# The Complexity of Constraint Satisfaction Problems 

Manuel Bodirsky

Institut für Algebra, TU Dresden
March 2015

## Outline

1 Constraint Satisfaction Problems: definition and examples

## Outline

1 Constraint Satisfaction Problems: definition and examples

2 Complexity classification of finite domain CSPs: The universal-algebraic approach

## Outline

1 Constraint Satisfaction Problems: definition and examples

2 Complexity classification of finite domain CSPs: The universal-algebraic approach

3 The algebraic approach for infinite-domain CSPs

## Outline

1 Constraint Satisfaction Problems: definition and examples

2 Complexity classification of finite domain CSPs: The universal-algebraic approach

3 The algebraic approach for infinite-domain CSPs

4 Complexity of CSPs over the integers, the rationals, and the reals.

## Constraint Satisfaction Problems

Let $\Gamma$ be a structure with a finite relational signature $\tau$. $\Gamma$ also called the template.

## Constraint Satisfaction Problems

Let $\Gamma$ be a structure with a finite relational signature $\tau$.
$\Gamma$ also called the template.
Definition 1 (CSP).
$\operatorname{CSP}(\Gamma)$ is the computational problem to decide whether a given finite $\tau$-structure $A$ homomorphically maps to $\Gamma$.

## Constraint Satisfaction Problems

Let $\Gamma$ be a structure with a finite relational signature $\tau$.
$\Gamma$ also called the template.

## Definition 1 (CSP).

$\operatorname{CSP}(\Gamma)$ is the computational problem to decide whether a given finite $\tau$-structure $A$ homomorphically maps to $\Gamma$.

Example: 3-colorability is $\operatorname{CSP}\left(K_{3}\right)$


## More Examples of CSPs

## Positive 1-in-3-3SAT

Input: A set $V$ and a subset $T$ of $V^{3}$.
Question: Is there a map $V \rightarrow\{0,1\}$ such that exactly one entry in each triple in $T$ is mapped to 1 ?

## More Examples of CSPs

## Positive 1-in-3-3SAT

Input: A set $V$ and a subset $T$ of $V^{3}$.
Question: Is there a map $V \rightarrow\{0,1\}$ such that exactly one entry in each triple in $T$ is mapped to 1 ?
Is a CSP: Template is $(\{0,1\} ;\{(0,0,1),(0,1,0),(1,0,0)\})$

## More Examples of CSPs

## Positive 1-in-3-3SAT

Input: A set $V$ and a subset $T$ of $V^{3}$.
Question: Is there a map $V \rightarrow\{0,1\}$ such that exactly one entry in each triple in $T$ is mapped to 1 ?
Is a CSP: Template is $(\{0,1\} ;\{(0,0,1),(0,1,0),(1,0,0)\})$
Complexity: NP-complete (Garey and Johnson)

## More Examples of CSPs

## Positive 1-in-3-3SAT

Input: A set $V$ and a subset $T$ of $V^{3}$.
Question: Is there a map $V \rightarrow\{0,1\}$ such that exactly one entry in each triple in $T$ is mapped to 1 ?
Is a CSP: Template is $(\{0,1\} ;\{(0,0,1),(0,1,0),(1,0,0)\})$
Complexity: NP-complete (Garey and Johnson)

## Digraph Acyclicity

Input: A directed graph ( $V ; E$ )
Question: Is $(V ; E)$ acyclic?

## More Examples of CSPs

## Positive 1-in-3-3SAT

Input: A set $V$ and a subset $T$ of $V^{3}$.
Question: Is there a map $V \rightarrow\{0,1\}$ such that exactly one entry in each triple in $T$ is mapped to 1 ?
Is a CSP: Template is $(\{0,1\} ;\{(0,0,1),(0,1,0),(1,0,0)\})$
Complexity: NP-complete (Garey and Johnson)

## Digraph Acyclicity

Input: A directed graph ( $V ; E$ )
Question: Is $(V ; E)$ acyclic?
Is a CSP: Template is $(\mathbb{Q} ;<)$

## More Examples of CSPs

## Positive 1-in-3-3SAT

Input: A set $V$ and a subset $T$ of $V^{3}$.
Question: Is there a map $V \rightarrow\{0,1\}$ such that exactly one entry in each triple in $T$ is mapped to 1 ?
Is a CSP: Template is $(\{0,1\} ;\{(0,0,1),(0,1,0),(1,0,0)\})$
Complexity: NP-complete (Garey and Johnson)

## Digraph Acyclicity

Input: A directed graph ( $V ; E$ )
Question: Is $(V ; E)$ acyclic?
Is a CSP: Template is $(\mathbb{Q} ;<)$
Complexity: In P (e.g. by depth-first search)

## Logic Formulation of the CSP

Let $\Gamma=\left(D ; R_{1}, \ldots, R_{l}\right)$ be a $\tau$-structure.

