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LK sequent calculus

Connectives of the propositional language:

Constants 0, 1

The conjunction ∧ and the disjunction ∨ (are of unbounded
arity)

The negation ¬ (is allowed only in front of atoms)

Characteristics of formula A:

The size |A| of A is the number of connectives and atoms in
it.

The depth dp(A) of A is the maximal nesting of ∨ and ∧ in A.
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LK sequent calculus

Definition

Cedent is a finite (possibly empty) sequence of formulas denoted
Γ,∆, ...

Definition

Sequent is an ordered pair of cedents written Γ −→ ∆ (here Γ is
called antecedent and ∆ is called succedent).

A sequent is satisfied if at least one formula in ∆ is satisfied of at
least one formula in Γ is falsified. Empty sequent cannot be
satisfied.
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Inference rules of LK sequent calculus

Initial sequents
−→ 1

¬1 −→
0 −→
−→ ¬0

p −→ p
¬p −→ ¬p
p,¬p −→
−→ p,¬p

Weak structural rules Γ→∆
Γ ′→∆′

exchange: Γ and ∆ are any permutations of A
contraction: Γ ′ and ∆′ are obtained from Γ and ∆ by
deleting any multiple occurrences of formulas
weakening: Γ ′ ⊇ Γ and ∆′ ⊇ ∆
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Inference rules of LK sequent calculus

Propositional rules∧
-introduction

A, Γ −→ ∆∧
i Ai , Γ −→ ∆

Γ −→ ∆,A1 . . . Γ −→ ∆,Am

Γ −→ ∆,
∧

i≤m Ai

where A is one of the Ai in the left rule∨
-introduction

A1, Γ −→ ∆ . . .AmΓ −→ ∆∨
i≤m Ai , Γ −→ ∆

Γ −→ ∆,A

Γ −→ ∆,
∨

i Ai

where A is one of the Ai in the right rule

Cut rule

Γ −→ ∆,A A, Γ −→ ∆

Γ −→ ∆
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LK-proofs

Definition

LK-proof of a sequent S from the sequents S1, . . . ,Sm is a
sequence Z1, . . . ,Zk such that Zk = S and each Zi is either an
initial one or from S1, . . . ,Sm, or derived from the previous ones by
an inference rule.

Definition

k(π) is the number of sequents in π. The size of the proof is the
sum of the sizes of the formulas in it (counting multiple
occurrences of a formula separately)
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LK-proofs

Definition

Resolution refutation of sequents S1, . . . ,Sm which contain no∨
,
∧

is an LK-proof of the empty sequent from S1, . . . ,Sm in
which no

∨
,
∧

occur.

This is obviously equivalent to the more usual definition of
resolution with clauses and the resolution rule as a resolution clause

¬pi1 , . . . ,¬pia , pj1 , . . . pjb

can be represented by the sequent

pi1 , . . . , pia → pj1 , . . . , pjb

and the resolution by the cut rule (and vice versa).
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Karchmer-Wigderson games and communication
complexity

Definition

Let U,V ⊆ {0, 1}n be two disjoint sets.

The Karchmer-Wigderson game (KW-game) is played by two
players A and B.

Player A receives u ∈ U while B receives v ∈ V . They
communicate bits of information (following a protocol
previously agreed on) until both players agree on the same
i ∈ 1, ..., n such that ui 6= vi .

Their objective is to minimize (over all protocols) the number
of bits they need to communicate in the worst case.

This minimum is called the communication complexity
(CC) of the game and it is denoted by C (U,V ).
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Karchmer-Wigderson game

Boolean function B(p1, ..., pn) separates U from V if and only if
B(x) = 1 holds (resp. = 0) for all x ∈ U (resp. for all x ∈ V ).

Theorem

Let U,V ⊆ {0, 1}n be two disjoint sets. Then C (U,V ) is precisely
the minimal depth of a formula with binary ∧, ∨ separating U
from V .
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Definition of a protocol for KW-game

Definition

Let U,V ⊆ {0, 1}n be two disjoint sets. A protocol for the game
on the pair (U,V ) is a labelled directed graph G satisfying the
following four conditions:

G is acyclic and has one source (the in-degree 0 node)
denoted Ø. The nodes with out-degree 0 are leaves, all other
are inner-nodes.

