p_{1}, \ldots, p_{n} \vdash_{d} q\right\}$. We have to show that $V_{d}\left(p_{1}, \ldots, p_{n}\right)=V$

Characterization of formulas provable via bounded degree PC proofs.
Theorem 3
Let p_{1}, \ldots, p_{n}, q be multi-linear polynomials of degree at most d then:

$$
p_{1}, \ldots, p_{n} \vdash_{d} q \Leftrightarrow q \in V_{d}\left(p_{1}, \ldots, p_{n}\right)
$$

Proof.

Define $V:=\left\{q \mid q\right.$ multi - linear, $\left.p_{1}, \ldots, p_{n} \vdash_{d} q\right\}$. We have to show that $V_{d}\left(p_{1}, \ldots, p_{n}\right)=V$
$" \Leftarrow "$: prove $V_{d}\left(p_{1}, \ldots, p_{n}\right) \subseteq V$ by showing that V has all the properties of $V_{d}\left(p_{1}, \ldots, p_{n}\right)$.

Characterization of formulas provable via bounded degree PC proofs.

Theorem 3

Let p_{1}, \ldots, p_{n}, q be multi-linear polynomials of degree at most d then:

$$
p_{1}, \ldots, p_{n} \vdash_{d} q \Leftrightarrow q \in V_{d}\left(p_{1}, \ldots, p_{n}\right)
$$

Proof.
Define $V:=\left\{q \mid q\right.$ multi - linear, $\left.p_{1}, \ldots, p_{n} \vdash_{d} q\right\}$. We have to show that $V_{d}\left(p_{1}, \ldots, p_{n}\right)=V$
$" \Leftarrow "$: prove $V_{d}\left(p_{1}, \ldots, p_{n}\right) \subseteq V$ by showing that V has all the properties of $V_{d}\left(p_{1}, \ldots, p_{n}\right)$.
$" \Rightarrow "$: Assume there is a $q \in V-V_{d}\left(p_{1}, \ldots, p_{n}\right)$. Then q has a degree d proof in PC r_{1}, \ldots, r_{m}. Let r_{i} be the first line with $m\left(r_{i}\right) \notin V_{d}\left(p_{1}, \ldots, p_{n}\right)$. Distinguish cases for r_{i} and derive contradiction.

This result also yields an algorithm for determining if q is provable from p_{1}, \ldots, p_{n} by a degree d PC proof: Compute a basis for $V_{d}\left(p_{1}, \ldots, p_{n}\right)$ and then check if q lies in the vector space.

Lemma 4

Let \times be a variable and $p, p_{1}, \ldots, p_{k}, q, q^{\prime}$ be multilinear polynomials of degree at most d

1. If $p_{1}, \ldots, p_{k}, x \vdash_{d} 1$ then $p_{1}, \ldots, p_{k} \vdash_{d+1} 1-x$
2. If $p_{1}, \ldots, p_{k}, 1-x \vdash_{d} 1$ then $p_{1}, \ldots, p_{k} \vdash_{d+1} x$
3. $p,\left.x \vdash_{d} p\right|_{x=0}$
4. $p, 1-\left.x \vdash_{d} p\right|_{x=1}$
5. If $p_{1}, \ldots, p_{k} \vdash_{d} q$ and $p_{1}, \ldots, p_{k}, q \vdash_{d} q^{\prime}$ then $p_{1}, \ldots, p_{k} \vdash_{d} q^{\prime}$
6. If $\left.p_{1}\right|_{x=0}, \ldots,\left.p_{k}\right|_{x=0} \vdash_{d} 1$ and $\left.p_{1}\right|_{x=1}, \ldots,\left.p_{k}\right|_{x=1} \vdash_{d+1} 1$ then $p_{1}, \ldots, p_{k} \vdash_{d+1} 1$
7. If $\left.p_{1}\right|_{x=1}, \ldots,\left.p_{k}\right|_{x=1} \vdash_{d} 1$ and $\left.p_{1}\right|_{x=0}, \ldots,\left.p_{k}\right|_{x=0} \vdash_{d+1} 1$ then $p_{1}, \ldots, p_{k} \vdash_{d+1} 1$

Part 1: If $p_{1}, \ldots, p_{k}, x \vdash_{d} 1$ then $p_{1}, \ldots, p_{k} \vdash_{d+1} 1-x$

Part 1: If $p_{1}, \ldots, p_{k}, x \vdash_{d} 1$ then $p_{1}, \ldots, p_{k} \vdash_{d+1} 1-x$
Proof.
Let $p_{1}, \ldots, p_{k}, x, r_{1}, \ldots, r_{k}, 1$ be a PC refutation of p_{1}, \ldots, p_{k}, x with degree d.
Then $p_{1}, \ldots, p_{k}, p_{1}(1-x), \ldots, p_{k}(1-x), x(1-x), r_{1}(1-$ $x), \ldots, r_{k}(1-x),(1-x)$ is a degree $d+1 \mathrm{PC}$ proof of $1-x$.

