Preliminaries

Properties of PC 00000000 0 Lower bounds

Course "Propositional Proof Complexity", JASS'09

Polynomial Calculus

Maximilian Schlund

Fakultät für Informatik TU München

May 7, 2009

Preliminari 0 00 Properties of PC 00000000 0 Lower bounds

Motivation(?)

Preliminaries

Polynomials and Propositional Logic Nullstellensatz Polynomial calculus

Properties of PC and Relation to other Proof systems

Simple Properties Relation to other proof systems

Lower bounds

Seperation of NS and PC

Preliminario 0 00 00 Properties of PC 000000000 0 Lower bounds

What is "Polynomial Calculus" good for?

- proof system for refuting systems of polynomial equations
- "strong" proof system (e.g. compared to resolution)
- quite efficient algorithms for automatic proof search (Groebner Bases - Buchberger's Algorithm)

We will consider two types of algebraic proof systems:

- Nullstellensatz proof system (NS)
- Polynomial calculus (PC) stronger than NS

Both systems try to prove that a system of polynomial equations g(x) = 0 has no solution.

Preliminaries

Properties of PC 000000000 0 Lower bounds

Connection to Propositional Logic: Translating a propositional formula into a system of equations g(x) = 0 that is satisfiable if and only if the formula is satisfiable. One possibility to do this is to use the following (recursive) translation Φ :

 $\begin{array}{c|c} X & \Phi(X) \\ \hline T & 0 = 0 \\ \bot & 1 = 0 \\ \hline x_i & (1 - x_i) = 0 \\ \hline \neg A & 1 - \Phi(A) = 0 \\ \hline A \lor B & \Phi(A) \cdot \Phi(B) = 0 \end{array}$ For each variable x_i add the equation " $x_i^2 - x_i = 0$ " (expresses $x_i \in \{0, 1\}$) (Normally we ommit the "= 0")

Preliminaries

Properties of PC 000000000 0 Lower bounds

Connection to Propositional Logic: Translating a propositional formula into a system of equations g(x) = 0 that is satisfiable if and only if the formula is satisfiable. One possibility to do this is to use the following (recursive) translation Φ :

$$x \lor y \to z \rightsquigarrow [1 - (1 - x)(1 - y)]z \rightsquigarrow xz + yz - xyz$$

Preliminaries

Properties of PC 00000000 0 Lower bounds

Theorem 1 (Hilbert's (weak) Nullstellensatz)

Let F be an algebraically closed field and f_1, \ldots, f_n be a system of polynomials over F. This system of polynomials is unsatisfiable if and only if 1 is in the ideal generated by the f_1, \ldots, f_n .

$$\nexists x \in F^m$$
. $\forall 1 \leq i \leq n$. $f_i(x) = 0 \Leftrightarrow \exists g_1, \ldots, g_n : \sum_{i=1}^n g_i f_i = 1$

Nullstellensatz proof system A proof in the NS proof system of the unsatisfiability of p_1, \ldots, p_n is a system q_1, \ldots, q_n such that

$$\sum_{i=1}^n p_i q_i = 1$$

A measure for the size of a NS proof is $\max_i(\deg(q_i))$.

Preliminaries

Properties of PC 000000000 0 Lower bounds

Polynomial calculus Starts with a system of polynomials and tries to prove the constant polynomial 1 (i.e. the unsatisfiable equation 1 = 0) using the following inference rules:

 $\frac{P \quad Q}{aP + bQ} \quad (with \ a, b \in F)$ $\frac{P}{xP} \quad (with \ x \in \{x_1, \dots, x_n\})$

Axioms

$$x_i^2 - x_i$$
 (for all Variables x_i)

These axioms force the variables to take only boolean values. By moving all calculations to the quotient ring $K[x_1, \ldots, x_n]/I$, where I is the ideal generated by the axiom polynomials we can get rid of stating and using the axioms explicitly.

0.