All leaves are labelled by one of the following formulas:

ui = 1 ∧ vi = 0 or ui = 0 ∧ vi = 1

for some i = 1, . . . , n.
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Definition of a protocol for KW-game (continued)

Every pair u ∈ U and v ∈ V defines for every node x a directed
path Px

u,v in G from the node x to a leaf: Px
u,v = x1, . . . , xh, where

x1 = x , the edge S(u, v , xi ) goes from xi to xi+1 and xh is a leaf.

Definition (continued)

There is a function S(u, v , x) (the strategy) such that S
assigns to a node x and a pair u ∈ U and v ∈ V the edge
S(u, v , x) leaving form the node x

For every u ∈ U and v ∈ V there is a set F (u, v) ⊆ G
satisfying:

Ø ∈ F (u, v)
x ∈ F (u, v)→ Px

u,v ⊆ F (u, v)
the label of any leaf from F (u, v) is valid for u, v

Such a set F is called a consistency condition
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Monotone protocols and communication complexity

Definition

A protocol is called monotone iff every leaf in it is labelled by one
of the formulas ui = 1 ∧ vi = 0, i = 1, . . . , n.

Definition

The communication complexity of G is the minimal number t
such that for every x ∈ G the players (one knowing u and x, the
other knowing v and x) decide whether x ∈ F (u, v) and compute
S(u, v , x) with at most t bits exchanged in the worst case.
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Protocols and circuits

Important examples of protocols are protocols formed from a
circuit. Assume C is a circuit separating U from V . Reverse the
edges in C , take for F (u, v) those subcircuits differing in the value
on u and v , and define the strategy and the labels of the leaves in
an obvious way. This determines a protocol for the game on
(U,V ) with communication complexity 2.

Theorem

Let U,V ∈ {0, 1}n be two disjoint sets. Let G be a protocol for
the game on U, V which has k nodes and the communication
complexity t. Then there is a circuit C of size k2O(t) separating U
from V . Moreover, if G is monotone, so is C .
On the other hand, any circuit (monotone circuit) C of size m
separating U from V determines a protocol (a monotone protocol)
G with m nodes whose complexity is 2.
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Interpolant

Definition

Interpolant of a valid implication A(p, q)→ B(p, r) where
p = (p1, . . . , pn) are the atoms occurring in both A and B, while
q = (q1, . . . , qs) occur only in A and r = (r1, . . . , rt) only in B, to
be any Boolean function I (p) such that both implications

A(p, q)→ (I (p) = 1) and ((I (p) = 1)→ B(p, r))

are tautologically valid. If I (p) is defined by a formula (also
denoted I ) this means that both implications

A→ I and I → B

are tautologies.
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Sequents in LK calculus

In the calculus LK the implication A→ B is represented by the
sequent A −→ B and, in general, the sequent
A1, . . . ,Am −→ B1, . . . ,Bl represents the implication∧

i Ai →
∨

j Bj .

Grigory Yaroslavtsev Lower bounds using communication complexity
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The Craig interpolation theorem

Theorem

Let π be a cut-free LK-proof of the sequent

A1(p, q), . . . ,Am(p, q) −→ B1(p, r), . . . ,Bl(p, r)

with p = (p1, . . . , pn) the atoms occurring simultaneously in some
Ai and Bj , and q = (q1, . . . , qs) and r = (r1, . . . , rl) all other
atoms occurring in some Ai or in some Bj respectively. Then there
is an interpolant I (p) of the implication:

∧
i≤m Ai −→

∨
j≤l Bj

whose circuit-size is at most k(π)O(1).
If the atoms p occur only positively in all Ai or all Bj then there is
monotone interpolant with monotone circuit-size at most k(π)O(1).
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The Craig interpolation theorem

Proof

Define two sets U,V ⊆ {0, 1}n by:

U = {u ∈ {0, 1}n | ∃qu ∈ {0, 1}s ,
∧
i≤m

Ai (u, qu)}

V = {v ∈ {0, 1}n | ∃r v ∈ {0, 1}t ,
∧
j≤l

¬Bj(v , r v )}

Note that the fact that the sequent A1, . . . ,Am −→ B1, . . . ,Bl is
tautologically valid is equivalent to the fact that the sets U,V are
disjoint, and that any Boolean function separates U from V iff it is
interpolant of the sequent.
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Proof of the Craig interpolation theorem using CC

