Joint Advanced Student School

Explanation for talk 'Lower bounds using communication complexity'

by Grigory Yaroslavtsev (http://logic.pdmi.ras.ru/~grigory)

1 Introduction

1.1 LK sequent calculus

First of all, we give a descripition of sequent calculus LK, which we will need later. The propositional language of this calculus includes:

- Constants 0, 1
- The conjunction \wedge and the disjunction \vee (are of unbounded arity)
- The negation ¬ (is allowed only in front of atoms)

There are several characteristics of the formula A in this language that we will use:

- The size |A| of A is the number of connectives and atoms in it.
- The **depth** dp(A) of A is the maximal nesting of \vee and \wedge in A.

The following definition introduces a cedent:

Definition 1. Cedent is a finite (possibly empty) sequence of formulas denoted Γ, Δ, \dots

Now we are ready to give a definition of a sequent — the main object of the LK sequent calculus:

Definition 2. Sequent is an ordered pair of cedents written $\Gamma \longrightarrow \Delta$ (here Γ is called antecedent and Δ is called succedent).

A sequent is satisfied if at least one formula in Δ is satisfied of at least one formula in Γ is falsified. Empty sequent cannot be satisfied.

The inference rules of the LK sequent calculus are the following:

• Initial sequents

• Weak structural rules $\frac{\Gamma \to \Delta}{\Gamma' \to \Delta'}$

- exchange: Γ and Δ are any permutations of A
- contraction: Γ' and Δ' are obtained from Γ and Δ by deleting any multiple occurrences of formulas
- weakening: $\Gamma' \supseteq \Gamma$ and $\Delta' \supseteq \Delta$

• Propositional rules

- \wedge -introduction

$$\frac{A, \Gamma \longrightarrow \Delta}{\bigwedge_i A_i, \Gamma \longrightarrow \Delta} \quad \frac{\Gamma \longrightarrow \Delta, A_1 \dots \Gamma \longrightarrow \Delta, A_m}{\Gamma \longrightarrow \Delta, \bigwedge_{i \le m} A_i}$$

where A is one of the A_i in the left rule

V-introduction

$$\frac{A_1, \Gamma \longrightarrow \Delta \dots A_m \Gamma \longrightarrow \Delta}{\bigvee_{i \le m} A_i, \Gamma \longrightarrow \Delta} \quad \frac{\Gamma \longrightarrow \Delta, A}{\Gamma \longrightarrow \Delta, \bigvee_i A_i}$$

where A is one of the A_i in the right rule

• Cut rule

$$\frac{\Gamma \longrightarrow \Delta, A \quad A, \Gamma \longrightarrow \Delta}{\Gamma \longrightarrow \Delta}$$

Definition 3. LK-proof of a sequent S from the sequents S_1, \ldots, S_m is a sequence Z_1, \ldots, Z_k such that $Z_k = S$ and each Z_i is either an initial one or from S_1, \ldots, S_m , or derived from the previous ones by an inference rule.

Definition 4. $k(\pi)$ is the number of sequents in π . The **size** of the proof is the sum of the sizes of the formulas in it (counting multiple occurrences of a formula separately)

Definition 5. Resolution refutation of sequents S_1, \ldots, S_m which contain no \bigvee, \bigwedge is an LK-proof of the empty sequent from S_1, \ldots, S_m in which no \bigvee, \bigwedge occur.

This is obviously equivalent to the more usual definition of resolution with clauses and the resolution rule as a resolution clause

$$\neg p_{i_1},\ldots,\neg p_{i_a},p_{j_1},\ldots p_{j_b}$$

can be represented by the sequent

$$p_{i_1},\ldots,p_{i_a}\to p_{j_1},\ldots,p_{j_b}$$

and the resolution by the cut rule (and vice versa).

1.2 Protocols for Karchmer-Wigderson games

Definition 6. Let $U, V \subseteq \{0,1\}^n$ be two **disjoint** sets. The Karchmer-Wigderson game (KW-game) is played by two players A and B. Player A receives $u \in U$ while B receives $v \in V$. They communicate bits of information (following a protocol previously agreed on) until both players agree on the same $i \in 1, ..., n$ such that $u_i \neq v_i$. Their objective is to minimize (over all protocols) the number of bits they need to communicate **in the worst** case. This minimum is called the **communication complexity (CC)** of the game and it is denoted by C(U, V).

Boolean function $B(p_1, ..., p_n)$ separates U from V if and only if B(x) = 1 holds (resp. = 0) for all $x \in U$ (resp. for all $x \in V$).