Part 1: If $p_{1}, \ldots, p_{k}, x \vdash_{d} 1$ then $p_{1}, \ldots, p_{k} \vdash_{d+1} 1-x$
Proof.
Let $p_{1}, \ldots, p_{k}, x, r_{1}, \ldots, r_{k}, 1$ be a PC refutation of p_{1}, \ldots, p_{k}, x with degree d.
Then $p_{1}, \ldots, p_{k}, p_{1}(1-x), \ldots, p_{k}(1-x), x(1-x), r_{1}(1-$ $x), \ldots, r_{k}(1-x),(1-x)$ is a degree $d+1 \mathrm{PC}$ proof of $1-x$. Explanation: $p_{i}(1-x)$ can be derived from $p_{i}, x(1-x)$ is an axiom, so it can be trivially derived and $r_{i}(1-x)$ can be proved like r_{i} in the original refutation:

$$
\frac{q_{j} q_{l}}{a q_{j}+b q_{l}=r_{i}} \rightsquigarrow \frac{(1-x) q_{j} \quad(1-x) q_{l}}{(1-x)\left(a q_{j}+b q_{l}\right)=(1-x) r_{i}}
$$

What if e.g. q_{l} is x ? We do not have x as an assumption anymore...

Part 1: If $p_{1}, \ldots, p_{k}, x \vdash_{d} 1$ then $p_{1}, \ldots, p_{k} \vdash_{d+1} 1-x$
Proof.
Let $p_{1}, \ldots, p_{k}, x, r_{1}, \ldots, r_{k}, 1$ be a PC refutation of p_{1}, \ldots, p_{k}, x with degree d.
Then $p_{1}, \ldots, p_{k}, p_{1}(1-x), \ldots, p_{k}(1-x), x(1-x), r_{1}(1-$ $x), \ldots, r_{k}(1-x),(1-x)$ is a degree $d+1 \mathrm{PC}$ proof of $1-x$. Explanation: $p_{i}(1-x)$ can be derived from $p_{i}, x(1-x)$ is an axiom, so it can be trivially derived and $r_{i}(1-x)$ can be proved like r_{i} in the original refutation:

$$
\frac{q_{j} q_{l}}{a q_{j}+b q_{l}=r_{i}} \rightsquigarrow \frac{(1-x) q_{j} \quad(1-x) q_{l}}{(1-x)\left(a q_{j}+b q_{l}\right)=(1-x) r_{i}}
$$

What if e.g. q_{l} is x ? We do not have x as an assumption anymore... \rightsquigarrow but it turns into an axiom!

$$
\frac{q_{j} x}{a q_{j}+b x=r_{i}} \rightsquigarrow \frac{(1-x) q_{j}(1-x) x}{(1-x)\left(a q_{j}+b x\right)=(1-x) r_{i}}
$$

Part 2: If $p_{1}, \ldots, p_{k}, 1-x \vdash_{d} 1$ then $p_{1}, \ldots, p_{k} \vdash_{d+1} x$
Proof.
Essentially same proof as 1 .
Part 3: $p,\left.x \vdash_{d} p\right|_{x=0}$
Proof.
Multiply x by appropriate variables and then subtract from p to cancel out all terms in p that contain x.

Part 4: $p,\left.(1-x) \vdash_{d} p\right|_{x=1}$
Proof.
Essentially same proof as 3 .
Part 5: If $p_{1}, \ldots, p_{k} \vdash_{d} q$ and $p_{1}, \ldots, p_{k}, q \vdash_{d} q^{\prime}$ then $p_{1}, \ldots, p_{k} \vdash_{d} q^{\prime}$

Proof.
Concatenate the proofs.