Properties of PC 000000000 0 Lower bounds

The size of a PC proof is measured as the maximum degree over all polynomials appearing in the proof. We write $p_1, \ldots, p_n \vdash_d q$ if q has a PC proof from the p_i with size

at most d

A proof $p_1, \ldots, p_n \vdash_d q$ in PC can be expressed as a list of polynomials r_1, \ldots, r_k, q where each r_i is either an axiom (i.e. $x^2 - x$), an assumption (one of the p_j) or it is derived from some previous (i.e. some r_i with j < i) polynomials in the proof.

Preliminarie 0 00 00 Properties of PC •0000000 Lower bounds

Because of the axioms $x_i^2 - x_i$ (more explicit: $x_i^2 = x_i$) or more formally by looking at the quotient ring $K[x_1, \ldots, x_n]/I$ (with *I* the ideal generated by the $x_i^2 - x_i$), we can restrict ourselves to to multilinear polynomials (i.e. each variable has an exponent of at most 1) appearing in the proof. For example

 $x^2y^2z \rightsquigarrow xy^2z \rightsquigarrow xyz$

$$\frac{x^2y^2z}{\frac{x^2y^2z-xy^2z}{xy^2z-xy^2z}}$$

Preliminarie 0 00 00 Properties of PC

Lower bounds

Obvious: The space of all multi-linear polynomials of degree at most d over F is a vector space.

Let m(p) denote the mapping that maps every polynomial to the corresponding multilinear polynomial (i.e. replaces every x^n with x). So m(p) is just the canonical (surjective) quotient map from $K[x_1, \ldots, x_n]$ to $K[x_1, \ldots, x_n]/I$.

Definition 2

Let $V_d(p_1, \ldots, p_n)$ denote the smallest subspace V of this space that

1) includes all p_i and

2) if $p \in V$ and $deg(p) \leq d-1$ then $m(xp) \in V$

Preliminarie 0 00 00 Properties of PC

Lower bounds

Characterization of formulas provable via bounded degree PC proofs.

Theorem 3

Let p_1, \ldots, p_n, q be multi-linear polynomials of degree at most d then:

$$p_1,\ldots,p_n\vdash_d q \Leftrightarrow q\in V_d(p_1,\ldots,p_n)$$

Proof.

Define $V := \{q \mid q \text{ multi} - \text{linear}, p_1, \dots, p_n \vdash_d q\}$. We have to show that $V_d(p_1, \dots, p_n) = V$

Properties of PC

Lower bounds

Characterization of formulas provable via bounded degree PC proofs.

Theorem 3

Let p_1, \ldots, p_n, q be multi-linear polynomials of degree at most d then:

$$p_1,\ldots,p_n\vdash_d q \Leftrightarrow q\in V_d(p_1,\ldots,p_n)$$

Proof.

Define $V := \{q \mid q \text{ multi} - \text{linear}, p_1, \dots, p_n \vdash_d q\}$. We have to show that $V_d(p_1, \dots, p_n) = V$ " \Leftarrow " : prove $V_d(p_1, \dots, p_n) \subseteq V$ by showing that V has all the properties of $V_d(p_1, \dots, p_n)$.

Properties of PC

Lower bounds

Characterization of formulas provable via bounded degree PC proofs.

Theorem 3

Let p_1, \ldots, p_n, q be multi-linear polynomials of degree at most d then:

$$p_1,\ldots,p_n\vdash_d q \Leftrightarrow q\in V_d(p_1,\ldots,p_n)$$

Proof.

Define $V := \{q \mid q \text{ multi} - \text{linear}, p_1, \dots, p_n \vdash_d q\}$. We have to show that $V_d(p_1, \dots, p_n) = V$

" \Leftarrow ": prove $V_d(p_1, \ldots, p_n) \subseteq V$ by showing that V has all the properties of $V_d(p_1, \ldots, p_n)$.

" \Rightarrow " : Assume there is a $q \in V - V_d(p_1, \ldots, p_n)$. Then q has a degree d proof in PC r_1, \ldots, r_m . Let r_i be the first line with $m(r_i) \notin V_d(p_1, \ldots, p_n)$. Distinguish cases for r_i and derive contradiction.

Maximilian Schlund: Polynomial Calculus

Preliminarie

Properties of PC

Lower bounds

This result also yields an algorithm for determining if q is provable from p_1, \ldots, p_n by a degree d PC proof: Compute a basis for $V_d(p_1, \ldots, p_n)$ and then check if q lies in the vector space.