Theorem 1. Let $U, V \subseteq \{0,1\}^n$ be two disjoint sets. Then C(U,V) is precisely the minimal depth of a formula with binary \land , \lor separating U from V.

Proof 1. The proof of this theorem is classical and is left to the reader.

Definition 7. Let $U, V \subseteq \{0,1\}^n$ be two disjoint sets. A **protocol** for the game on the pair (U, V) is a labelled directed graph G satisfying the following four conditions:

- G is acyclic and has one **source** (the in-degree 0 node) denoted \emptyset . The nodes with out-degree 0 are **leaves**, all other are inner-nodes.
- All leaves are labelled by one of the following formulas:

$$u_i = 1 \wedge v_i = 0$$
 or $u_i = 0 \wedge v_i = 1$

for some $i = 1, \ldots, n$.

Every pair $u \in U$ and $v \in V$ defines for every node x a directed path $P_{u,v}^x$ in G from the node x to a leaf: $P_{u,v}^x = x_1, \ldots, x_h$, where $x_1 = x$, the edge $S(u, v, x_i)$ goes from x_i to x_{i+1} and x_h is a leaf.

- There is a function S(u, v, x) (the **strategy**) such that S assigns to a node x and a pair $u \in U$ and $v \in V$ the edge S(u, v, x) leaving form the node x
- For every $u \in U$ and $v \in V$ there is a set $F(u, v) \subseteq G$ satisfying:
 - $-\emptyset \in F(u,v)$
 - $-x \in F(u,v) \to P_{u,v}^x \subseteq F(u,v)$
 - the label of any leaf from F(u, v) is valid for u, v

Such a set F is called a consistency condition

Definition 8. A protocol is called **monotone** iff every leaf in it is labelled by one of the formulas $u_i = 1 \land v_i = 0, i = 1, ..., n$.

Definition 9. The **communication complexity** of G is the minimal number t such that for every $x \in G$ the players (one knowing u and x, the other knowing v and x) decide whether $x \in F(u, v)$ and compute S(u, v, x) with at most t bits exchanged in the worst case.

Important examples of protocols are protocols formed from a circuit. Assume C is a circuit separating U from V. Reverse the edges in C, take for F(u,v) those subcircuits differing in the value on u and v, and define the strategy and the labels of the leaves in an obvious way. This determines a protocol for the game on (U,V) with communication complexity 2.

Theorem 2. Let $U, V \in \{0, 1\}^n$ be two disjoint sets. Let G be a protocol for the game on U, V which has k nodes and the communication complexity t. Then there is a circuit C of size $k2^{O(t)}$ separating U from V. Moreover, if G is monotone, so is C.

On the other hand, any circuit (monotone circuit) C of size m separating U from V determines a protocol (a monotone protocol) G with m nodes whose complexity is 2. The following theorem says there is a similar converse construction.

Proof 2. Let G be a protocol from the game. The number of nodes reachable form x via the edges defines the cost of x. For any u, v, the set F(u, v) together with the cost function and the neighborhood function given by the strategy is a PLS-problem. By [1] (Thm. 3.1) there is a circuit separating U from V of size at most

$$|\bigcup_{u,v} F(u,v)| \cdot 2^{O(t)} = k \cdot 2^{O(t)}$$

If the protocol is monotone so is the circuit.

The second part of the statement was noted above.

2 Interpolation theorem and semantic derivations

2.1 The Craig interpolation theorem

Definition 10. Interpolant of a valid implication $A(p,q) \to B(p,r)$ where $p = (p_1, \ldots, p_n)$ are the atoms occurring in both A and B, while $q = (q_1, \ldots, q_s)$ occur only in A and $r = (r_1, \ldots, r_t)$ only in B, to be any Boolean function I(p) such that both implications

$$A(p,q) \rightarrow (I(p) = 1)$$
 and $((I(p) = 1) \rightarrow B(p,r))$

are tautologically valid. If I(p) is defined by a formula (also denoted I) this means that both implications

$$A \rightarrow I$$
 and $I \rightarrow B$

are tautologies.

In the calculus LK the implication $A \to B$ is represented by the sequent $A \longrightarrow B$ and, in general, the sequent $A_1, \ldots, A_m \longrightarrow B_1, \ldots, B_l$ represents the implication $\bigwedge_i A_i \to \bigvee_j B_j$.

