Lower bounds using communication complexity

Grigory Yaroslavtsev

Academic Physics and Technology University
6 April, 2009

Outline

(1) Introduction

- Propositional proof systems
- Protocols for Karchmer-Wigderson games
(2) Interpolation theorem and semantic derivations
- The Craig interpolation theorem
- Semantic derivations
- An interpolation theorem for semantic derivations
(3) Upper and lower bounds
- Upper bounds for some interpolation theorems
- Lower bounds for proof systems

LK sequent calculus

Connectives of the propositional language:

- Constants 0,1
- The conjunction \wedge and the disjunction \vee (are of unbounded arity)
- The negation \neg (is allowed only in front of atoms)

Characteristics of formula A :

- The size $|A|$ of A is the number of connectives and atoms in it.
- The depth $\operatorname{dp}(A)$ of A is the maximal nesting of V and \wedge in A.

LK sequent calculus

Definition

Cedent is a finite (possibly empty) sequence of formulas denoted Γ, Δ, \ldots

Definition

Sequent is an ordered pair of cedents written $\Gamma \longrightarrow \Delta$ (here Γ is called antecedent and Δ is called succedent).

A sequent is satisfied if at least one formula in Δ is satisfied of at least one formula in Γ is falsified. Empty sequent cannot be satisfied.

Inference rules of LK sequent calculus

- Initial sequents
- $\longrightarrow 1$
- $\neg 1 \longrightarrow$
- $0 \longrightarrow$
- $\quad \longrightarrow \neg 0$
- $p \longrightarrow p$
- $\neg p \longrightarrow \neg p$
- $p, \neg p \longrightarrow$
- $\quad \longrightarrow p, \neg p$
- Weak structural rules $\frac{\Gamma \rightarrow \Delta}{\Gamma^{\prime} \rightarrow \Delta^{\prime}}$
- exchange: Γ and Δ are any permutations of A
- contraction: Γ^{\prime} and Δ^{\prime} are obtained from Γ and Δ by deleting any multiple occurrences of formulas
- weakening: $\Gamma^{\prime} \supseteq \Gamma$ and $\Delta^{\prime} \supseteq \Delta$

Inference rules of LK sequent calculus

- Propositional rules
- Λ-introduction

$$
\frac{A, \Gamma \longrightarrow \Delta}{\bigwedge_{i} A_{i}, \Gamma \longrightarrow \Delta} \quad \frac{\Gamma \longrightarrow \Delta, A_{1} \ldots \Gamma \longrightarrow \Delta, A_{m}}{\Gamma \longrightarrow \Delta, \bigwedge_{i \leq m} A_{i}}
$$

where A is one of the A_{i} in the left rule

- \bigvee-introduction

$$
\frac{A_{1}, \Gamma \longrightarrow \Delta \ldots A_{m} \Gamma \longrightarrow \Delta}{\bigvee_{i \leq m} A_{i}, \Gamma \longrightarrow \Delta} \quad \frac{\Gamma \longrightarrow \Delta, A}{\Gamma \longrightarrow \Delta, \bigvee_{i} A_{i}}
$$

where A is one of the A_{i} in the right rule

- Cut rule

$$
\frac{\Gamma \longrightarrow \Delta, A \quad A, \Gamma \longrightarrow \Delta}{\Gamma \longrightarrow \Delta}
$$

LK-proofs

Definition

LK-proof of a sequent S from the sequents S_{1}, \ldots, S_{m} is a sequence Z_{1}, \ldots, Z_{k} such that $Z_{k}=S$ and each Z_{i} is either an initial one or from S_{1}, \ldots, S_{m}, or derived from the previous ones by an inference rule.

Definition

$k(\pi)$ is the number of sequents in π. The size of the proof is the sum of the sizes of the formulas in it (counting multiple occurrences of a formula separately)

LK-proofs

Definition

Resolution refutation of sequents S_{1}, \ldots, S_{m} which contain no \bigvee, \bigwedge is an LK-proof of the empty sequent from S_{1}, \ldots, S_{m} in which no \bigvee, \bigwedge occur.

