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What is ”Polynomial Calculus” good for?

• proof system for refuting systems of polynomial equations

• ”strong” proof system (e.g. compared to resolution)

• quite efficient algorithms for automatic proof search
(Groebner Bases - Buchberger’s Algorithm)
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We will consider two types of algebraic proof systems:

• Nullstellensatz proof system (NS)

• Polynomial calculus (PC) - stronger than NS

Both systems try to prove that a system of polynomial equations
g(x) = 0 has no solution.
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Connection to Propositional Logic: Translating a propositional
formula into a system of equations g(x) = 0 that is satisfiable if
and only if the formula is satisfiable. One possibility to do this is to
use the following (recursive) translation Φ:

X Φ(X )

> 0 = 0
⊥ 1 = 0
xi (1− xi ) = 0

¬A 1− Φ(A) = 0
A ∨ B Φ(A) · Φ(B) = 0

For each variable xi add the equation ”x2
i − xi = 0” (expresses

xi ∈ {0, 1}) (Normally we ommit the ”= 0”)

x ∨ y → z  [1− (1− x)(1− y)]z  xz + yz − xyz
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Theorem 1 (Hilbert’s (weak) Nullstellensatz)

Let F be an algebraically closed field and f1, . . . , fn be a system of
polynomials over F . This system of polynomials is unsatisfiable if
and only if 1 is in the ideal generated by the f1, . . . , fn.

@x ∈ F m. ∀1 ≤ i ≤ n. fi (x) = 0⇔ ∃g1, . . . , gn :
n∑

i=1

gi fi = 1
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Nullstellensatz proof system A proof in the NS proof system of
the unsatisfiability of p1, . . . , pn is a system q1, . . . , qn such that

n∑
i=1

piqi = 1

A measure for the size of a NS proof is maxi (deg(qi )).
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Polynomial calculus Starts with a system of polynomials and tries
to prove the constant polynomial 1 (i.e. the unsatisfiable equation
1 = 0) using the following inference rules:

P Q

aP + bQ
(with a, b ∈ F )

P

xP
(with x ∈ {x1, . . . , xn})

Axioms
x2
i − xi (for all Variables xi )

These axioms force the variables to take only boolean values. By
moving all calculations to the quotient ring K [x1, . . . , xn]/I , where
I is the ideal generated by the axiom polynomials we can get rid of
stating and using the axioms explicitly.
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The size of a PC proof is measured as the maximum degree over
all polynomials appearing in the proof.
We write p1, . . . , pn `d q if q has a PC proof from the pi with size
at most d
A proof p1, . . . , pn `d q in PC can be expressed as a list of
polynomials r1, . . . , rk , q where each ri is either an axiom (i.e.
x2 − x), an assumption (one of the pj) or it is derived from some
previous (i.e. some rj with j < i) polynomials in the proof.
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Because of the axioms x2
i − xi (more explicit: x2

i = xi ) or more
formally by looking at the quotient ring K [x1, . . . , xn]/I (with I the
ideal generated by the x2

i − xi ), we can restrict ourselves to to
multilinear polynomials (i.e. each variable has an exponent of at
most 1) appearing in the proof. For example

x2y2z  xy2z  xyz

x2y2z
x2 − x

x2y2z − xy2z

xy2z
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Obvious: The space of all multi-linear polynomials of degree at
most d over F is a vector space.
Let m(p) denote the mapping that maps every polynomial to the
corresponding multilinear polynomial (i.e. replaces every xn with
x). So m(p) is just the canonical (surjective) quotient map from
K [x1, . . . , xn] to K [x1, . . . , xn]/I .

Definition 2
Let Vd(p1, . . . , pn) denote the smallest subspace V of this space
that

1) includes all pi and

2) if p ∈ V and deg(p) ≤ d − 1 then m(xp) ∈ V
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Characterization of formulas provable via bounded degree PC
proofs.