Part 6: If $\left.p_{1}\right|_{x=0}, \ldots,\left.p_{k}\right|_{x=0} \vdash_{d} 1$ and $\left.p_{1}\right|_{x=1}, \ldots,\left.p_{k}\right|_{x=1} \vdash_{d+1} 1$ then $p_{1}, \ldots, p_{k} \vdash_{d+1} 1$
Proof.
With Part 3 we get $p_{1}, \ldots, p_{k},\left.x \vdash_{d} p_{1}\right|_{x=0}, \ldots,\left.p_{k}\right|_{x=0} \vdash_{d} 1$. And by Part 1 it follows: $p_{1}, \ldots, p_{k} \vdash_{d+1} 1-x$. Since $\left.p_{1}\right|_{x=1}, \ldots,\left.p_{k}\right|_{x=1} \vdash_{d+1} 1$ we get $p_{1}, \ldots, p_{k}, 1-x \vdash_{d+1} 1$ and by Part 5 we obtain $p_{1}, \ldots, p_{k}, \vdash_{d+1} 1$ by concatenating the proofs.
Part 7:If $\left.p_{1}\right|_{x=1}, \ldots,\left.p_{k}\right|_{x=1} \vdash_{d} 1$ and $\left.p_{1}\right|_{x=0}, \ldots,\left.p_{k}\right|_{x=0} \vdash_{d+1} 1$ then $p_{1}, \ldots, p_{k} \vdash_{d+1} 1$

Proof.
Essentially same proof as 6 .

Theorem 5

If the set of Clauses C_{1}, \ldots, C_{n} of size at most k has a tree-like resolution proof with S lines, then the corresponding polynomials have a PC refutation of degree $k+\log _{2} S$ if directly represented.

Proof.
Induction on S. Let p_{1}, \ldots, p_{n} be the direct translations of the C_{i} into polynomials (direct or with new variables). The maximum degree of the p_{i} is k. Last line of the resolution refutation is \emptyset.

Theorem 5

If the set of Clauses C_{1}, \ldots, C_{n} of size at most k has a tree-like resolution proof with S lines, then the corresponding polynomials have a PC refutation of degree $k+\log _{2} S$ if directly represented.

Proof.

Induction on S. Let p_{1}, \ldots, p_{n} be the direct translations of the C_{i} into polynomials (direct or with new variables). The maximum degree of the p_{i} is k. Last line of the resolution refutation is \emptyset. Base case: If $\emptyset=C_{i}$ for a i then $p_{i}=1$ is the PC refutation.

Theorem 5

If the set of Clauses C_{1}, \ldots, C_{n} of size at most k has a tree-like resolution proof with S lines, then the corresponding polynomials have a $P C$ refutation of degree $k+\log _{2} S$ if directly represented.

Proof.

Induction on S. Let p_{1}, \ldots, p_{n} be the direct translations of the C_{i} into polynomials (direct or with new variables). The maximum degree of the p_{i} is k. Last line of the resolution refutation is \emptyset. Base case: If $\emptyset=C_{i}$ for a i then $p_{i}=1$ is the PC refutation. Ind.-step: x was resolved with $\neg x$ for some varible x. Then x has a (tree-like) resolution derivation of S_{1} lines and $\neg x$ has a derivation of S_{2} lines, s.t. $S_{1}+S_{2}=S-1$. Set $x=0$ in the proof with S_{1} lines gives a refutation from the $C_{i}[0 / x]$, do the same with the other subproof, apply induction hypothesis, distinguish the cases $S_{1} \leq S / 2$ and $S_{2} \leq S / 2$ and apply Part 6 resp. Part 7 of previous lemma.

We will now prove a lower bound on NS refutations using a modified version of the PHP called "House sitting principle" (HSP). Note that an upper bound on NS refutations is n if we have n variables and the equations " $x_{i}^{2}-x_{i}=0$ " are in the refutation set. Then we can assume the g_{i} to be multi-linear in $\sum_{i} f_{i} g_{i}=1$

We will now prove a lower bound on NS refutations using a modified version of the PHP called "House sitting principle" (HSP). Note that an upper bound on NS refutations is n if we have n variables and the equations " $x_{i}^{2}-x_{i}=0$ " are in the refutation set. Then we can assume the g_{i} to be multi-linear in $\sum_{i} f_{i} g_{i}=1$

- $\mathrm{n}+1$ pigeons, n houses ordered by attractivity
- Pigeon i owns house i for $1 \leq i \leq n$
- Pigeon 0 is homeless. (poor guy...)
- All pigeons must stay at their own or at a house nicer than their own
- At most 1 pigeon per house allowed

We will show that the HSP has a degree 2 PC refutation but requires a proof of degree n in NS.

The easy part first - the PC refuation. Informal proof of the HSP first: Using induction "backwards".

The easy part first - the PC refuation. Informal proof of the HSP first: Using induction " backwards".
Base Pigeon n has the nicest house and must live somewhere, so it is at home.