This is obviously equivalent to the more usual definition of resolution with clauses and the resolution rule as a resolution clause

$$
\neg p_{i_{1}}, \ldots, \neg p_{i_{a}}, p_{j_{1}}, \ldots p_{j_{b}}
$$

can be represented by the sequent

$$
p_{i_{1}}, \ldots, p_{i_{a}} \rightarrow p_{j_{1}}, \ldots, p_{j_{b}}
$$

and the resolution by the cut rule (and vice versa).

Karchmer-Wigderson games and communication complexity

Definition

- Let $U, V \subseteq\{0,1\}^{n}$ be two disjoint sets.
- The Karchmer-Wigderson game (KW-game) is played by two players A and B.
- Player A receives $u \in U$ while B receives $v \in V$. They communicate bits of information (following a protocol previously agreed on) until both players agree on the same $i \in 1, \ldots, n$ such that $u_{i} \neq v_{i}$.
- Their objective is to minimize (over all protocols) the number of bits they need to communicate in the worst case.
- This minimum is called the communication complexity (CC) of the game and it is denoted by $C(U, V)$.

Karchmer-Wigderson game

Boolean function $B\left(p_{1}, \ldots, p_{n}\right)$ separates U from V if and only if $B(x)=1$ holds (resp. $=0$) for all $x \in U$ (resp. for all $x \in V$).

Theorem

Let $U, V \subseteq\{0,1\}^{n}$ be two disjoint sets. Then $C(U, V)$ is precisely the minimal depth of a formula with binary \wedge, \vee separating U from V.

Definition of a protocol for KW-game

Definition

Let $U, V \subseteq\{0,1\}^{n}$ be two disjoint sets. A protocol for the game on the pair (U, V) is a labelled directed graph G satisfying the following four conditions:

- G is acyclic and has one source (the in-degree 0 node) denoted \emptyset. The nodes with out-degree 0 are leaves, all other are inner-nodes.
- All leaves are labelled by one of the following formulas:

$$
\begin{aligned}
& \qquad u_{i}=1 \wedge v_{i}=0 \text { or } u_{i}=0 \wedge v_{i}=1 \\
& \text { for some } i=1, \ldots, n \text {. }
\end{aligned}
$$

Definition of a protocol for KW-game (continued)

Every pair $u \in U$ and $v \in V$ defines for every node x a directed path $P_{u, v}^{x}$ in G from the node x to a leaf: $P_{u, v}^{x}=x_{1}, \ldots, x_{h}$, where $x_{1}=x$, the edge $S\left(u, v, x_{i}\right)$ goes from x_{i} to x_{i+1} and x_{h} is a leaf.

Definition (continued)

- There is a function $S(u, v, x)$ (the strategy) such that S assigns to a node x and a pair $u \in U$ and $v \in V$ the edge $S(u, v, x)$ leaving form the node x
- For every $u \in U$ and $v \in V$ there is a set $F(u, v) \subseteq G$ satisfying:
- $\varnothing \in F(u, v)$
- $x \in F(u, v) \rightarrow P_{u, v}^{x} \subseteq F(u, v)$
- the label of any leaf from $F(u, v)$ is valid for u, v

Such a set F is called a consistency condition

Monotone protocols and communication complexity

Definition

A protocol is called monotone iff every leaf in it is labelled by one of the formulas $u_{i}=1 \wedge v_{i}=0, i=1, \ldots, n$.

Definition

The communication complexity of G is the minimal number t such that for every $x \in G$ the players (one knowing u and x, the other knowing v and x) decide whether $x \in F(u, v)$ and compute $S(u, v, x)$ with at most t bits exchanged in the worst case.

Protocols and circuits

Important examples of protocols are protocols formed from a circuit. Assume C is a circuit separating U from V. Reverse the edges in C, take for $F(u, v)$ those subcircuits differing in the value on u and v, and define the strategy and the labels of the leaves in an obvious way. This determines a protocol for the game on (U, V) with communication complexity 2.