Preliminari 0 00 00 Properties of PC

Lower bounds

Lemma 4

Let x be a variable and $p, p_1, \ldots, p_k, q, q'$ be multilinear polynomials of degree at most d

- 1. If $p_1, ..., p_k, x \vdash_d 1$ then $p_1, ..., p_k \vdash_{d+1} 1 x$
- 2. If $p_1, ..., p_k, 1 x \vdash_d 1$ then $p_1, ..., p_k \vdash_{d+1} x$
- 3. $p, x \vdash_d p|_{x=0}$
- 4. $p, 1-x \vdash_d p|_{x=1}$
- 5. If $p_1, \ldots, p_k \vdash_d q$ and $p_1, \ldots, p_k, q \vdash_d q'$ then $p_1, \ldots, p_k \vdash_d q'$
- 6. If $p_1|_{x=0}, \ldots, p_k|_{x=0} \vdash_d 1$ and $p_1|_{x=1}, \ldots, p_k|_{x=1} \vdash_{d+1} 1$ then $p_1, \ldots, p_k \vdash_{d+1} 1$
- 7. If $p_1|_{x=1}, \ldots, p_k|_{x=1} \vdash_d 1$ and $p_1|_{x=0}, \ldots, p_k|_{x=0} \vdash_{d+1} 1$ then $p_1, \ldots, p_k \vdash_{d+1} 1$

	/atio	

Preliminarie 0 00 00 Properties of PC

Lower bounds

Part 1: If $p_1, ..., p_k, x \vdash_d 1$ then $p_1, ..., p_k \vdash_{d+1} 1 - x$

Part 1: If $p_1, \ldots, p_k, x \vdash_d 1$ then $p_1, \ldots, p_k \vdash_{d+1} 1 - x$ Proof.

Let $p_1, \ldots, p_k, x, r_1, \ldots, r_k, 1$ be a PC refutation of p_1, \ldots, p_k, x with degree d.

Then $p_1, \ldots, p_k, p_1(1-x), \ldots, p_k(1-x), x(1-x), r_1(1-x)$

x),..., $r_k(1-x)$, (1-x) is a degree d+1 PC proof of 1-x.

Part 1: If $p_1, \ldots, p_k, x \vdash_d 1$ then $p_1, \ldots, p_k \vdash_{d+1} 1 - x$ Proof.

Let $p_1, \ldots, p_k, x, r_1, \ldots, r_k, 1$ be a PC refutation of p_1, \ldots, p_k, x with degree d. Then $p_1, \ldots, p_k, p_1(1-x), \ldots, p_k(1-x), x(1-x), r_1(1-x), \ldots, r_k(1-x), (1-x)$ is a degree d + 1 PC proof of 1 - x. Explanation: $p_i(1-x)$ can be derived from $p_i, x(1-x)$ is an axiom, so it can be trivially derived and $r_i(1-x)$ can be proved like r_i in the original refutation:

$$\frac{q_j \quad q_l}{\mathsf{a}q_j + \mathsf{b}q_l = r_i} \quad \rightsquigarrow \frac{(1-x)q_j \quad (1-x)q_l}{(1-x)(\mathsf{a}q_j + \mathsf{b}q_l) = (1-x)r_i}$$

What if e.g. q_1 is x? We do not have x as an assumption anymore...

Part 1: If $p_1, \ldots, p_k, x \vdash_d 1$ then $p_1, \ldots, p_k \vdash_{d+1} 1 - x$ Proof.