Proof

Using the proof π we define a protocol for the game on U,V .
Assume that player A received u ∈ U and B received v ∈ V . Player
A fixes some qu ∈ {0, 1}s such that

∧
i≤m Ai (u, qu) holds and

player B fixes some r v ∈ {0, 1}t for which
∧

j≤l ¬Bj(v , r v ) holds.
Exchanging some bits they will construct the path P = S0, . . . ,Sh

of sequents of π satisfying the following conditions:

S0 is the end-sequent, Sh is an initial sequent

Si+1 is an upper sequent of the inference giving Si

For any a = 0, . . . , h: if Sa has the form:

E1(p, q), . . . ,Ee(p, q) −→ F1(p, r), . . . ,Ff (p, r)

then
∧

i≤e Ei (u, qu) holds while
∨

j≤f Fj(v , r v ) fails.

Grigory Yaroslavtsev Lower bounds using communication complexity
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Proof of the Craig interpolation theorem using CC

Proof

Note that as the proof is cut-free and there are no ¬-rules, no
formula in the antecedent (resp. the succedent) of a sequent in the
proof contains an atom ri (resp. the atom qi ).
To find Sa+1 they proceed as follows:

If Sa was deduced by an inference with only one hypothesis,
they put Sa+1 to be that hypothesis and exchange no bits.

If the inference yielding Sa was the introduction of
∧

i≤g Di to
the succedent the player B, who thinks that

∧
i≤g Di is false,

sends to A dlog ge bits identifying one particular
Di (v , r v ), i ≤ g, which is false. They take for Sa+1 the upper
sequent of the inference containing the minor formula Di

Introduction of
∨

i≤g Di to the antecedent is treated similarly.

Grigory Yaroslavtsev Lower bounds using communication complexity
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Proof of the Craig interpolation theorem using CC

Proof

Let Sh be the initial sequent players arrive at in the path P. It must
be one of the following formulas: pi −→ pi or ¬pi −→ ¬pi for
some i = 1, . . . , n. This is because all other initial sequents either
contain an atom ri in the antecedent or an atom qi in the
succedent, or violate the last condition from the definition of P.
If Sh is the former then ui = 1 ∧ vi = 0, if it is the latter then
ui = 0 ∧ vi = 1.
The communication complexity of the defined protocol is
≤ dlog ge+ 2 ≤ dlog k(π) + 2.
Thus there is a circuit of size k(π)O(1) separating U form V . If all
atoms occur only positively in the antecedent or in the succedent
of the end-sequent then the players always arrive to an initial
sequent of the form pi −→ pi . This yields the monotone case.

Grigory Yaroslavtsev Lower bounds using communication complexity
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Final thoughts about Craig interpolation theorem

The proof of the theorem can be modified for the case when π is
not necessarily cut-free but no cut-formula contains atoms q and r
at the same time. To maintain the condition that q (resp. r) do
not occur in the succedent (resp. the antecedent) we picture a
cut-inference with the cut-formula D as

¬D, Γ −→ ∆ D, Γ −→ ∆

Γ −→ ∆

or
Γ −→ ∆,D Γ −→ ∆,¬D

Γ −→ ∆

according to whether atoms q do or do not occur in D.
The modification of the proof is then straightforward as the
truth-value of any cut-formula is known to one of the players and
he can direct the path by sending one bit.

Grigory Yaroslavtsev Lower bounds using communication complexity
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Definition of semantic derivation

Definition

Let N be a fixed natural number.

The semantic rule allows to infer from two subsets
A,B ⊆ {0, 1}N a third one: A B

C iff C ⊇ A ∩ B

A semantic derivation of the set C ⊆ {0, 1}N from the sets
A1, . . . ,Am ⊆ {0, 1}N is a sequence of sets
B1, . . . ,Bk ⊆ {0, 1}N such that Bk = C , each Bi is either one
of Aj or derived from two previous Bi1 ,Bi2 by the semantic rule

Let X be a set of subsets of {0, 1}N . Semantic derivation
B1, . . . ,Bk is an X -derivation iff all Bi ∈ X

Grigory Yaroslavtsev Lower bounds using communication complexity
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Filters and semantic derivations

Definition

Filter of subsets of {0, 1}N is a family X closed upwards
((A ∈ X ) ∧ (B ⊇ A)→ B ∈ X ) and closed under intersection
(A,B ∈ X → A ∩ B ∈ X )

Lemma

Let A1, . . . ,Am,C ∈ {0, 1}N . Then the following three conditions
are equivalent:

C can be semantically derived from A1, . . . ,Am

C can be semantically derived from A1, . . . ,Am in m− 1 steps

C is in the smallest filter containing A1, . . . ,Am

Grigory Yaroslavtsev Lower bounds using communication complexity
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Non-trivial semantic derivations

To have a non-trivial meaning of length of semantic derivation we
must restrict to X -derivations, where X is not a filter. A family X
formed by subsets of {0, 1}N definable by disjunctions of literals
yields a non-trivial notion.