Theorem

Let $U, V \in\{0,1\}^{n}$ be two disjoint sets. Let G be a protocol for the game on U, V which has k nodes and the communication complexity t. Then there is a circuit C of size $k 2^{O(t)}$ separating U from V. Moreover, if G is monotone, so is C.
On the other hand, any circuit (monotone circuit) C of size m separating U from V determines a protocol (a monotone protocol) G with m nodes whose complexity is 2 .

Interpolant

Definition

Interpolant of a valid implication $A(p, q) \rightarrow B(p, r)$ where $p=\left(p_{1}, \ldots, p_{n}\right)$ are the atoms occurring in both A and B, while $q=\left(q_{1}, \ldots, q_{s}\right)$ occur only in A and $r=\left(r_{1}, \ldots, r_{t}\right)$ only in B, to be any Boolean function $I(p)$ such that both implications

$$
A(p, q) \rightarrow(I(p)=1) \quad \text { and } \quad((I(p)=1) \rightarrow B(p, r))
$$

are tautologically valid. If $I(p)$ is defined by a formula (also denoted I) this means that both implications

$$
A \rightarrow I \quad \text { and } \quad I \rightarrow B
$$

are tautologies.

Sequents in LK calculus

In the calculus LK the implication $A \rightarrow B$ is represented by the sequent $A \longrightarrow B$ and, in general, the sequent
$A_{1}, \ldots, A_{m} \longrightarrow B_{1}, \ldots, B_{l}$ represents the implication
$\bigwedge_{i} A_{i} \rightarrow \bigvee_{j} B_{j}$.

The Craig interpolation theorem

Theorem

Let π be a cut-free LK-proof of the sequent

$$
A_{1}(p, q), \ldots, A_{m}(p, q) \longrightarrow B_{1}(p, r), \ldots, B_{l}(p, r)
$$

with $p=\left(p_{1}, \ldots, p_{n}\right)$ the atoms occurring simultaneously in some A_{i} and B_{j}, and $q=\left(q_{1}, \ldots, q_{s}\right)$ and $r=\left(r_{1}, \ldots, r_{l}\right)$ all other atoms occurring in some A_{i} or in some B_{j} respectively. Then there is an interpolant $I(p)$ of the implication: $\bigwedge_{i \leq m} A_{i} \longrightarrow \bigvee_{j \leq I} B_{j}$ whose circuit-size is at most $k(\pi)^{O(1)}$.
If the atoms p occur only positively in all A_{i} or all B_{j} then there is monotone interpolant with monotone circuit-size at most $k(\pi)^{O(1)}$.

The Craig interpolation theorem

Proof

Define two sets $U, V \subseteq\{0,1\}^{n}$ by:

$$
\begin{aligned}
& U=\left\{u \in\{0,1\}^{n} \mid \exists q^{u} \in\{0,1\}^{s}, \bigwedge_{i \leq m} A_{i}\left(u, q^{u}\right)\right\} \\
& V=\left\{v \in\{0,1\}^{n} \mid \exists r^{v} \in\{0,1\}^{t}, \bigwedge_{j \leq 1} \neg B_{j}\left(v, r^{v}\right)\right\}
\end{aligned}
$$

Note that the fact that the sequent $A_{1}, \ldots, A_{m} \longrightarrow B_{1}, \ldots, B_{I}$ is tautologically valid is equivalent to the fact that the sets U, V are disjoint, and that any Boolean function separates U from V iff it is interpolant of the sequent.

Proof of the Craig interpolation theorem using CC

Proof

Using the proof π we define a protocol for the game on U, V. Assume that player A received $u \in U$ and B received $v \in V$. Player A fixes some $q^{u} \in\{0,1\}^{s}$ such that $\bigwedge_{i \leq m} A_{i}\left(u, q^{u}\right)$ holds and player B fixes some $r^{v} \in\{0,1\}^{t}$ for which $\bigwedge_{j \leq 1} \neg B_{j}\left(v, r^{v}\right)$ holds. Exchanging some bits they will construct the path $P=S_{0}, \ldots, S_{h}$ of sequents of π satisfying the following conditions:

- S_{0} is the end-sequent, S_{h} is an initial sequent
- S_{i+1} is an upper sequent of the inference giving S_{i}
- For any $a=0, \ldots, h$: if S_{a} has the form:

$$
E_{1}(p, q), \ldots, E_{e}(p, q) \longrightarrow F_{1}(p, r), \ldots, F_{f}(p, r)
$$

then $\bigwedge_{i \leq e} E_{i}\left(u, q^{u}\right)$ holds while $\bigvee_{j \leq f} F_{j}\left(v, r^{v}\right)$ fails.