Let $p_1, \ldots, p_k, x, r_1, \ldots, r_k, 1$ be a PC refutation of p_1, \ldots, p_k, x with degree d. Then $p_1, \ldots, p_k, p_1(1-x), \ldots, p_k(1-x), x(1-x), r_1(1-x), \ldots, r_k(1-x), (1-x)$ is a degree d+1 PC proof of 1-x. Explanation: $p_i(1-x)$ can be derived from $p_i, x(1-x)$ is an axiom, so it can be trivially derived and $r_i(1-x)$ can be proved like r_i in the original refutation:

$$\frac{q_j \quad q_l}{\mathsf{a}q_j + \mathsf{b}q_l = r_i} \quad \rightsquigarrow \frac{(1-x)q_j \quad (1-x)q_l}{(1-x)(\mathsf{a}q_j + \mathsf{b}q_l) = (1-x)r_i}$$

What if e.g. q_l is x? We do not have x as an assumption anymore... \rightarrow but it turns into an axiom!

$$\frac{q_j \quad x}{aq_j + bx = r_i} \quad \rightsquigarrow \frac{(1-x)q_j \quad (1-x)x}{(1-x)(aq_j + bx) = (1-x)r_i}$$

Maximilian Schlund: Polynomial Calculus

Preliminarie 0 00 00 Properties of PC 000000000 Lower bounds

Part 2: If $p_1, \ldots, p_k, 1 - x \vdash_d 1$ then $p_1, \ldots, p_k \vdash_{d+1} x$

Proof.

Essentially same proof as 1.

Part 3: $p, x \vdash_d p|_{x=0}$

Proof.

Multiply x by appropriate variables and then subtract from p to cancel out all terms in p that contain x.

Preliminari 0 00 00 Properties of PC 000000000 0 Lower bounds

Part 4: $p, (1 - x) \vdash_d p|_{x=1}$ Proof. Essentially same proof as 3. Part 5: If $p_1, \ldots, p_k \vdash_d q$ and $p_1, \ldots, p_k, q \vdash_d q'$ then $p_1, \ldots, p_k \vdash_d q'$ Proof. Concatenate the proofs.

Preliminarie 0 00 00 Properties of PC

Lower bounds

Part 6: If $p_1|_{x=0}, \ldots, p_k|_{x=0} \vdash_d 1$ and $p_1|_{x=1}, \ldots, p_k|_{x=1} \vdash_{d+1} 1$ then $p_1, \ldots, p_k \vdash_{d+1} 1$

Proof.

With Part 3 we get $p_1, \ldots, p_k, x \vdash_d p_1|_{x=0}, \ldots, p_k|_{x=0} \vdash_d 1$. And by Part 1 it follows: $p_1, \ldots, p_k \vdash_{d+1} 1 - x$. Since $p_1|_{x=1}, \ldots, p_k|_{x=1} \vdash_{d+1} 1$ we get $p_1, \ldots, p_k, 1 - x \vdash_{d+1} 1$ and by Part 5 we obtain $p_1, \ldots, p_k, \vdash_{d+1} 1$ by concatenating the proofs.

Part 7: If $p_1|_{x=1}, \ldots, p_k|_{x=1} \vdash_d 1$ and $p_1|_{x=0}, \ldots, p_k|_{x=0} \vdash_{d+1} 1$ then $p_1, \ldots, p_k \vdash_{d+1} 1$

Proof.

Essentially same proof as 6.

Properties of PC

Lower bounds

Theorem 5

If the set of Clauses C_1, \ldots, C_n of size at most k has a tree-like resolution proof with S lines, then the corresponding polynomials have a PC refutation of degree $k + \log_2 S$ if directly represented.

Proof.

Induction on S. Let p_1, \ldots, p_n be the direct translations of the C_i into polynomials (direct or with new variables). The maximum degree of the p_i is k. Last line of the resolution refutation is \emptyset .

Properties of PC

Lower bounds

Theorem 5

If the set of Clauses C_1, \ldots, C_n of size at most k has a tree-like resolution proof with S lines, then the corresponding polynomials have a PC refutation of degree $k + \log_2 S$ if directly represented.

Proof.

Induction on *S*. Let p_1, \ldots, p_n be the direct translations of the C_i into polynomials (direct or with new variables). The maximum degree of the p_i is k. Last line of the resolution refutation is \emptyset . Base case: If $\emptyset = C_i$ for a i then $p_i = 1$ is the PC refutation.

Lower bounds

Theorem 5

If the set of Clauses C_1, \ldots, C_n of size at most k has a tree-like resolution proof with S lines, then the corresponding polynomials have a PC refutation of degree $k + \log_2 S$ if directly represented.