Grigory Yaroslavtsev Lower bounds using communication complexity
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Communication complexity

Definition

Let N = n + s + t be fixed and let A ⊆ {0, 1}N . Let u, v ∈ {0, 1}n,
qu ∈ {0, 1}s and r v ∈ {0, 1}t . Consider three tasks:

Decide whether (u, qu, r v ) ∈ A

Decide whether (v , qu, r v ) ∈ A

If (u, qu, r v ) ∈ A 6= (v , qu, r v ) ∈ A find i ≤ n such that
ui 6= vi

These tasks can be solved by two players, one knowing u, qu and
the other one knowing v , r v . The communication complexity of
A, CC (A), is the minimal number of bits they need to exchange in
the worst case in solving any of these three tasks.

Grigory Yaroslavtsev Lower bounds using communication complexity
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Monotone communication complexity

Definition

Consider two more tasks:

If (u, qu, r v ) ∈ A and (v , qu, r v ) /∈ A either find i ≤ n such
that ui = 1 ∧ vi = 0 or learn that there is some u′ satisfying
u′ ≥ u ∧ (u′, qu, r v ) /∈ A (u ≤ u′ means

∧
i≤n ui ≤ u′i )

If (u, qu, r v ) /∈ A and (v , qu, r v ) ∈ A either find i ≤ n such
that ui = 1 ∧ vi = 0 or learn that there is some u′ satisfying
v ′ ≤ v ∧ (v ′, qu, r v ) /∈ A

The monotone CC w.r.t. U of A, MCCU(A) is the minimal
t ≥ CC (A) such that the first task can be solved communicating
≤ t bits in the worst case. MCCV (A) is defined similarly for the
second task.

Grigory Yaroslavtsev Lower bounds using communication complexity
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Some definitions

Definition

Let N = n + s + t be fixed. For A ⊆ {0, 1}n+s define the set Ã by:

Ã :=
⋃

(a,b)∈A

{(a, b, c) | c ∈ {0, 1}t}

where a, b, c range over {0, 1}n, {0, 1}s and {0, 1}t respectively,
and similarly for B ⊆ {0, 1}n+t define B̃:

B̃ :=
⋃

(a,c)∈B

{(a, b, c) | b ∈ {0, 1}s}

Grigory Yaroslavtsev Lower bounds using communication complexity
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Interpolation theorem for semantic derivations

Theorem

Let A1, . . . ,Am ⊆ {0, 1}n+s and B1, . . . ,Bl ⊆ {0, 1}n+t . Assume
that there is a semantic derivation π = D1, . . . ,Dk of the empty
set Ø = Dk from the sets Ã1, . . . , Ãm, B̃1, . . . , B̃l such that
CC (Di ) ≤ t for all i ≤ k. Then the two sets

U = {u ∈ {0, 1}n | ∃qu ∈ {0, 1}s ; (u, qu) ∈
⋂
j≤m

Aj}

and
V = {v ∈ {0, 1}n | ∃r v ∈ {0, 1}t ; (v , r v ) ∈

⋂
j≤l

Bj}

can be separated by a circuit of size at most (k + 2n)2O(t)

Grigory Yaroslavtsev Lower bounds using communication complexity
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Interpolation theorem for semantic derivations (continued)

Theorem

Moreover, if the sets A1, . . . ,Am satisfy the following monotonicity
condition w.r.t. U:

(u, qu) ∈
⋂
j≤m

Aj ∧ u ≤ u′ → (u′, qu) ∈
⋃
j≤m

Aj

and MCCU(Di ) ≤ t for all i ≤ k, or if the sets B1, . . . ,Bl satisfy:

(v , r v ) ∈
⋂
j≤l

Bj ∧ v ≥ v ′ → (v ′, r v ) ∈
⋃
j≤l

Bj

and MCCV (Di ) ≤ t for all i ≤ k, then there is a monotone circuit
separating U from V of size at most (k + n)2O(t).