Proof of the Craig interpolation theorem using CC

Proof

Note that as the proof is cut-free and there are no $\neg-r u l e s, ~ n o$ formula in the antecedent (resp. the succedent) of a sequent in the proof contains an atom r_{i} (resp. the atom q_{i}).
To find S_{a+1} they proceed as follows:

- If S_{a} was deduced by an inference with only one hypothesis, they put S_{a+1} to be that hypothesis and exchange no bits.
- If the inference yielding S_{a} was the introduction of $\bigwedge_{i \leq g} D_{i}$ to the succedent the player B, who thinks that $\bigwedge_{i \leq g} D_{i}$ is false, sends to $A\lceil\log g\rceil$ bits identifying one particular $D_{i}\left(v, r^{v}\right), i \leq g$, which is false. They take for S_{a+1} the upper sequent of the inference containing the minor formula D_{i}
- Introduction of $\bigvee_{i \leq g} D_{i}$ to the antecedent is treated similarly.

Proof of the Craig interpolation theorem using CC

Proof

Let S_{h} be the initial sequent players arrive at in the path P. It must be one of the following formulas: $p_{i} \longrightarrow p_{i}$ or $\neg p_{i} \longrightarrow \neg p_{i}$ for some $i=1, \ldots, n$. This is because all other initial sequents either contain an atom r_{i} in the antecedent or an atom q_{i} in the succedent, or violate the last condition from the definition of P. If S_{h} is the former then $u_{i}=1 \wedge v_{i}=0$, if it is the latter then $u_{i}=0 \wedge v_{i}=1$.
The communication complexity of the defined protocol is
$\leq\lceil\log g\rceil+2 \leq\lceil\log k(\pi)+2$.
Thus there is a circuit of size $k(\pi)^{O(1)}$ separating U form V. If all atoms occur only positively in the antecedent or in the succedent of the end-sequent then the players always arrive to an initial sequent of the form $p_{i} \longrightarrow p_{i}$. This yields the monotone case.

Final thoughts about Craig interpolation theorem

The proof of the theorem can be modified for the case when π is not necessarily cut-free but no cut-formula contains atoms q and r at the same time. To maintain the condition that q (resp. r) do not occur in the succedent (resp. the antecedent) we picture a cut-inference with the cut-formula D as

$$
\frac{\neg D, \Gamma \longrightarrow \Delta \quad D, \Gamma \longrightarrow \Delta}{\Gamma \longrightarrow \Delta}
$$

or

$$
\frac{\Gamma \longrightarrow \Delta, D \quad \Gamma \longrightarrow \Delta, \neg D}{\Gamma \longrightarrow \Delta}
$$

according to whether atoms q do or do not occur in D. The modification of the proof is then straightforward as the truth-value of any cut-formula is known to one of the players and he can direct the path by sending one bit.

Definition of semantic derivation

Definition

Let N be a fixed natural number.

- The semantic rule allows to infer from two subsets $A, B \subseteq\{0,1\}^{N}$ a third one: $\frac{A}{C}$ iff $C \supseteq A \cap B$
- A semantic derivation of the set $C \subseteq\{0,1\}^{N}$ from the sets $A_{1}, \ldots, A_{m} \subseteq\{0,1\}^{N}$ is a sequence of sets $B_{1}, \ldots, B_{k} \subseteq\{0,1\}^{N}$ such that $B_{k}=C$, each B_{i} is either one of A_{j} or derived from two previous $B_{i_{1}}, B_{i_{2}}$ by the semantic rule
- Let \mathcal{X} be a set of subsets of $\{0,1\}^{N}$. Semantic derivation B_{1}, \ldots, B_{k} is an \mathcal{X}-derivation iff all $B_{i} \in \mathcal{X}$

