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Supervised vs Unsupervised learning

Supervised: Given many photos labeled with
whether or not they contain a face, generate
labels for new photos.

(STOC/FOCS: PAC learning.
In ML: Support vector machines,
online prediction, logistic regression, Neural nets etc...)

Unsupervised: Use google news corpus to answer analogy queries
King: Queen :: Waiter : ??

Unlabeled data >> labeled data.
(“Big data” world)

NELL: Never-Ending B¢l \V 1§
Language Learning



Main paradigm for unsupervised Learning

Given: Data
Assumption: Generated from

prob. distribution described by . L
small # of parameters. ws® Sy
(“Model”). T

density funstion /@
HMMs, Topic Models, Bayes nets, Sparse Coding, ... — 0703

Learning = Find good fit to parameter values . ;
o c 2 V24 p-2 ul-l L'l uil ;,t'~2 '
(often, “Max-Likelihood”) 0 - [T e

Difficulty: NP-hard in many cases.
Nonconvex; solved via heuristics




Is NP-hardness an obstacle for theory?

NP-hard instances
(encodings of SAT)

New York Times corpus ’

(want thematic structure)

‘L Learning
o Topic

Models

Tractable

subset?? (“Going beyond worst-case.”

“Replacing heuristics with algorithms with provable bounds”)




Example: Inverse Moment Problem

X € R": Generated by a distribution D with
vector of unknown parameters A.

M1:E- ]:fl( )
My = E[XX"] = f2(A)
Ms = E[X®?%] = f3(A)

For many distributions, A may in principle be determined by
these moments, but finding it may be NP-hard.

Recent progress (see later): Can find A in poly time in many settings

under mild “nondegeneracy” conditions on A.
“Tensor decomposition” [Anandkumar, Ge, Hsu, Kakade, Telgarsky 2012]



Part 1:

“How to make assumptions and simplify problems.”

Example: Topic Modeling.

(Unsupervised Method for uncovering thematic
structure in a corpus of documents.)

Goal: Algorithm that runs (under clearly specified conditions on input)
in time polynomial in all relevant parameters, and produces solution of
specified quality/accuracy.



“Bag of words” Assumption in Text

Analysis
Banana
— Snow
r - — Soccer
Document Corpus = Matrix Walnut

(it column = it document)




Hidden Variable Explanation

 Document = Mixture of Topics @
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Hidden Variable explanation
(geometric view)

Topic 1

0.4 x Topicl +0.3 x Topic 2 +
0.2 x Topic 3

Topic 2

Topic 3



Nonnegative Matrix Factorization (NMF)

[Lee Seung’99]

Given: Nonnegative n x m matrix M (all entries > 0)
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Want: Nonnegativ
s.t. M = AW. (Aside: Given W, easy to find A via linear

e

[l
>

NP-hard
[Vavasis 09]

|

esA (nxr)and W (r x m),

programming.)

Applications: Image Segmentation, Info Retrieval,
Collaborative filtering, document classification.



“Separable”

Topic ;”fp

Matrices V\Q\
Banana 0 0

" Snow 49&% 0 00 |
Soccer 0 8% .
Walnut 0 0



Geometric restatement of NMF

(after some trivial rescaling)

Given n nonnegative vectors
(namely, rows of M)

Find r-dimensional simplex
with nonnegative vertices

that contains all.
(rows of W = vertices of this simplex;
Rows of A = convex combinations)

Separable = Vertices of simplex appear among
rows of M



Finding Separable Factorization
[A,Ge, Kannan, Moitra STOC'12]

e Algorithm: Remove a row, test if it is in the
convex hull of other rows

e (Case 1:Inside Row
 Can be represented by other
rows

e (Case 2: Row at a vertex

* Cannot be represented by other
rows

“Robustly

Important: Procedure can tolerate
Simplicial” ' if ci

" ! “not too flat.”




Learning Topic Models
[Papadimitriou et al.”98, Hoffman’99, Blei et al.”03]

4 ) ()
Sampled from
M columns of A A W

Max-likelihood solution is NP}

\_ _J . J

hard for adversarial data,
even for r=2 (AGM’12)

Topic matrix A (n x r) arbitrary, nonnega
Stochastic W (r x m). Columns iid from u
Given: M (n x m). it" column has 100 sa
from distribution given by it" column of :
Goal: Find A and parameters of distribGtion that

generated W.
Popular choice of distribution: Dirichlet. (“LDA” Blei, Jordan, Ng ‘03.)

n distrib.