Grigory Yaroslavtsev Lower bounds using communication complexity
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Proof of interpolation theorem for semantic derivations
(informal)

Proof

Let π = D1, . . . ,Dk be a semantic derivation of Ø from Ã1, . . . , B̃l .
The two players A and B, one knowing (u, qu) ∈

⋂
j Aj and the

other one knowing (v , r v ) ∈
⋂

j Bj , attempt to construct a path
P = S0, . . . ,Sh through π. S0 = Ø = Dk , Sa+1 is one of the two
sets which are the hypotheses of the semantic inference yielding Sa

and Sh ∈ {Ã1, . . . , B̃l}. Moreover, both tuples (u, qu, r v ) and
(v , qu, r v ) are not in Sa, a = 0, . . . , h.

Grigory Yaroslavtsev Lower bounds using communication complexity
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Proof of interpolation theorem for semantic derivations
(informal)

Proof

If the players know Sa which was deduced in the inference X Y
Sa

then they first determine whether (u, qu, r v ) ∈ X and
(v , qu, r v ) ∈ X . There are three possible outcomes:

both (u, qu, r v ) and (v , qu, r v ) are in X (Sa+1 := Y )

none of (u, qu, r v ), (v , qu, r v ) is in X (Sa+1 := X )

only one of (u, qu, r v ), (v , qu, r v ) is in X (stop constucting the
path and enter a protocol for finding i ≤ n such that ui¬vi ).

The players must sooner or later enter the third case as none of
the initial sets Ã1, . . . , B̃l avoids both (u, qu, r v ), (v , qu, r v ).

Grigory Yaroslavtsev Lower bounds using communication complexity
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Proof of the interpolation theorem for semantic derivations
(monotone case)

Proof

We will define the protocol for the monotone case only
(non-montone is similar).

Assume that the sets A1, . . . ,Am satisfy the monotonicity
condition w.r.t. U and that MCCU(Di ) ≤ t for all i ≤ k (the
case of the monotonicity w.r.t. V is analogous).

The protocol has (k + n) nodes, the k steps of derivation π
plus n additional nodes labelled by formulas
ui = 1 ∧ vi = 0, i = 1, . . . , n.

The consistency condition F (u, v) consists of of those Dj such
that (v , qu, r v ) /∈ Dj and of those additional n nodes whose
label is valid for particular u, v.

Grigory Yaroslavtsev Lower bounds using communication complexity
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Proof of the interpolation theorem for semantic derivations
(monotone case)

Proof

The players use the protocol for solving the first task from the
definition of the MCC . There are two possible outcomes:

They decide that the condition

∃u′ ≥ u, (u′, qu, r v ) /∈ Dj

is true for u, v. Then they put S(u, v ,Dj) := X if
(v , qu, r v ) /∈ X or Y otherwise.

They find i ≤ n such that ui = 1 ∧ vi = 0. S(u, v ,Di ) is then
the additional node with the label ui = 1 ∧ vi = 0.

Grigory Yaroslavtsev Lower bounds using communication complexity



Outline
Introduction

Interpolation theorem and semantic derivations
Upper and lower bounds

The Craig interpolation theorem
Semantic derivations
An interpolation theorem for semantic derivations

Proof of the interpolation theorem for semantic derivations
(monotone case)

Proof

By the monotonicity imposed on A1, . . . ,Am, for every u′

occurring above it holds: (u′, qu, r v ) ∈
⋂

j≤m Aj

This implies that the players have to find sooner or later i ≤ n
such that ui = 1 ∧ vi = 0.

By the assumption about the monotone communication
complexity of all Dj , both the relation x ∈ F (u, v) and the
function S(u, v , x) can be computed exchanging O(t) bits.

As G has (k + n) nodes, theorem about connection between
protocols and circuits yields the wanted monotone circuit
separating U from V and having the size at most
(k + n) · 2O(t).