Filters and semantic derivations

Definition

Filter of subsets of $\{0,1\}^{N}$ is a family \mathcal{X} closed upwards $((A \in \mathcal{X}) \wedge(B \supseteq A) \rightarrow B \in \mathcal{X})$ and closed under intersection $(A, B \in \mathcal{X} \rightarrow A \cap B \in \mathcal{X})$

Lemma

Let $A_{1}, \ldots, A_{m}, C \in\{0,1\}^{N}$. Then the following three conditions are equivalent:

- C can be semantically derived from A_{1}, \ldots, A_{m}
- C can be semantically derived from A_{1}, \ldots, A_{m} in $m-1$ steps
- C is in the smallest filter containing A_{1}, \ldots, A_{m}

Non-trivial semantic derivations

To have a non-trivial meaning of length of semantic derivation we must restrict to \mathcal{X}-derivations, where \mathcal{X} is not a filter. A family \mathcal{X} formed by subsets of $\{0,1\}^{N}$ definable by disjunctions of literals yields a non-trivial notion.

Communication complexity

Definition

Let $N=n+s+t$ be fixed and let $A \subseteq\{0,1\}^{N}$. Let $u, v \in\{0,1\}^{n}$, $q^{u} \in\{0,1\}^{s}$ and $r^{v} \in\{0,1\}^{t}$. Consider three tasks:

- Decide whether $\left(u, q^{u}, r^{v}\right) \in A$
- Decide whether $\left(v, q^{u}, r^{v}\right) \in A$
- If $\left(u, q^{u}, r^{v}\right) \in A \neq\left(v, q^{u}, r^{v}\right) \in A$ find $i \leq n$ such that $u_{i} \neq v_{i}$
These tasks can be solved by two players, one knowing u, q^{u} and the other one knowing v, r^{v}. The communication complexity of $A, C C(A)$, is the minimal number of bits they need to exchange in the worst case in solving any of these three tasks.

Monotone communication complexity

Definition

Consider two more tasks:

- If $\left(u, q^{u}, r^{v}\right) \in A$ and $\left(v, q^{u}, r^{v}\right) \notin A$ either find $i \leq n$ such that $u_{i}=1 \wedge v_{i}=0$ or learn that there is some u^{\prime} satisfying $u^{\prime} \geq u \wedge\left(u^{\prime}, q^{u}, r^{v}\right) \notin A\left(u \leq u^{\prime}\right.$ means $\left.\bigwedge_{i \leq n} u_{i} \leq u^{\prime}{ }_{i}\right)$
- If $\left(u, q^{u}, r^{v}\right) \notin A$ and $\left(v, q^{u}, r^{v}\right) \in A$ either find $i \leq n$ such that $u_{i}=1 \wedge v_{i}=0$ or learn that there is some u^{\prime} satisfying $v^{\prime} \leq v \wedge\left(v^{\prime}, q^{u}, r^{v}\right) \notin A$
The monotone CC w.r.t. U of $A, \operatorname{MCC}_{U}(A)$ is the minimal $t \geq C C(A)$ such that the first task can be solved communicating $\leq t$ bits in the worst case. $\operatorname{MCC} V(A)$ is defined similarly for the second task.

Some definitions

Definition

Let $N=n+s+t$ be fixed. For $A \subseteq\{0,1\}^{n+s}$ define the set \tilde{A} by:

$$
\tilde{A}:=\bigcup_{(a, b) \in A}\left\{(a, b, c) \mid c \in\{0,1\}^{t}\right\}
$$

where a, b, c range over $\{0,1\}^{n},\{0,1\}^{s}$ and $\{0,1\}^{t}$ respectively, and similarly for $B \subseteq\{0,1\}^{n+t}$ define \tilde{B} :

$$
\tilde{B}:=\bigcup_{(a, c) \in B}\left\{(a, b, c) \mid b \in\{0,1\}^{s}\right\}
$$