The easy part first - the PC refuation. Informal proof of the HSP first: Using induction "backwards".
Base Pigeon n has the nicest house and must live somewhere, so it is at home.
Step Assume that pigeons $[i+1 . . n]$ are all at home.

- Because all the houses $[i+1 . . n]$ are occupied, pigeon i has to take its own house to live.

The easy part first - the PC refuation. Informal proof of the HSP first: Using induction "backwards".
Base Pigeon n has the nicest house and must live somewhere, so it is at home.
Step Assume that pigeons $[i+1 . . n]$ are all at home.

- Because all the houses $[i+1 . . n]$ are occupied, pigeon i has to take its own house to live.
- We conclude that pigeon 0 is at home, but it is homeless! \rightsquigarrow Contradiction!
We will mimic this informal proof formally.

Therefore, first translate the HSP into a system of equations.

- $\forall i \in[0 . . n], j \in[1 . . n]$, we introduce variables $x_{(i, j)}$ - meaning pigeon i is in house j
- $\forall i \in[0 . . n], j \in[1 . . n] Q_{(i, j)}^{\prime}:=x_{(i, j)}^{2}-x_{(i, j)}=0$ - forces the variables to take $0 / 1$-values.
- $\forall i \in[0 . . n]: Q_{i}:=\left(\sum_{j \in[i . . n]} x_{(i, j)}\right)-1=0$ - pigeon i is in one hole that is at least as nice as its own.
- $Q:=x_{(0,0)}=0$ - Pigeon 0 is homeless.
- $\forall i \in[0 . . n], j \in[i+1 . . n] Q_{(i, j)}:=x_{(i, j)} x_{(j, j)}=0$ - pigeon i cannot go to house j if pigeon j is at home.
- $\forall i \in[0 . . n], j, k \in[1 . . n] Q_{(i, j, k)}:=x_{(i, j)} x_{(i, k)}=0$ - a pigeon cannot be in more than one house.

First we start with the assumption $Q_{(n, n)}=x_{(n, n)}-1$ (i.e. pigeon n is at home). From this (and the other assumptions) we derive $x_{(n-1, n)}$ and $x_{(n-1, n-1)}-1$ (i.e. pigeon $n-1$ is not in house n and is at home) and so on...
So we construct the proof inductively ("backward" Induction on i):

- For $i=n$ we get $Q_{(n, n)}=x_{(n, n)}-1$ directly from the assumptions
- Assume we have derived the equations

$$
x_{(i+1, i+1)}-1, \ldots, x_{(n, n)}-1
$$

First we start with the assumption $Q_{(n, n)}=x_{(n, n)}-1$ (i.e. pigeon n is at home). From this (and the other assumptions) we derive $x_{(n-1, n)}$ and $x_{(n-1, n-1)}-1$ (i.e. pigeon $n-1$ is not in house n and is at home) and so on...
So we construct the proof inductively ("backward" Induction on i):

- For $i=n$ we get $Q_{(n, n)}=x_{(n, n)}-1$ directly from the assumptions
- Assume we have derived the equations

$$
x_{(i+1, i+1)}-1, \ldots, x_{(n, n)}-1
$$

- $\forall j \in[i+1 . . n]$ derive $x_{(i, j)}=-x_{(i, j)} \cdot\left(x_{(j, j)}-1\right)+Q_{(i, j)}$

First we start with the assumption $Q_{(n, n)}=x_{(n, n)}-1$ (i.e. pigeon n is at home). From this (and the other assumptions) we derive $x_{(n-1, n)}$ and $x_{(n-1, n-1)}-1$ (i.e. pigeon $n-1$ is not in house n and is at home) and so on...
So we construct the proof inductively ("backward" Induction on i):

- For $i=n$ we get $Q_{(n, n)}=x_{(n, n)}-1$ directly from the assumptions
- Assume we have derived the equations

$$
x_{(i+1, i+1)}-1, \ldots, x_{(n, n)}-1
$$

- $\forall j \in[i+1 . . n]$ derive $x_{(i, j)}=-x_{(i, j)} \cdot\left(x_{(j, j)}-1\right)+Q_{(i, j)}$
- from this derive $x_{(i, i)}=Q_{i}-\sum_{j \in[i+1 . . n]} x_{(i, j)}$

First we start with the assumption $Q_{(n, n)}=x_{(n, n)}-1$ (i.e. pigeon n is at home). From this (and the other assumptions) we derive $x_{(n-1, n)}$ and $x_{(n-1, n-1)}-1$ (i.e. pigeon $n-1$ is not in house n and is at home) and so on...
So we construct the proof inductively ("backward" Induction on i):