## Logic Formulation of the CSP

Let $\Gamma=\left(D ; R_{1}, \ldots, R_{l}\right)$ be a $\tau$-structure.

## CSP(Г)

Input: A primitive positive $\tau$-sentence $\Phi$, i.e., a first-order sentence of the form

$$
\exists x_{1}, \ldots, x_{n}\left(\psi_{1} \wedge \cdots \wedge \psi_{l}\right)
$$

where $\psi_{i}$ are atomic, i.e. of the form $R\left(x_{i_{1}}, \ldots, x_{i_{k}}\right)$ for $R \in \tau$.

## Logic Formulation of the CSP

Let $\Gamma=\left(D ; R_{1}, \ldots, R_{l}\right)$ be a $\tau$-structure.

## CSP(Г)

Input: A primitive positive $\tau$-sentence $\Phi$,
i.e., a first-order sentence of the form

$$
\exists x_{1}, \ldots, x_{n}\left(\psi_{1} \wedge \cdots \wedge \psi_{l}\right)
$$

where $\psi_{i}$ are atomic, i.e. of the form $R\left(x_{i_{1}}, \ldots, x_{i_{k}}\right)$ for $R \in \tau$.
Question: Is $\Phi$ true in $\Gamma$ ?

## Logic Formulation of the CSP

Let $\Gamma=\left(D ; R_{1}, \ldots, R_{l}\right)$ be a $\tau$-structure.

## CSP(Г)

Input: A primitive positive $\tau$-sentence $\Phi$, i.e., a first-order sentence of the form

$$
\exists x_{1}, \ldots, x_{n}\left(\psi_{1} \wedge \cdots \wedge \psi_{l}\right)
$$

where $\psi_{i}$ are atomic, i.e. of the form $R\left(x_{i_{1}}, \ldots, x_{i_{k}}\right)$ for $R \in \tau$.
Question: Is $\Phi$ true in $\Gamma$ ?

## Example:


not homomorphic to $(\mathbb{Q} ;<)$.

$$
\exists x_{1}, x_{2}, x_{3}\left(x_{1}<x_{2} \wedge x_{2}<x_{3} \wedge x_{3}<x_{1}\right) \quad \text { is false in }(\mathbb{Q} ;<) .
$$

## More Examples of CSPs

## Betweenness:

Input: A finite set $V$, and a subset $S$ of $V^{3}$.
Question: Is there a linear order $<$ on $V$ such that for every $(u, v, w) \in S$ we have $u<v<w$ or $w<v<u$ ?

## More Examples of CSPs

## Betweenness:

Input: A finite set $V$, and a subset $S$ of $V^{3}$.
Question: Is there a linear order $<$ on $V$ such that for every $(u, v, w) \in S$ we have $u<v<w$ or $w<v<u$ ?
Is a CSP: template is $(\mathbb{Q}$; Betw) where

$$
\text { Betw }:=\{(x, y, z) \mid(x<y<z) \vee(z<y<x)\})
$$

## More Examples of CSPs

## Betweenness:

Input: A finite set $V$, and a subset $S$ of $V^{3}$.
Question: Is there a linear order $<$ on $V$ such that for every $(u, v, w) \in S$ we have $u<v<w$ or $w<v<u$ ?
Is a CSP: template is $(\mathbb{Q}$; Betw) where Betw : $=\{(x, y, z) \mid(x<y<z) \vee(z<y<x)\})$
Complexity: NP-complete (Garey and Johnson)

## More Examples of CSPs

## Betweenness:

Input: A finite set $V$, and a subset $S$ of $V^{3}$.
Question: Is there a linear order $<$ on $V$ such that for every $(u, v, w) \in S$ we have $u<v<w$ or $w<v<u$ ?
Is a CSP: template is $(\mathbb{Q}$; Betw) where
Betw $:=\{(x, y, z) \mid(x<y<z) \vee(z<y<x)\})$
Complexity: NP-complete (Garey and Johnson)

## And/Or Precedence Constraints:

Input: A finite set $V$, and a subset $T$ of $V^{3}$.
Question: Is there a linear order $<$ on $V$ such that $u<v$ or $u<w$ for all $(u, v, w) \in T$.