Interpolation theorem for semantic derivations

Theorem

Let $A_{1}, \ldots, A_{m} \subseteq\{0,1\}^{n+s}$ and $B_{1}, \ldots, B_{I} \subseteq\{0,1\}^{n+t}$. Assume that there is a semantic derivation $\pi=D_{1}, \ldots, D_{k}$ of the empty set $\emptyset=D_{k}$ from the sets $\tilde{A}_{1}, \ldots, \tilde{A}_{m}, \tilde{B}_{1}, \ldots, \tilde{B}_{l}$ such that $C C\left(D_{i}\right) \leq t$ for all $i \leq k$. Then the two sets

$$
U=\left\{u \in\{0,1\}^{n} \mid \exists q^{u} \in\{0,1\}^{s} ;\left(u, q^{u}\right) \in \bigcap_{j \leq m} A_{j}\right\}
$$

and

$$
V=\left\{v \in\{0,1\}^{n} \mid \exists r^{v} \in\{0,1\}^{t} ;\left(v, r^{v}\right) \in \bigcap_{j \leq 1} B_{j}\right\}
$$

can be separated by a circuit of size at most $(k+2 n) 2^{O(t)}$

Interpolation theorem for semantic derivations (continued)

Theorem

Moreover, if the sets A_{1}, \ldots, A_{m} satisfy the following monotonicity condition w.r.t. U :

$$
\left(u, q^{u}\right) \in \bigcap_{j \leq m} A_{j} \wedge u \leq u^{\prime} \rightarrow\left(u^{\prime}, q^{u}\right) \in \bigcup_{j \leq m} A_{j}
$$

and $\operatorname{MCC}_{U}\left(D_{i}\right) \leq t$ for all $i \leq k$, or if the sets B_{1}, \ldots, B_{I} satisfy:

$$
\left(v, r^{v}\right) \in \bigcap_{j \leq 1} B_{j} \wedge v \geq v^{\prime} \rightarrow\left(v^{\prime}, r^{v}\right) \in \bigcup_{j \leq 1} B_{j}
$$

and $\operatorname{MCC}_{V}\left(D_{i}\right) \leq t$ for all $i \leq k$, then there is a monotone circuit separating U from V of size at most $(k+n) 2^{O(t)}$.

Proof of interpolation theorem for semantic derivations (informal)

Proof

Let $\pi=D_{1}, \ldots, D_{k}$ be a semantic derivation of \emptyset from $\tilde{A}_{1}, \ldots, \tilde{B}_{l}$. The two players A and B, one knowing $\left(u, q^{u}\right) \in \bigcap_{j} A_{j}$ and the other one knowing $\left(v, r^{v}\right) \in \bigcap_{j} B_{j}$, attempt to construct a path $P=S_{0}, \ldots, S_{h}$ through $\pi . S_{0}=\varnothing=D_{k}, S_{a+1}$ is one of the two sets which are the hypotheses of the semantic inference yielding S_{a} and $S_{h} \in\left\{\tilde{A}_{1}, \ldots, \tilde{B}_{l}\right\}$. Moreover, both tuples $\left(u, q^{u}, r^{v}\right)$ and $\left(v, q^{u}, r^{v}\right)$ are not in $S_{a}, a=0, \ldots, h$.

Proof of interpolation theorem for semantic derivations (informal)

Proof

If the players know S_{a} which was deduced in the inference $\frac{X{ }_{S}}{S_{a}}$ then they first determine whether $\left(u, q^{u}, r^{v}\right) \in X$ and $\left(v, q^{u}, r^{v}\right) \in X$. There are three possible outcomes:

- both $\left(u, q^{u}, r^{v}\right)$ and $\left(v, q^{u}, r^{v}\right)$ are in $X\left(S_{a+1}:=Y\right)$
- none of $\left(u, q^{u}, r^{v}\right),\left(v, q^{u}, r^{v}\right)$ is in $X\left(S_{a+1}:=X\right)$
- only one of $\left(u, q^{u}, r^{v}\right),\left(v, q^{u}, r^{v}\right)$ is in X (stop constucting the path and enter a protocol for finding $i \leq n$ such that $\left.u_{i} \neg v_{i}\right)$.
The players must sooner or later enter the third case as none of the initial sets $\tilde{A}_{1}, \ldots, \tilde{B}_{I}$ avoids both $\left(u, q^{u}, r^{v}\right),\left(v, q^{u}, r^{v}\right)$.