The main difficulty (why LDA learning # NMF)

/ ) — \
Banana |0.03 Banana |3
NMF | - | LDA
Snow |0.02 Snow |1
Soccer, O Soccer |0
Small sample is poor representation of
distribution; cannot be treated as “noise”.
\ /




Reducing topic modeling to NMF

[A, Ge , Moitra FOCS’12]

- ~ Fo
V] Sampled | A [ W J

from

- / Y

Word-word co-occurence matrix = MMT (2" Moment)
~ AWWT'AT (up to scaling)

= AW where

new

W, ., = WWTAT
Can factorize using noise tolerant NMF algorithm!

Important: Need for separability assumption removed
by [Anandkumar, Hsu, Kakade’12] (slower algorithm).



Seconds

Empirical Results

[A, Ge, Halpern, Mimno, Moitra, Sontag, Wu, Zhu ICML"13]

Documents

50x faster on realistic data sizes.

Comparable error on synthetic data

Similar quality scores on real-life data (NYT corpus).
Works better than theory can explain.

Algorithm
Gibbs
Recover
RecoverlL2

RecoverKL



Part 2:

“The unreasonable effectiveness of nonconvex
heuristics.”




Real life instances
must have special
structure... Shrug. .

~

Heuristics

Branch & Bound for integer programming,

DPLL-family for SAT solving/Software verification.
Markov Chain Monte Carlo for counting problems (#P),
Belief propagation for Bayes Nets,..



ML : Great setting to study heuristics

* Clean models of how data was generated

* Heuristics so “natural” that even natural
systems use them (e.g., neurons).

* Theorists understand hardness; hence well-equipped to
identify assumptions that provably simplify the problem.




Example 1: Dictionary Learning
(aka Sparse Coding)

Simple “dictionary elements” build complicated objects.

A » A‘

¢ER4A R

Each object composed of small # of dictionary elements (sparsity
assumption)

Given the objects, can we learn the dictionary?



Dictionary Learning: Formalization

* Given samples of the form Y = AX

* Xis unknown matrix with sparse columns; m XS

* A (dictionary): n x m, unknown. Has to be learnt

* Interesting case: m > n (overcomplete)

* Assumption: Columns of X iid from suitable distrib.

Samples Dictionary Element Sparse Combination

"=




Why dictionary learning? [olshausen Field '96]
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dictionary learning
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Gabor-like Filters

natural image patches g « N2 &y
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Other uses: Image Denoising, '

Compression, etc.
Good example of “neural algorithm”



“Energy minimization” heuristic

min g |y — BZEZH%
B,CUl,CCQ,..., )
{2

x;’s are k-sparse

* Nonconvex; heuristics use approximate gradient
descent (“neural” algorithm)

[A., Ge,Ma,Moitra’14] Finds approx. global optimum in poly time.
(updates will steadily decrease distance to optimum)

 unknown Ais “incoherent” (columns have low pairwise
inner product) and has low matrix norm.
X has pairwise indep. coordinates; is Vn-sparse.

Assumptions:



Builds upon recent progress in
Dictionary Learning

* Poly-time algorithm when dictionary is full-rank (m =n);

sparsity of X <Vn. (Uses LP; not noise-tolerant)
[Spielman, Wang, Wright, COLT'12]

* Polytime algorithm for overcomplete case (m >n) .

A has to be “incoherent;” sparsity << Vn
[A., Ge, Moitra’13], [Agarwal, Anankumar, Netrapalli’13]

* New algorithms that allow almost-dense X
[A., Bhaskara, Ge, Ma’14], [Barak, Kelner, Steurer’14]

Alternating minimization works in poly time.
[A., Ge, Ma, Moitra ‘14]

III

Crucial idea in all: Stability of SVD/PCA; allows digging for “signa



Example 2: Deep Nets

Deep learning: learn multilevel
representation of data
(nonlinear)

Diagonal

(inspired e.g. by 7-8 levels of
visual cortex)

Successes: speech recognition, image .7
recognition, etc.

[Krizhevsky et al NIPS’12.] 1 iff WX > ®
600K variables; Millions of training

images. 84% success rate on IMAGENET

(multiclass prediction).