Theorem 3. Let π be a cut-free LK-proof of the sequent

$$A_1(p,q),\ldots,A_m(p,q)\longrightarrow B_1(p,r),\ldots,B_l(p,r)$$

with $p = (p_1, \ldots, p_n)$ the atoms occurring simultaneously in some A_i and B_j , and $q = (q_1, \ldots, q_s)$ and $r = (r_1, \ldots, r_l)$ all other atoms occurring in some A_i or in some B_j respectively. Then there is an interpolant I(p) of the implication: $\bigwedge_{i \leq m} A_i \longrightarrow \bigvee_{j \leq l} B_j$ whose circuit-size is at most $k(\pi)^{O(1)}$.

If the atoms p occur only positively in all A_i or all B_j then there is monotone interpolant with monotone circuit-size at most $k(\pi)^{O(1)}$.

Proof 3. Define two sets $U, V \subseteq \{0, 1\}^n$ by:

$$U = \{ u \in \{0, 1\}^n \mid \exists q^u \in \{0, 1\}^s, \bigwedge_{i \le m} A_i(u, q^u) \}$$

$$V = \{ v \in \{0, 1\}^n \mid \exists r^v \in \{0, 1\}^t, \bigwedge_{j \le l} \neg B_j(v, r^v) \}$$

Note that the fact that the sequent $A_1, \ldots, A_m \longrightarrow B_1, \ldots, B_l$ is tautologically valid is equivalent to the fact that the sets U, V are disjoint, and that any Boolean function separates U from V iff it is interpolant of the sequent.

Using the proof π we define a protocol for the game on U,V.

Assume that player A received $u \in U$ and B received $v \in V$. Player A fixes some $q^u \in \{0,1\}^s$ such that $\bigwedge_{i \leq m} A_i(u,q^u)$ holds and player B fixes some $r^v \in \{0,1\}^t$ for which $\bigwedge_{i \leq l} \neg B_i(v,r^v)$ holds.

Exchanging some bits they will construct the path $P = S_0, \ldots, S_h$ of sequents of π satisfying the following conditions:

- S_0 is the end-sequent, S_h is an initial sequent
- S_{i+1} is an upper sequent of the inference giving S_i
- For any a = 0, ..., h: if S_a has the form:

$$E_1(p,q),\ldots,E_e(p,q)\longrightarrow F_1(p,r),\ldots,F_f(p,r)$$

then $\bigwedge_{i\leq e} E_i(u, q^u)$ holds while $\bigvee_{j\leq f} F_j(v, r^v)$ fails.

Note that as the proof is cut-free and there are no \neg -rules, no formula in the antecedent (resp. the succedent) of a sequent in the proof contains an atom r_i (resp. the atom q_i). To find S_{a+1} they proceed as follows:

• If S_a was deduced by an inference with only one hypothesis, they put S_{a+1} to be that hypothesis and exchange no bits.

- If the inference yielding S_a was the introduction of $\bigwedge_{i\leq g} D_i$ to the succedent the player B, who thinks that $\bigwedge_{i\leq g} D_i$ is false, sends to $A\lceil \log g\rceil$ bits identifying one particular $D_i(v, r^v), i\leq g$, which is false. They take for S_{a+1} the upper sequent of the inference containing the minor formula D_i
- Introduction of $\bigvee_{i \leq q} D_i$ to the antecedent is treated similarly.

Let S_h be the initial sequent players arrive at in the path P. It must be one of the following formulas: $p_i \longrightarrow p_i$ or $\neg p_i \longrightarrow \neg p_i$ for some i = 1, ..., n. This is because all other initial sequents either contain an atom r_i in the antecedent or an atom q_i in the succeedent, or violate the last condition from the definition of P.

If S_h is the former then $u_i = 1 \land v_i = 0$, if it is the latter then $u_i = 0 \land v_i = 1$.

The communication complexity of the defined protocol is $\leq \lceil \log g \rceil + 2 \leq \lceil \log k(\pi) + 2$.

Thus there is a circuit of size $k(\pi)^{O(1)}$ separating U form V. If all atoms occur only positively in the antecedent or in the succedent of the end-sequent then the players always arrive to an initial sequent of the form $p_i \longrightarrow p_i$. This yields the monotone case.

The proof of the theorem can be modified for the case when π is not necessarily cut-free but no cut-formula contains atoms q and r at the same time. To maintain the condition that q (resp. r) do not occur in the succedent (resp. the antecedent) we picture a cut-inference with the cut-formula D as

$$\frac{\neg D, \Gamma \longrightarrow \Delta \quad D, \Gamma \longrightarrow \Delta}{\Gamma \longrightarrow \Delta}$$

or

$$\frac{\varGamma\longrightarrow\varDelta,D\quad\varGamma\longrightarrow\varDelta,\neg D}{\varGamma\longrightarrow\varDelta}$$

according to whether atoms q do or do not occur in D.