Proof of the interpolation theorem for semantic derivations (monotone case)

Proof

- We will define the protocol for the monotone case only (non-montone is similar).
- Assume that the sets A_{1}, \ldots, A_{m} satisfy the monotonicity condition w.r.t. U and that $M C C_{U}\left(D_{i}\right) \leq t$ for all $i \leq k$ (the case of the monotonicity w.r.t. V is analogous).
- The protocol has $(k+n)$ nodes, the k steps of derivation π plus n additional nodes labelled by formulas
$u_{i}=1 \wedge v_{i}=0, i=1, \ldots, n$.
- The consistency condition $F(u, v)$ consists of of those D_{j} such that $\left(v, q^{u}, r^{v}\right) \notin D_{j}$ and of those additional n nodes whose label is valid for particular u, v.

Proof of the interpolation theorem for semantic derivations (monotone case)

Proof

The players use the protocol for solving the first task from the definition of the MCC. There are two possible outcomes:

- They decide that the condition

$$
\exists u^{\prime} \geq u,\left(u^{\prime}, q^{u}, r^{v}\right) \notin D_{j}
$$

is true for u, v. Then they put $S\left(u, v, D_{j}\right):=X$ if $\left(v, q^{u}, r^{v}\right) \notin X$ or Y otherwise.

- They find $i \leq n$ such that $u_{i}=1 \wedge v_{i}=0 . S\left(u, v, D_{i}\right)$ is then the additional node with the label $u_{i}=1 \wedge v_{i}=0$.

Proof of the interpolation theorem for semantic derivations (monotone case)

Proof

- By the monotonicity imposed on A_{1}, \ldots, A_{m}, for every u^{\prime} occurring above it holds: $\left(u^{\prime}, q^{u}, r^{v}\right) \in \bigcap_{j \leq m} A_{j}$
- This implies that the players have to find sooner or later $i \leq n$ such that $u_{i}=1 \wedge v_{i}=0$.
- By the assumption about the monotone communication complexity of all D_{j}, both the relation $x \in F(u, v)$ and the function $S(u, v, x)$ can be computed exchanging $O(t)$ bits.
- As G has $(k+n)$ nodes, theorem about connection between protocols and circuits yields the wanted monotone circuit separating U from V and having the size at most $(k+n) \cdot 2^{O(t)}$.

Upper bound for resolution refutation

Theorem

Assume that the set of clauses $\left\{A_{1}, \ldots, A_{m}, B_{1}, \ldots, B_{l}\right\}$ where: $A_{i} \subseteq\left\{p_{1}, \ldots, p_{n}, \neg p_{1}, \ldots, \neg p_{n}, q_{1}, \ldots, q_{s}, \neg q_{1}, \ldots, \neg q_{s}\right\}, i \leq m$
$B_{j} \subseteq\left\{p_{1}, \ldots, p_{n}, \neg p_{1}, \ldots, \neg p_{n}, r_{1}, \ldots, r_{l}, \neg r_{1}, \ldots, \neg r_{l}\right\}, j \leq 1$
has a resolution refutation with k clauses.
Then the implication:

$$
\bigwedge_{i \leq m}\left(\bigvee A_{i}\right) \longrightarrow \bigvee_{j \leq 1}\left(\bigwedge \neg B_{j}\right)
$$

has an interpolant $I(p)$ whose circuit-size is $k n^{O(1)}$
Moreover, if all atoms in p occur positively in all A_{i}, or if all p occur only negatively in all B_{j}, then there is a monotone interpolant whose monotone circuit-size is $\mathrm{kn}^{(1)}$.