(Current best: 94% [Szegedy et al’14]) X X X1 X,



Deep Nets at a glance

o Classifier
N TN
ayer / | \ \ \ |
Features /@ . | f )

features; each layer
defined using
Layer-1 thresholded

Features weighted sums of
previous layers”
Y,
Observed ]

\/\/\\I

...Neural Nets....

Variables




Understanding “randomly-wired”
deep nets

Inspirations: Random error correcting codes, expanders, etc...

[A.,Bhaskara, Ge, Ma, ICML’14] Provable learning in Hinton’s generative
model. Proof of hypothesized “autoencoder” property.

* No nonlinear optimization.
 Combinatorial algorithm that leverages correlations.

“Inspired and guided” Google’s leading deep net code
[Szegedy et al., Sept 2014]



Part 3:

“Linear Algebra++"

Mathematical heart of these ML problems
(extends classical Linear Algebra, problems
usually NP-hard)



Classical linear algebra

* Solving linear systems: Ax=b

e Matrix factorization/rank M =AB;
(A has much fewer columns than M)

* Eigenvalues/eigenvectors. (“Nice basis”)



Classical Lin. Algebra: least square/
noisy variants

* Solving linear systems: Ax=b

min ||Az — b||? (Least squares fit) /

 Matrix factorization/rank M = AB;
(A has much fewer columns than M)

min [|[M — ABJ||* A has r columns — rank-r-SVD

(“PCA” [Hotelling, Pearson, 1930s]) (“Finding a better basis”)



Linear Algebra ++

Classical linear algebra together with any subset of following
type of constraints:

* Nonnegativity of variables x>0
e Sparsity (at most k variables are nonzero)

e Correct for observation “noise” (least squares, deletion, )

Most are NP-hard; making progress requires making assumptions



Part 4:

Constructing theories that explain observations

Diffusion (Random Walk)
Example:

Random walks on semantic spaces:
Towards an explanation of mysteries of
semantic word embeddings.

(A., Li, Liang, Ma, Risteski arxiv’15)

(explains unsupervised methods for solving analogies
like man: woman :: king : ??)



Concluding Thoughts

Can circumvent intractability by novel assumptions between avg
case and worst case): e.g., separability; randomly wired neural nets,
etc.

Thinking of provable bounds often leads to new kinds of algorithms.
(Sometimes can analyse existing heuristics ..)

Algorithms with provable bounds can be practical, or give new
insights.

Time to rethink ugrad/grad algorithms courses?
An attempt: http://www.cs.princeton.edu/courses/archive/fall14/cos521/

THANK YOU



Matrix factorization: Nonlinear

variants NIETELIX

Given M produced as follows: Generate low-rank A, B, apply
nonlinear function f on each entry of AB.

Goal: Recover A, B “Nonlinear PCA”[Collins, Dasgupta, Schapire’03]

Deep Learning f(x) = sgn(x) or sigmoid(x)

Topic Modeling f(x) = output 1 with Prob. x.
(Also, columns of B are iid.)

Matrix completion f(x) = output x with prob. p, else 0

Possible general approach? Convex relaxation via nuclear norm
minimization [Candes,Recht’09] [Davenport,Plan,van den Berg, Wooters’12]



Part 4:

“Some favorite open problems/research directions”



Inference via Bayes Nets [pearrss)

Your symptoms: fever + red spots.

Probability that you have measles??

600

Desired: Posterior
Pr[disease| symptom s, s,,..]

#P-complete, currently estimated
Bayes net succinctly describes Vi@ heuristics (MCMC, Variational Inf,,
Prisymptom | diseases d, d,,..] Message Propagation..)

Realistic assumptions that simplify?



Provable versions of Variational Inference?

(reference: [Jaakola, Jordan] survey)

Very general setting: Prob. Distribution p(x, z)
(explicit formula)

z is observed. Estimate Bayesian Posterior p(x|z) (#P-hard!)

Method: Hypothesize simple functional form q(x, v) where
v is a small set of “variational parameters.”
(akin to Mean Field Assumption from statistical physics)

Minimize KL(q(x, v) | | p(x]z)) using a series of “simplifications”

Suggested 1° step: Analyse V.. in settings where we already have
provable algorithms: Topic Models, Dictionary Learning, HMMs etc.