The modification of the proof is then straightforward as the truth-value of any cutformula is known to one of the players and he can direct the path by sending one bit.

2.2 Semantic derivations

Definition 11. Let N be a fixed natural number.

- The semantic rule allows to infer from two subsets $A, B \subseteq \{0,1\}^N$ a third one: $\frac{A-B}{C}$ iff $C \supseteq A \cap B$
- A semantic derivation of the set $C \subseteq \{0,1\}^N$ from the sets $A_1, \ldots, A_m \subseteq \{0,1\}^N$ is a sequence of sets $B_1, \ldots, B_k \subseteq \{0,1\}^N$ such that $B_k = C$, each B_i is either one of A_j or derived from two previous B_{i_1}, B_{i_2} by the semantic rule
- Let \mathcal{X} be a set of subsets of $\{0,1\}^N$. Semantic derivation B_1, \ldots, B_k is an \mathcal{X} derivation iff all $B_i \in \mathcal{X}$

Definition 12. Filter of subsets of $\{0,1\}^N$ is a family \mathcal{X} closed upwards $((A \in \mathcal{X}) \land (B \supseteq A) \to B \in \mathcal{X})$

If $(u, q^u, r^v) \in A$ and $(v, q^u, r^v) \notin A$ either find $i \leq n$ such that $u_i = 1 \wedge v_i = 0$ or learn that there is some u' satisfying $u' \geq u \wedge (u', q^u, r^v) \notin A$ ($u \leq u'$ means $\bigwedge_{i \leq n} u_i \leq u'_i$)

If $(u, q^u, r^v) \notin A$ and $(v, q^u, r^v) \in A$ either find $i \leq n$ such that $u_i = 1 \wedge v_i = 0$ or learn that there is some u' satisfying $v' \leq v \wedge (v', q^u, r^v) \notin A$ The **monotone** CC w.r.t. U of A, $MCC_U(A)$ is the minimal $t \geq CC(A)$ such that the first task can be solved communicating $\leq t$ bits in the worst case. $MCC_V(A)$ is defined similarly for the second task.

2.3 An interpolation theorem for semantic derivations

Definition 13. Let N = n + s + t be fixed. For $A \subseteq \{0,1\}^{n+s}$ define the set \tilde{A} by:

$$\tilde{A} := \bigcup_{(a,b) \in A} \{(a,b,c) \mid c \in \{0,1\}^t\}$$

where a, b, c range over $\{0,1\}^n$, $\{0,1\}^s$ and $\{0,1\}^t$ respectively, and similarly for $B \subseteq \{0,1\}^{n+t}$ define \tilde{B} :

$$\tilde{B} := \bigcup_{(a,c) \in B} \{(a,b,c) \mid b \in \{0,1\}^s\}$$

Theorem 4. Let $A_1, \ldots, A_m \subseteq \{0, 1\}^{n+s}$ and $B_1, \ldots, B_l \subseteq \{0, 1\}^{n+t}$. Assume that there is a semantic derivation $\pi = D_1, \ldots, D_k$ of the empty set $\emptyset = D_k$ from the sets $\tilde{A}_1, \ldots, \tilde{A}_m, \tilde{B}_1, \ldots, \tilde{B}_l$ such that $CC(D_i) \leq t$ for all $i \leq k$. Then the two sets

$$U = \{ u \in \{0, 1\}^n \mid \exists q^u \in \{0, 1\}^s; (u, q^u) \in \bigcap_{j \le m} A_j \}$$

and

$$V = \{ v \in \{0, 1\}^n \mid \exists r^v \in \{0, 1\}^t; (v, r^v) \in \bigcap_{j < l} B_j \}$$

can be separated by a circuit of size at most $(k+2n)2^{O(t)}$

Moreover, if the sets A_1, \ldots, A_m satisfy the following monotonicity condition w.r.t. U:

$$(u, q^u) \in \bigcap_{j \le m} A_j \land u \le u' \to (u', q^u) \in \bigcap_{j \le m} A_j$$

and $MCC_U(D_i) \leq t$ for all $i \leq k$, or if the sets B_1, \ldots, B_l satisfy:

$$(v, r^v) \in \bigcap_{j \le l} B_j \land v \ge v' \to (v', r^v) \in \bigcap_{j \le l} B_j$$

and $MCC_V(D_i) \leq t$ for all $i \leq k$, then there is a monotone circuit separating U from V of size at most $(k+n)2^{O(t)}$.