Proof.

Induction on S. Let p_1, \ldots, p_n be the direct translations of the C_i into polynomials (direct or with new variables). The maximum degree of the p_i is k. Last line of the resolution refutation is \emptyset . Base case: If $\emptyset = C_i$ for a *i* then $p_i = 1$ is the PC refutation. Ind.-step: x was resolved with $\neg x$ for some variable x. Then x has a (tree-like) resolution derivation of S_1 lines and $\neg x$ has a derivation of S_2 lines, s.t. $S_1 + S_2 = S - 1$. Set x = 0 in the proof with S_1 lines gives a refutation from the $C_i[0/x]$, do the same with the other subproof, apply induction hypothesis, distinguish the cases $S_1 \leq S/2$ and $S_2 \leq S/2$ and apply Part 6 resp. Part 7 of previous lemma.

						(?	

Preliminar 0 00 Properties of PC 000000000 0 Lower bounds

We will now prove a lower bound on NS refutations using a modified version of the PHP called "House sitting principle" (HSP). Note that an upper bound on NS refutations is *n* if we have *n* variables and the equations " $x_i^2 - x_i = 0$ " are in the refutation set. Then we can assume the g_i to be multi-linear in $\sum_i f_i g_i = 1$

Prelimina 0 00 00 Properties of PC 000000000 0 Lower bounds

We will now prove a lower bound on NS refutations using a modified version of the PHP called "House sitting principle" (HSP). Note that an upper bound on NS refutations is *n* if we have *n* variables and the equations " $x_i^2 - x_i = 0$ " are in the refutation set. Then we can assume the g_i to be multi-linear in $\sum_i f_i g_i = 1$

- n+1 pigeons, n houses ordered by attractivity
- Pigeon *i* owns house *i* for $1 \le i \le n$
- Pigeon 0 is homeless. (poor guy...)
- All pigeons must stay at their own or at a house nicer than their own
- At most 1 pigeon per house allowed

We will show that the HSP has a degree 2 PC refutation but requires a proof of degree n in NS.

Motivation (?)	Preliminaries o oo oo	Properties of PC 000000000 0	Lower bounds ○●○○○○○
----------------	--------------------------------	------------------------------------	-------------------------

The easy part first - the PC refuation. Informal proof of the HSP first: Using induction "backwards".

Motivation (?)	Preliminaries 0 00 00	Properties of PC 000000000 0	Lower bounds

The easy part first - the PC refuation. Informal proof of the HSP first: Using induction "backwards".

Base Pigeon n has the nicest house and must live somewhere, so it is at home.

The easy part first - the PC refuation. Informal proof of the HSP first: Using induction "backwards".

- Base Pigeon *n* has the nicest house and must live somewhere, so it is at home.
- Step Assume that pigeons [i + 1..n] are all at home.
 - Because all the houses [*i* + 1..*n*] are occupied, pigeon *i* has to take its own house to live.

Preliminarie 0 00 00 Lower bounds

The easy part first - the PC refuation. Informal proof of the HSP first: Using induction "backwards".

- Base Pigeon *n* has the nicest house and must live somewhere, so it is at home.
- Step Assume that pigeons [i + 1..n] are all at home.
 - Because all the houses [*i* + 1..*n*] are occupied, pigeon *i* has to take its own house to live.
 - We conclude that pigeon 0 is at home, but it is homeless! → Contradiction!

We will mimic this informal proof formally.

	ation	

Preliminar 0 00 00 Properties of PC 000000000 0 Lower bounds

Therefore, first translate the HSP into a system of equations.

- ∀i ∈ [0..n], j ∈ [1..n], we introduce variables x_(i,j) meaning pigeon i is in house j
- $\forall i \in [0..n], j \in [1..n] Q'_{(i,j)} := x^2_{(i,j)} x_{(i,j)} = 0$ forces the variables to take 0/1-values.
- $\forall i \in [0..n]$: $Q_i := (\sum_{j \in [i..n]} x_{(i,j)}) 1 = 0$ pigeon *i* is in one hole that is at least as nice as its own.
- $Q := x_{(0,0)} = 0$ Pigeon 0 is homeless.
- $\forall i \in [0..n], j \in [i+1..n] \ Q_{(i,j)} := x_{(i,j)}x_{(j,j)} = 0$ pigeon *i* cannot go to house *j* if pigeon *j* is at home.
- $\forall i \in [0..n], j, k \in [1..n]$ $Q_{(i,j,k)} := x_{(i,j)}x_{(i,k)} = 0$ a pigeon cannot be in more than one house.