- For $i=n$ we get $Q_{(n, n)}=x_{(n, n)}-1$ directly from the assumptions
- Assume we have derived the equations

$$
x_{(i+1, i+1)}-1, \ldots, x_{(n, n)}-1
$$

- $\forall j \in[i+1 . . n]$ derive $x_{(i, j)}=-x_{(i, j)} \cdot\left(x_{(j, j)}-1\right)+Q_{(i, j)}$
- from this derive $x_{(i, i)}=Q_{i}-\sum_{j \in[i+1 . . n]} x_{(i, j)}$
- Finally we derive $x_{(0,0)}$ and $Q-x_{(0,0)}=1$ gives us the derivation of 1 and therefore completes the refuation.

Now the fun part - (unfortunately) merely a sketch of the proof for the claim: Every NS proof (over \mathbb{Z}_{2}) of the HSP requires degree n. Assume we have a NS proof of degree $n-1$. We show that this implies the non-existence of a certain combinatorial structrue called a n-design, but these structures exist so we get a contradiction.

Now the fun part - (unfortunately) merely a sketch of the proof for the claim: Every NS proof (over \mathbb{Z}_{2}) of the HSP requires degree n. Assume we have a NS proof of degree $n-1$. We show that this implies the non-existence of a certain combinatorial structrue called a n-design, but these structures exist so we get a contradiction. Suppose we have Polynomials P of degree at most $n-1$ so that:

$$
\begin{gathered}
\sum_{i \in[0 . . n]} P_{i} Q_{i}+\sum_{i \in[0 . . n], j, k \in[1 . . n]} P_{(i, j, k)} Q_{(i, j, k)}+ \\
\sum_{i \in[0 . . n], j \in[i+1 . . n]} P_{(i, j)} Q_{(i, j)}+P Q+\sum_{i \in[0 . . n], j \in[1 . . n]} P_{(i, j)}^{\prime} Q_{(i, j)}^{\prime}=1 \\
\Leftrightarrow \sum_{i \in[0 . . n]} P_{i} Q_{i} \equiv 1\left(\bmod Q_{(i, j, k)}, Q_{(i, j)}, Q, Q_{(i, j)}^{\prime}\right)
\end{gathered}
$$

By multiplying out the identity $\sum_{i \in[0 . . n]} P_{i} Q_{i} \equiv 1$ and equating coefficients on boths sides we obtain a system of linear equations for the coefficients of the P_{i}. One can then prove that this equations have a solution iff a structure called n-design does not exist. But such a structure can be constructed (see for example [Bus98]) and therefore we get a contradiction.
There are also results for linear lower bounds on PC proofs, like:

Theorem 6

There is a graph G with constant degree s.t. a Tseitin tautology for G with all charges 1 requires degree $\Omega(n)$ to prove in $P C$.
The proof in [BGIP99] is well explained and readable (although some technicalities require a bit of meditation about them).

國 P. Beame.
Proof complexity.
Lecture notes about Proof Complexity, URL:
www.cs.toronto.edu/~toni/Courses/Proofcomplexity/Papers/paullectures.ps.

- Sam Buss, Dima Grigoriev, Russell Impagliazzo, and Toniann Pitassi.
Linear gaps between degrees for the polynomial calculus modulo distinct primes.
In STOC '99: Proceedings of the thirty-first annual ACM
symposium on Theory of computing, pages 547-556, 1999.
P. Beame, R. Impagliazzo, J. Krajicek, T. Pitassi, and P. Pudlak.

Lower bounds on hilbert's nullstellensatz and propositional proofs.
In SFCS '94: Proceedings of the 35th Annual Symposium on Foundations of Computer Science, pages 794-806, 1994.

Ramuel R. Buss.
Lower bounds on nullstellensatz proofs via designs. In in Proof Complexity and Feasible Arithmetics, P. Beame and S. Buss, eds., American Mathematical Society, pages 59-71. American Math. Soc, 1998.

軎 Matthew Clegg, Jeffery Edmonds, and Russell Impagliazzo. Using the groebner basis algorithm to find proofs of unsatisfiability.
In STOC '96: Proceedings of the twenty-eighth annual ACM symposium on Theory of computing, pages 174-183, 1996.

圊 D. Grigoriev.
Tseitin's tautologies and lower bounds for nullstellensatz proofs.
In FOCS '98: Proceedings of the 39th Annual Symposium on Foundations of Computer Science, page 648, 1998.
Alexander A. Razborov.
Lower bounds for the polynomial calculus.
Comput. Complex., 7(4):291-324, 1998.