Proof 4. Let $\pi = D_1, \ldots, D_k$ be a semantic derivation of \emptyset from $\tilde{A}_1, \ldots, \tilde{B}_l$.

The two players A and B, one knowing $(u, q^u) \in \bigcap_j A_j$ and the other one knowing $(v, r^v) \in \bigcap_j B_j$, attempt to construct a path $P = S_0, \ldots, S_h$ through π . $S_0 = \emptyset = D_k$, S_{a+1} is one of the two sets which are the hypotheses of the semantic inference yielding S_a and $S_h \in \{\tilde{A}_1, \ldots, \tilde{B}_l\}$. Moreover, both tuples (u, q^u, r^v) and (v, q^u, r^v) are **not** in S_a , $a = 0, \ldots, h$.

If the players know S_a which was deduced in the inference $\frac{X-Y}{S_a}$ then they first determine whether $(u, q^u, r^v) \in X$ and $(v, q^u, r^v) \in X$. There are three possible outcomes:

- both (u, q^u, r^v) and (v, q^u, r^v) are in $X(S_{a+1} := Y)$
- none of (u, q^u, r^v) , (v, q^u, r^v) is in $X(S_{a+1} := X)$
- only one of (u, q^u, r^v) , (v, q^u, r^v) is in X (stop constructing the path and enter a protocol for finding $i \leq n$ such that $u_i \neq v_i$).

The players must sooner or later enter the third case as none of the initial sets $\tilde{A}_1, \ldots, \tilde{B}_l$ avoids both $(u, q^u, r^v), (v, q^u, r^v)$.

- We will define the protocol for the monotone case only (non-montone is similar).
- Assume that the sets A_1, \ldots, A_m satisfy the monotonicity condition w.r.t. U and that $MCC_U(D_i) \leq t$ for all $i \leq k$ (the case of the monotonicity w.r.t. V is analogous).
- The protocol has (k+n) nodes, the k steps of derivation π plus n additional nodes labelled by formulas $u_i = 1 \land v_i = 0, i = 1, ..., n$.
- The consistency condition F(u, v) consists of of those D_j such that $(v, q^u, r^v) \notin D_j$ and of those additional n nodes whose label is valid for particular u, v.

The players use the protocol for solving the first task from the definition of the MCC. There are two possible outcomes:

• They decide that the condition

$$\exists u' \geq u, (u', q^u, r^v) \notin D_i$$

is true for u, v. Then they put $S(u, v, D_i) := X$ if $(v, q^u, r^v) \notin X$ or Y otherwise.

- They find $i \leq n$ such that $u_i = 1 \wedge v_i = 0$. $S(u, v, D_i)$ is then the additional node with the label $u_i = 1 \wedge v_i = 0$.
- By the monotonicity imposed on A_1, \ldots, A_m , for every u' occurring above it holds: $(u', q^u, r^v) \in \bigcap_{j \leq m} A_j$
- This implies that the players have to find sooner or later $i \leq n$ such that $u_i = 1 \wedge v_i = 0$

- By the assumption about the monotone communication complexity of all D_j , both the relation $x \in F(u,v)$ and the function S(u,v,x) can be computed exchanging O(t) bits.
- As G has (k+n) nodes, theorem about connection between protocols and circuits yields the wanted monotone circuit separating U from V and having the size at most $(k+n) \cdot 2^{O(t)}$.

3 Upper and lower bounds

3.1 Upper bounds for some interpolation theorems

Theorem 5. Assume that the set of clauses $\{A_1, \ldots, A_m, B_1, \ldots, B_l\}$ where:

$$A_i \subseteq \{p_1, \dots, p_n, \neg p_1, \dots, \neg p_n, q_1, \dots, q_s, \neg q_1, \dots, \neg q_s\}, i \le m$$

$$B_j \subseteq \{p_1, \dots, p_n, \neg p_1, \dots, \neg p_n, r_1, \dots, r_l, \neg r_1, \dots, \neg r_l\}, j \le l$$

has a resolution refutation with k clauses.