Preliminari 0 00 00 Properties of PC 000000000 0 Lower bounds

First we start with the assumption $Q_{(n,n)} = x_{(n,n)} - 1$ (i.e. pigeon n is at home). From this (and the other assumptions) we derive $x_{(n-1,n)}$ and $x_{(n-1,n-1)} - 1$ (i.e. pigeon n-1 is not in house n and is at home) and so on...

So we construct the proof inductively ("backward" Induction on *i*):

- For i = n we get $Q_{(n,n)} = x_{(n,n)} 1$ directly from the assumptions
- Assume we have derived the equations

 $x_{(i+1,i+1)} - 1, \ldots, x_{(n,n)} - 1$

Preliminari 0 00 00 Properties of PC 000000000 0 Lower bounds

First we start with the assumption $Q_{(n,n)} = x_{(n,n)} - 1$ (i.e. pigeon n is at home). From this (and the other assumptions) we derive $x_{(n-1,n)}$ and $x_{(n-1,n-1)} - 1$ (i.e. pigeon n-1 is not in house n and is at home) and so on...

So we construct the proof inductively ("backward" Induction on *i*):

- For i = n we get $Q_{(n,n)} = x_{(n,n)} 1$ directly from the assumptions
- Assume we have derived the equations $x_{(i+1,i+1)} 1, \dots, x_{(n,n)} 1$
- $\forall j \in [i + 1..n]$ derive $x_{(i,j)} = -x_{(i,j)} \cdot (x_{(j,j)} 1) + Q_{(i,j)}$

Preliminari 0 00 00 Properties of PC 000000000 0 Lower bounds

First we start with the assumption $Q_{(n,n)} = x_{(n,n)} - 1$ (i.e. pigeon n is at home). From this (and the other assumptions) we derive $x_{(n-1,n)}$ and $x_{(n-1,n-1)} - 1$ (i.e. pigeon n-1 is not in house n and is at home) and so on...

So we construct the proof inductively ("backward" Induction on *i*):

- For i = n we get $Q_{(n,n)} = x_{(n,n)} 1$ directly from the assumptions
- Assume we have derived the equations $x_{(i+1,i+1)} 1, \dots, x_{(n,n)} 1$
- $\forall j \in [i+1..n]$ derive $x_{(i,j)} = -x_{(i,j)} \cdot (x_{(j,j)} 1) + Q_{(i,j)}$
- from this derive $x_{(i,i)} = Q_i \sum_{j \in [i+1..n]} x_{(i,j)}$

Preliminar 0 00 00 Properties of PC 000000000 0 Lower bounds

First we start with the assumption $Q_{(n,n)} = x_{(n,n)} - 1$ (i.e. pigeon n is at home). From this (and the other assumptions) we derive $x_{(n-1,n)}$ and $x_{(n-1,n-1)} - 1$ (i.e. pigeon n-1 is not in house n and is at home) and so on...

So we construct the proof inductively ("backward" Induction on *i*):

- For i = n we get $Q_{(n,n)} = x_{(n,n)} 1$ directly from the assumptions
- Assume we have derived the equations $x_{(i+1,i+1)} 1, \dots, x_{(n,n)} 1$
- $\forall j \in [i+1..n]$ derive $x_{(i,j)} = -x_{(i,j)} \cdot (x_{(j,j)} 1) + Q_{(i,j)}$
- from this derive $x_{(i,i)} = Q_i \sum_{j \in [i+1..n]} x_{(i,j)}$
- Finally we derive x_(0,0) and Q x_(0,0) = 1 gives us the derivation of 1 and therefore completes the refuation.