Theorem 3
Let p1, . . . , pn, q be multi-linear polynomials of degree at most d
then:

p1, . . . , pn `d q ⇔ q ∈ Vd(p1, . . . , pn)

Proof.
Define V := {q | q multi − linear , p1, . . . , pn `d q}. We have to
show that Vd(p1, . . . , pn) = V

”⇐ ” : prove Vd(p1, . . . , pn) ⊆ V by showing that V has all the
properties of Vd(p1, . . . , pn).
”⇒ ” : Assume there is a q ∈ V − Vd(p1, . . . , pn). Then q has a
degree d proof in PC r1, . . . , rm. Let ri be the first line with
m(ri ) /∈ Vd(p1, . . . , pn). Distinguish cases for ri and derive
contradiction.
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This result also yields an algorithm for determining if q is provable
from p1, . . . , pn by a degree d PC proof: Compute a basis for
Vd(p1, . . . , pn) and then check if q lies in the vector space.
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Lemma 4
Let x be a variable and p, p1, . . . , pk , q, q′ be multilinear
polynomials of degree at most d

1. If p1, . . . , pk , x `d 1 then p1, . . . , pk `d+1 1− x

2. If p1, . . . , pk , 1− x `d 1 then p1, . . . , pk `d+1 x

3. p, x `d p|x=0

4. p, 1− x `d p|x=1

5. If p1, . . . , pk `d q and p1, . . . , pk , q `d q′ then
p1, . . . , pk `d q′

6. If p1|x=0, . . . , pk |x=0 `d 1 and p1|x=1, . . . , pk |x=1 `d+1 1 then
p1, . . . , pk `d+1 1

7. If p1|x=1, . . . , pk |x=1 `d 1 and p1|x=0, . . . , pk |x=0 `d+1 1 then
p1, . . . , pk `d+1 1
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Part 1: If p1, . . . , pk , x `d 1 then p1, . . . , pk `d+1 1− x

Proof.
Let p1, . . . , pk , x , r1, . . . , rk , 1 be a PC refutation of p1, . . . , pk , x
with degree d .
Then p1, . . . , pk , p1(1− x), . . . , pk(1− x), x(1− x), r1(1−
x), . . . , rk(1− x), (1− x) is a degree d + 1 PC proof of 1− x .
Explanation: pi (1− x) can be derived from pi , x(1− x) is an
axiom, so it can be trivially derived and ri (1− x) can be proved
like ri in the original refutation:

qj ql

aqj + bql = ri
 

(1− x)qj (1− x)ql

(1− x)(aqj + bql) = (1− x)ri

What if e.g. ql is x? We do not have x as an assumption
anymore. . . but it turns into an axiom!

qj x

aqj + bx = ri
 

(1− x)qj (1− x)x

(1− x)(aqj + bx) = (1− x)ri
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Part 2: If p1, . . . , pk , 1− x `d 1 then p1, . . . , pk `d+1 x

Proof.
Essentially same proof as 1.

Part 3: p, x `d p|x=0

Proof.
Multiply x by appropriate variables and then subtract from p to
cancel out all terms in p that contain x .
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Part 4: p, (1− x) `d p|x=1

Proof.
Essentially same proof as 3.

Part 5: If p1, . . . , pk `d q and p1, . . . , pk , q `d q′ then
p1, . . . , pk `d q′

Proof.
Concatenate the proofs.
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Part 6: If p1|x=0, . . . , pk |x=0 `d 1 and p1|x=1, . . . , pk |x=1 `d+1 1
then p1, . . . , pk `d+1 1

Proof.
With Part 3 we get p1, . . . , pk , x `d p1|x=0, . . . , pk |x=0 `d 1. And
by Part 1 it follows: p1, . . . , pk `d+1 1− x . Since
p1|x=1, . . . , pk |x=1 `d+1 1 we get p1, . . . , pk , 1− x `d+1 1 and by
Part 5 we obtain p1, . . . , pk ,`d+1 1 by concatenating the
proofs.

Part 7:If p1|x=1, . . . , pk |x=1 `d 1 and p1|x=0, . . . , pk |x=0 `d+1 1
then p1, . . . , pk `d+1 1

Proof.
Essentially same proof as 6.
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Theorem 5
If the set of Clauses C1, . . . , Cn of size at most k has a tree-like
resolution proof with S lines, then the corresponding polynomials
have a PC refutation of degree k + log2 S if directly represented.

Proof.
Induction on S . Let p1, . . . , pn be the direct translations of the Ci

into polynomials (direct or with new variables). The maximum
degree of the pi is k . Last line of the resolution refutation is ∅.