Then the implication:

$$\bigwedge_{i \le m} (\bigvee A_i) \longrightarrow \bigvee_{j \le l} (\bigwedge \neg B_j)$$

 $has \ an \ interpolant \ I(p) \ whose \ circuit\text{-}size \ is \ kn^{O(1)}$

Moreover, if all atoms in p occur positively in all A_i , or if all p occur only negatively in all B_j , then there is a monotone interpolant whose monotone circuit-size is $kn^{O(1)}$.

Proof 5. Let $\pi = C_1, \ldots, C_k$ be a resolution refutation of A_1, \ldots, B_l . For a clause C denote by \tilde{C} the subset of $\{0,1\}^{n+s+t}$ of all those truth assignments satisfying C. Then $\tilde{\pi} = \tilde{C}_1, \ldots, \tilde{C}_k$ is a semantic derivation of \emptyset from $\tilde{A}_1, \ldots, \tilde{B}_l$.

Obviously, for any clause C both the communication complexity and the monotone communication complexity of \tilde{C} is at most $CC(\tilde{C}) \leq \lceil \log n \rceil + 2$. Hence the previous theorem yields circuit of size $(k+2n) \cdot n^{O(1)} \leq k \cdot n^{O(1)}$. Similarly for the monotone case.

3.2 Lower bounds for proof systems

Assume that for a propositional proof system P we have a good interpolation theorem, allowing good estimates of the complexity of the monotone interpolants.

Then implication which cannot have a small monotone interpolant must have long P-proofs.

Definition 14. Let $n, \omega, \xi \geq q$ be natural numbers, and let $\binom{n}{2}$ denote the set of twoelement subsets of $1, \ldots, n$. The set $Clique_{n,\omega}(p,q)$ is a set of the following formulas in the atoms $p_{ij}, i, j \in \binom{n}{2}$, and $q_{ui}, u = 1, \ldots, \omega$ and $i = 1, \ldots, n$:

- $\bigvee_{i \le n} q_{iu}$, for all $u \le \omega$
- $\neg q_{ui} \lor \neg q_{vi}$, for all $u < v \le \omega$ and $i = 1, \ldots, n$.

• $\neg q_{ui} \lor \neg q_{vj} \lor p_{ij}$, for all $u < v \le \omega$ and $i, j \in \binom{n}{2}$

Definition 15. The set $Color_{n,\xi}(p,r)$ is the set of the following formulas in the atoms $p_{ij}, i, j \in \binom{n}{2}$, and $r_{ia}, i = 1, ..., n$ and $a = 1, ..., \xi$:

- $\bigvee_{a < \xi} r_{ia}$, for all $i \le n$
- $\neg r_{ia} \lor \neg r_{ib}$, for all $a < b \le \xi$ and $i \le n$
- $\neg r_{ia} \lor \neg r_{ja} \lor \neg pij$, for all $a \leq \xi$ and $i, j \in \binom{n}{2}$

The expression $Clique_{n,\omega} \to \neg Color_{n,\xi}$ is an abbreviation of the sequent whose antecedent consists of all formulas in $Clique_{n,\omega}$ and whose succedent consists of the negations of the formulas in $Color_{n,\xi}$.

This sequent is tautologically valid if $\xi < \omega$.

Theorem 6. Assume that $3 \le \xi < \omega$ and $\sqrt{\xi}\omega \le \frac{n}{8logn}$. Then the sequent

$$Clique_{n,\omega} \to \neg Color_{n,\mathcal{E}}$$

has no interpolant of the monotone circuit-size smaller than:

$$2^{\Omega(\sqrt{\xi})}$$

Corollary 1. Let n be sufficiently large and let $\xi = \lceil \sqrt{n} \rceil, \omega = \xi + 1$. Then:

• Every resolution refutation of the clauses $Clique_{n,\omega} \cup Color_{n,\xi}$ must have at least $2^{\Omega(n^{\frac{1}{4}})}$ clauses

Proof 6. Theorem about upper bounds for resolution refutation with k clauses would imply the existence of an interpolant with monotone circuit size $kn^{O(1)}$. The hypothesis of the previous theorem is fulfilled and so it must hold:

$$kn^{O(1)} \geq 2^{\Omega(n^{\frac{1}{4}})}$$

and hence $k \ge 2^{\Omega(n^{\frac{1}{4}})}$

References

- [1] A.A. Razborov Unprovability of lower bounds on the circuit size of certain fragments of bounded arithmetic. Izvestiya of the R.A.N., 59(1), pp. 201-224.
- [2] J. Krajicek Interpolation theorems, lower bounds for proof systems, and independence results for bounded arithmetic. J. Symbolic Logic, 62: 457-486, 1997.