Preliminar 0 00 00 Properties of PC 000000000 0 Lower bounds

Now the fun part - (unfortunately) merely a sketch of the proof for the claim: Every NS proof (over \mathbb{Z}_2) of the HSP requires degree n. Assume we have a NS proof of degree n - 1. We show that this implies the non-existence of a certain combinatorial structrue called a *n*-design, but these structures exist so we get a contradiction.

Prelimina 0 00 00 Properties of PC 000000000 0 Lower bounds

Now the fun part - (unfortunately) merely a sketch of the proof for the claim: Every NS proof (over \mathbb{Z}_2) of the HSP requires degree n. Assume we have a NS proof of degree n - 1. We show that this implies the non-existence of a certain combinatorial structrue called a *n*-design, but these structures exist so we get a contradiction. Suppose we have Polynomials P of degree at most n - 1 so that:

$$\sum_{i \in [0..n]} P_i Q_i + \sum_{i \in [0..n], j, k \in [1..n]} P_{(i,j,k)} Q_{(i,j,k)} + \sum_{i \in [0..n], j \in [i+1..n]} P_{(i,j)} Q_{(i,j)} + PQ + \sum_{i \in [0..n], j \in [1..n]} P'_{(i,j)} Q'_{(i,j)} = 1$$
$$\Leftrightarrow \sum_{i \in [0..n]} P_i Q_i \equiv 1 \pmod{Q_{(i,j,k)}, Q_{(i,j)}, Q, Q'_{(i,j)}}$$

lotivation (?)	Preliminaries o oo oo	Properties of PC 000000000 0	Lower bounds
----------------	--------------------------------	------------------------------------	--------------

By multiplying out the identity $\sum_{i \in [0..n]} P_i Q_i \equiv 1$ and equating coefficients on boths sides we obtain a system of linear equations for the coefficients of the P_i . One can then prove that this equations have a solution iff a structure called n - design does not exist. But such a structure can be constructed (see for example [Bus98]) and therefore we get a contradiction. There are also results for linear lower bounds on PC proofs, like:

Theorem 6

There is a graph G with constant degree s.t. a Tseitin tautology for G with all charges 1 requires degree $\Omega(n)$ to prove in PC. The proof in [BGIP99] is well explained and readable (although some technicalities require a bit of meditation about them).

Preliminar 0 00 Properties of PC 000000000 0 Lower bounds

P. Beame.

Proof complexity.

Lecture notes about Proof Complexity, URL: www.cs.toronto.edu/~toni/Courses/Proofcomplexity/Papers/paullectures.ps.

Sam Buss, Dima Grigoriev, Russell Impagliazzo, and Toniann Pitassi.

Linear gaps between degrees for the polynomial calculus modulo distinct primes.

In STOC '99: Proceedings of the thirty-first annual ACM symposium on Theory of computing, pages 547–556, 1999.

Preliminarie 0 00 00 Properties of PC 000000000 0 Lower bounds

P. Beame, R. Impagliazzo, J. Krajicek, T. Pitassi, and P. Pudlak.

Lower bounds on hilbert's nullstellensatz and propositional proofs.

In SFCS '94: Proceedings of the 35th Annual Symposium on Foundations of Computer Science, pages 794–806, 1994.

Samuel R. Buss.

Lower bounds on nullstellensatz proofs via designs.

In *in Proof Complexity and Feasible Arithmetics, P. Beame and S. Buss, eds., American Mathematical Society*, pages 59–71. American Math. Soc, 1998.

Preliminari 0 00 00 Properties of PC 000000000 0 Lower bounds

Matthew Clegg, Jeffery Edmonds, and Russell Impagliazzo. Using the groebner basis algorithm to find proofs of unsatisfiability.

In STOC '96: Proceedings of the twenty-eighth annual ACM symposium on Theory of computing, pages 174–183, 1996.

D. Grigoriev.

Tseitin's tautologies and lower bounds for nullstellensatz proofs.

In FOCS '98: Proceedings of the 39th Annual Symposium on Foundations of Computer Science, page 648, 1998.

Alexander A. Razborov. Lower bounds for the polynomial calculus. Comput. Complex., 7(4):291–324, 1998.