Base case: If ∅ = Ci for a i then pi = 1 is the PC refutation.
Ind.-step: x was resolved with ¬x for some varible x . Then x has a
(tree-like) resolution derivation of S1 lines and ¬x has a derivation
of S2 lines, s.t. S1 + S2 = S − 1. Set x = 0 in the proof with S1

lines gives a refutation from the Ci [0/x ], do the same with the
other subproof, apply induction hypothesis, distinguish the cases
S1 ≤ S/2 and S2 ≤ S/2 and apply Part 6 resp. Part 7 of previous
lemma.
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We will now prove a lower bound on NS refutations using a
modified version of the PHP called ”House sitting principle”
(HSP). Note that an upper bound on NS refutations is n if we have
n variables and the equations ”x2

i − xi = 0” are in the refutation
set. Then we can assume the gi to be multi-linear in

∑
i figi = 1

• n+1 pigeons, n houses ordered by attractivity

• Pigeon i owns house i for 1 ≤ i ≤ n

• Pigeon 0 is homeless. (poor guy. . . )

• All pigeons must stay at their own or at a house nicer than
their own

• At most 1 pigeon per house allowed

We will show that the HSP has a degree 2 PC refutation but
requires a proof of degree n in NS.
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The easy part first - the PC refuation. Informal proof of the HSP
first: Using induction ”backwards”.

Base Pigeon n has the nicest house and must live somewhere, so it
is at home.

Step Assume that pigeons [i + 1..n] are all at home.

• Because all the houses [i + 1..n] are occupied, pigeon i has to
take its own house to live.

• We conclude that pigeon 0 is at home, but it is homeless!  
Contradiction!

We will mimic this informal proof formally.
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Therefore, first translate the HSP into a system of equations.

• ∀i ∈ [0..n], j ∈ [1..n], we introduce variables x(i ,j) - meaning
pigeon i is in house j

• ∀i ∈ [0..n], j ∈ [1..n] Q ′(i ,j) := x2
(i ,j) − x(i ,j) = 0 - forces the

variables to take 0/1-values.

• ∀i ∈ [0..n] : Qi := (
∑

j∈[i ..n] x(i ,j))− 1 = 0 - pigeon i is in one
hole that is at least as nice as its own.

• Q := x(0,0) = 0 - Pigeon 0 is homeless.

• ∀i ∈ [0..n], j ∈ [i + 1..n] Q(i ,j) := x(i ,j)x(j ,j) = 0 - pigeon i
cannot go to house j if pigeon j is at home.

• ∀i ∈ [0..n], j , k ∈ [1..n] Q(i ,j ,k) := x(i ,j)x(i ,k) = 0 - a pigeon
cannot be in more than one house.
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First we start with the assumption Q(n,n) = x(n,n) − 1 (i.e. pigeon
n is at home). From this (and the other assumptions) we derive
x(n−1,n) and x(n−1,n−1) − 1 (i.e. pigeon n − 1 is not in house n and
is at home) and so on. . .
So we construct the proof inductively (”backward” Induction on i):

• For i = n we get Q(n,n) = x(n,n) − 1 directly from the
assumptions

• Assume we have derived the equations
x(i+1,i+1) − 1, . . . , x(n,n) − 1

• ∀j ∈ [i + 1..n] derive x(i ,j) = −x(i ,j) · (x(j ,j) − 1) + Q(i ,j)

• from this derive x(i ,i) = Qi −
∑

j∈[i+1..n] x(i ,j)

• Finally we derive x(0,0) and Q − x(0,0) = 1 gives us the
derivation of 1 and therefore completes the refuation.
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Now the fun part - (unfortunately) merely a sketch of the proof for
the claim: Every NS proof (over Z2) of the HSP requires degree n.
Assume we have a NS proof of degree n − 1. We show that this
implies the non-existence of a certain combinatorial structrue called
a n-design, but these structures exist so we get a contradiction.

Suppose we have Polynomials P of degree at most n − 1 so that:∑
i∈[0..n]

PiQi +
∑

i∈[0..n],j ,k∈[1..n]

P(i ,j ,k)Q(i ,j ,k)+

∑
i∈[0..n],j∈[i+1..n]

P(i ,j)Q(i ,j) + PQ +
∑

i∈[0..n],j∈[1..n]

P ′(i ,j)Q
′
(i ,j) = 1

⇔
∑

i∈[0..n]

PiQi ≡ 1 (modQ(i ,j ,k), Q(i ,j), Q, Q ′(i ,j))
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By multiplying out the identity
∑

i∈[0..n] PiQi ≡ 1 and equating
coefficients on boths sides we obtain a system of linear equations
for the coefficients of the Pi . One can then prove that this
equations have a solution iff a structure called n − design does not
exist. But such a structure can be constructed (see for example
[Bus98]) and therefore we get a contradiction.
There are also results for linear lower bounds on PC proofs, like:

Theorem 6
There is a graph G with constant degree s.t. a Tseitin tautology
for G with all charges 1 requires degree Ω(n) to prove in PC.

The proof in [BGIP99] is well explained and readable (although
some technicalities require a bit of meditation about them).
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