## More Examples of CSPs

## Betweenness:

Input: A finite set $V$, and a subset $S$ of $V^{3}$.
Question: Is there a linear order $<$ on $V$ such that for every $(u, v, w) \in S$ we have $u<v<w$ or $w<v<u$ ?
Is a CSP: template is $(\mathbb{Q}$; Betw) where Betw $:=\{(x, y, z) \mid(x<y<z) \vee(z<y<x)\})$
Complexity: NP-complete (Garey and Johnson)

## And/Or Precedence Constraints:

Input: A finite set $V$, and a subset $T$ of $V^{3}$.
Question: Is there a linear order $<$ on $V$ such that $u<v$ or $u<w$ for all $(u, v, w) \in T$.
Is a CSP: template is $(\mathbb{Q} ;\{(u, v, w) \mid u<\max (v, w)\})$

## More Examples of CSPs

## Betweenness:

Input: A finite set $V$, and a subset $S$ of $V^{3}$.
Question: Is there a linear order $<$ on $V$ such that for every $(u, v, w) \in S$ we have $u<v<w$ or $w<v<u$ ?
Is a CSP: template is $(\mathbb{Q}$; Betw) where Betw $:=\{(x, y, z) \mid(x<y<z) \vee(z<y<x)\})$
Complexity: NP-complete (Garey and Johnson)

## And/Or Precedence Constraints:

Input: A finite set $V$, and a subset $T$ of $V^{3}$.
Question: Is there a linear order $<$ on $V$ such that $u<v$ or $u<w$ for all

$$
(u, v, w) \in T
$$

Is a CSP: template is $(\mathbb{Q} ;\{(u, v, w) \mid u<\max (v, w)\})$
Complexity: in P

## CSPs of Open Complexity

■ $\operatorname{CSP}\left(\mathbb{R} ;<, R_{+}, R_{=1}, R_{s q}\right)$ where
■ $R_{+}:=\{(x, y, z) \mid x=y+z\}$,

- $R_{=1}:=\{1\}$, and
- $R_{s q}:=\left\{(x, y) \mid y \geq x^{2}\right\}$.


## CSPs of Open Complexity

■ $\operatorname{CSP}\left(\mathbb{R} ;<, R_{+}, R_{=1}, R_{s q}\right)$ where

- $R_{+}:=\{(x, y, z) \mid x=y+z\}$,
- $R_{=1}:=\{1\}$, and
- $R_{s q}:=\left\{(x, y) \mid y \geq x^{2}\right\}$.

At least as hard as Sums of Square Roots.

## CSPs of Open Complexity

■ $\operatorname{CSP}\left(\mathbb{R} ;<, R_{+}, R_{=1}, R_{s q}\right)$ where

- $R_{+}:=\{(x, y, z) \mid x=y+z\}$,
- $R_{=1}:=\{1\}$, and
- $R_{s q}:=\left\{(x, y) \mid y \geq x^{2}\right\}$.

At least as hard as Sums of Square Roots.
Not known to be in P.

## CSPs of Open Complexity

■ $\operatorname{CSP}\left(\mathbb{R} ;<, R_{+}, R_{=1}, R_{s q}\right)$ where

- $R_{+}:=\{(x, y, z) \mid x=y+z\}$,
- $R_{=1}:=\{1\}$, and
- $R_{s q}:=\left\{(x, y) \mid y \geq x^{2}\right\}$.

At least as hard as Sums of Square Roots.
Not known to be in P.

■ $\operatorname{CSP}\left(\mathbb{Q} ; S_{+1}, S_{.2}, S_{\text {max }}\right)$ where
■ $S_{+1}:=\{(x, y) \mid y=x+1\}$,

- $S_{.2}:=\{(x, y) \mid y=2 x\}$, and
- $S_{\text {max }}:=\{(x, y, z) \mid x \leq \max (y, z)\}$.


## CSPs of Open Complexity

■ $\operatorname{CSP}\left(\mathbb{R} ;<, R_{+}, R_{=1}, R_{s q}\right)$ where

- $R_{+}:=\{(x, y, z) \mid x=y+z\}$,
- $R_{=1}:=\{1\}$, and
- $R_{s q}:=\left\{(x, y) \mid y \geq x^{2}\right\}$.

At least as hard as Sums of Square Roots.
Not known to be in P.

■ $\operatorname{CSP}\left(\mathbb{Q} ; S_{+1}, S_{.2}, S_{\text {max }}\right)$ where
■ $S_{+1}:=\{(x, y) \mid y=x+1\}$,

- $S_{.2}:=\{(x, y) \mid y=2 x\}$, and
- $S_{\text {max }}:=\{(x, y, z) \mid x \leq \max (y, z)\}$.

At least as hard as Mean Payoff Games.

## CSPs of Open Complexity

■ $\operatorname{CSP}\left(\mathbb{R} ;<, R_{+}, R_{=1}, R_{s q}\right)$ where

- $R_{+}:=\{(x, y, z) \mid x=y+z\}$,
- $R_{=1}:=\{1\}$, and
- $R_{s q}:=\left\{(x, y) \mid y \geq x^{2}\right\}$.

At least as hard as Sums of Square Roots.
Not known to be in P.

■ $\operatorname{CSP}\left(\mathbb{Q} ; S_{+1}, S_{2}, S_{\max }\right)$ where

- $S_{+1}:=\{(x, y) \mid y=x+1\}$,
- $S_{.2}:=\{(x, y) \mid y=2 x\}$, and
- $S_{\text {max }}:=\{(x, y, z) \mid x \leq \max (y, z)\}$.