Grigory Yaroslavtsev Lower bounds using communication complexity
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Upper bound for resolution refutation

Theorem

Assume that the set of clauses {A1, . . . ,Am,B1, . . . ,Bl} where:
Ai ⊆ {p1, . . . , pn,¬p1, . . . ,¬pn, q1, . . . , qs ,¬q1, . . . ,¬qs}, i ≤ m
Bj ⊆ {p1, . . . , pn,¬p1, . . . ,¬pn, r1, . . . , rl ,¬r1, . . . ,¬rl}, j ≤ l
has a resolution refutation with k clauses.
Then the implication:∧

i≤m

(
∨

Ai ) −→
∨
j≤l

(
∧
¬Bj)

has an interpolant I (p) whose circuit-size is knO(1)

Moreover, if all atoms in p occur positively in all Ai , or if all p
occur only negatively in all Bj , then there is a monotone
interpolant whose monotone circuit-size is knO(1).

Grigory Yaroslavtsev Lower bounds using communication complexity
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Proof of upper bound for resolution refutation

Proof

Let π = C1, . . . ,Ck be a resolution refutation of A1, . . . ,Bl . For a
clause C denote by C̃ the subset of {0, 1}n+s+t of all those truth
assignments satisfying C . Then π̃ = C̃1, . . . , C̃k is a semantic
derivation of Ø from Ã1, . . . , B̃l .
Obviously, for any clause C both the communication complexity
and the monotone communication complexity of C̃ is at most
CC (C̃ ) ≤ dlog ne+ 2. Hence the previous theorem yields circuit of
size (k + 2n) · nO(1) ≤ k · nO(1). Similarly for the monotone case.

Grigory Yaroslavtsev Lower bounds using communication complexity
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General idea of lower bounds

Assume that for a propositional proof system P we have a good
interpolation theorem, allowing good estimates of the complexity
of the monotone interpolants.
Then implication which cannot have a small monotone interpolant
must have long P-proofs.

Grigory Yaroslavtsev Lower bounds using communication complexity
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Cliquen,ω

Definition

Let n, ω, ξ ≥ q be natural numbers, and let
(n

2

)
denote the set of

two-element subsets of 1, . . . , n. The set Cliquen,ω(p, q) is a set of
the following formulas in the atoms pij , i , j ∈

(n
2

)
, and

qui , u = 1, . . . , ω and i = 1, . . . , n:∨
i≤n qiu, for all u ≤ ω
¬qui ∨ ¬qvi , for all u < v ≤ ω and i = 1, . . . , n.

¬qui ∨ ¬qvj ∨ pij , for all u < v ≤ ω and i , j ∈
(n

2

)

Grigory Yaroslavtsev Lower bounds using communication complexity
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Colorn,ξ

Definition

The set Colorn,ξ(p, r) is the set of the following formulas in the
atoms pij , i , j ∈

(n
2

)
, and ria, i = 1, . . . , n and a = 1, . . . , ξ:∨

a≤ξ ria, for all i ≤ n

¬ria ∨ ¬rib, for all a < b ≤ ξ and i ≤ n

¬ria ∨ ¬rja ∨ ¬pij , for all a ≤ ξ and i , j ∈
(n

2

)

Grigory Yaroslavtsev Lower bounds using communication complexity
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Cliquen,ω → ¬Colorn,ξ

The expression Cliquen,ω → ¬Colorn,ξ is an abbreviation of the
sequent whose antecedent consists of all formulas in Cliquen,ω and
whose succedent consists of the negations of the formulas in
Colorn,ξ.
This sequent is tautologically valid if ξ < ω.

Theorem

Assume that 3 ≤ ξ < ω and
√
ξω ≤ n

8logn . Then the sequent

Cliquen,ω → ¬Colorn,ξ

has no interpolant of the monotone circuit-size smaller than:

2Ω(
√
ξ)

Grigory Yaroslavtsev Lower bounds using communication complexity
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Lower bound for resolution refutation

Corollary

Let n be sufficiently large and let ξ = d
√

ne, ω = ξ + 1. Then:

Every resolution refutation of the clauses Cliquen,ω ∪ Colorn,ξ

must have at least 2Ω(n
1
4 ) clauses

Proof

Theorem about upper bounds for resolution refutation with k
clauses would imply the existence of an interpolant with monotone
circuit size knO(1). The hypothesis of the previous theorem is
fulfilled and so it must hold:

knO(1) ≥ 2Ω(n
1
4 )

and hence k ≥ 2Ω(n
1
4 )

Grigory Yaroslavtsev Lower bounds using communication complexity
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