Proof of upper bound for resolution refutation

Proof

 clause C denote by \tilde{C} the subset of $\{0,1\}^{n+s+t}$ of all those truth assignments satisfying C. Then $\tilde{\pi}=\tilde{C}_{1}, \ldots, \tilde{C}_{k}$ is a semantic derivation of \emptyset from $\tilde{A}_{1}, \ldots, \tilde{B}_{1}$.
Obviously, for any clause C both the communication complexity and the monotone communication complexity of \tilde{C} is at most $C C(\tilde{C}) \leq\lceil\log n\rceil+2$. Hence the previous theorem yields circuit of size $(k+2 n) \cdot n^{O(1)} \leq k \cdot n^{O(1)}$. Similarly for the monotone case.

General idea of lower bounds

Assume that for a propositional proof system P we have a good interpolation theorem, allowing good estimates of the complexity of the monotone interpolants.
Then implication which cannot have a small monotone interpolant must have long P-proofs.

Clique $_{n, \omega}$

Definition

Let $n, \omega, \xi \geq q$ be natural numbers, and let $\binom{n}{2}$ denote the set of two-element subsets of $1, \ldots, n$. The set Clique $_{n, \omega}(p, q)$ is a set of the following formulas in the atoms $p_{i j}, i, j \in\binom{n}{2}$, and $q_{u i}, u=1, \ldots, \omega$ and $i=1, \ldots, n$:

- $\bigvee_{i \leq n} q_{i u}$, for all $u \leq \omega$
- $\neg q_{u i} \vee \neg q_{v i}$, for all $u<v \leq \omega$ and $i=1, \ldots, n$.
- $\neg q_{u i} \vee \neg q_{v j} \vee p_{i j}$, for all $u<v \leq \omega$ and $i, j \in\binom{n}{2}$

Color $_{n, \xi}$

Definition

The set Color $_{n, \xi}(p, r)$ is the set of the following formulas in the atoms $p_{i j}, i, j \in\binom{n}{2}$, and $r_{i a}, i=1, \ldots, n$ and $a=1, \ldots, \xi$:

- $\bigvee_{a \leq \xi} r_{i a}$, for all $i \leq n$
- $\neg r_{i a} \vee \neg r_{i b}$, for all $a<b \leq \xi$ and $i \leq n$
- $\neg r_{i a} \vee \neg r_{j a} \vee \neg p i j$, for all $a \leq \xi$ and $i, j \in\binom{n}{2}$

Clique $_{n, \omega} \rightarrow \neg$ Color $_{n, \xi}$

The expression Clique $_{n, \omega} \rightarrow \neg$ Color $_{n, \xi}$ is an abbreviation of the sequent whose antecedent consists of all formulas in Clique $_{n, \omega}$ and whose succedent consists of the negations of the formulas in Color $_{n, \xi}$.
This sequent is tautologically valid if $\xi<\omega$.

Theorem

Assume that $3 \leq \xi<\omega$ and $\sqrt{\xi} \omega \leq \frac{n}{8 \log n}$. Then the sequent

$$
\text { Clique }_{n, \omega} \rightarrow \neg \text { Color }_{n, \xi}
$$

has no interpolant of the monotone circuit-size smaller than:

$$
2^{\Omega(\sqrt{\xi})}
$$

Lower bound for resolution refutation

Corollary

Let n be sufficiently large and let $\xi=\lceil\sqrt{n}\rceil, \omega=\xi+1$. Then:

- Every resolution refutation of the clauses Clique $_{n, \omega} \cup$ Color $_{n, \xi}$ must have at least $2^{\Omega\left(n^{\frac{1}{4}}\right)}$ clauses

Proof

Theorem about upper bounds for resolution refutation with k clauses would imply the existence of an interpolant with monotone circuit size $k n^{O(1)}$. The hypothesis of the previous theorem is fulfilled and so it must hold:

$$
k n^{O(1)} \geq 2^{\Omega\left(n^{\frac{1}{4}}\right)}
$$

and hence $k \geq 2^{\Omega\left(n^{\frac{1}{4}}\right)}$