At least as hard as Mean Payoff Games.
Not known to be in P.

## The Feder-Vardi Dichotomy Conjecture

## The Feder-Vardi Dichotomy Conjecture

What can be said about $\operatorname{CSP}(\Gamma)$ when $\Gamma$ is a finite structure?

## The Feder-Vardi Dichotomy Conjecture

What can be said about $\operatorname{CSP}(\Gamma)$ when $\Gamma$ is a finite structure?
Conjecture 1 (Feder-Vardi'93).
For finite $\Gamma$, the problem $\operatorname{CSP}(\Gamma)$ is either in P or NP-complete.

## The Feder-Vardi Dichotomy Conjecture

What can be said about $\operatorname{CSP}(\Gamma)$ when $\Gamma$ is a finite structure?

## Conjecture 1 (Feder-Vardi'93).

For finite $\Gamma$, the problem $\operatorname{CSP}(\Gamma)$ is either in P or NP-complete.
This dichotomy has been confirmed in many special cases, for example

- For 2-element structures $\Gamma$ (Schaefer'78)
and 3 -element structures $\Gamma$ (Bulatov'06)


## The Feder-Vardi Dichotomy Conjecture

What can be said about $\operatorname{CSP}(\Gamma)$ when $\Gamma$ is a finite structure?

## Conjecture 1 (Feder-Vardi'93).

For finite $\Gamma$, the problem $\operatorname{CSP}(\Gamma)$ is either in P or NP-complete.
This dichotomy has been confirmed in many special cases, for example

- For 2-element structures $\Gamma$ (Schaefer'78) and 3 -element structures $\Gamma$ (Bulatov'06)
■ For undirected graphs (Hell+Nešetřil'90) and digraphs without sources and sinks (Barto+Kozik+Niven’08)


## The Feder-Vardi Dichotomy Conjecture

What can be said about $\operatorname{CSP}(\Gamma)$ when $\Gamma$ is a finite structure?

## Conjecture 1 (Feder-Vardi'93).

For finite $\Gamma$, the problem $\operatorname{CSP}(\Gamma)$ is either in P or NP-complete.
This dichotomy has been confirmed in many special cases, for example

- For 2-element structures $\Gamma$ (Schaefer'78) and 3 -element structures $\Gamma$ (Bulatov'06)
■ For undirected graphs (Hell+Nešetril'90) and digraphs without sources and sinks (Barto+Kozik+Niven’08)
- Open for digraphs $\Gamma$


## The Feder-Vardi Dichotomy Conjecture

What can be said about $\operatorname{CSP}(\Gamma)$ when $\Gamma$ is a finite structure?

## Conjecture 1 (Feder-Vardi'93).

For finite $\Gamma$, the problem $\operatorname{CSP}(\Gamma)$ is either in P or NP-complete.
This dichotomy has been confirmed in many special cases, for example

- For 2-element structures $\Gamma$ (Schaefer'78) and 3 -element structures $\Gamma$ (Bulatov'06)
■ For undirected graphs (Hell+Nešetril'90) and digraphs without sources and sinks (Barto+Kozik+Niven’08)
- Open for digraphs $\Gamma$

■ Open for 5-element structures $\Gamma$

## The Feder-Vardi Dichotomy Conjecture

What can be said about $\operatorname{CSP}(\Gamma)$ when $\Gamma$ is a finite structure?

## Conjecture 1 (Feder-Vardi'93).

For finite $\Gamma$, the problem $\operatorname{CSP}(\Gamma)$ is either in P or NP-complete.
This dichotomy has been confirmed in many special cases, for example

- For 2-element structures $\Gamma$ (Schaefer'78) and 3 -element structures $\Gamma$ (Bulatov'06)
■ For undirected graphs (Hell+Nešetřil'90) and digraphs without sources and sinks (Barto+Kozik+Niven’08)
- Open for digraphs $\Gamma$

■ Open for 5-element structures $\Gamma$
Strongest evidence comes from the so-called universal algebraic approach.

## Primitive Positive Definability

## Lemma (Jeavons et al'97).

Let $\Gamma=\left(D ; R_{1}, \ldots, R_{k}\right)$ be a relational structure, and
let $R$ be a relation that has a primitive positive definition in $\Gamma$.
Then $\operatorname{CSP}(\Gamma)$ and $\operatorname{CSP}\left(D ; R, R_{1}, \ldots, R_{k}\right)$ are polynomial-time equivalent.

## Primitive Positive Definability

## Lemma (Jeavons et al'97).

Let $\Gamma=\left(D ; R_{1}, \ldots, R_{k}\right)$ be a relational structure, and
let $R$ be a relation that has a primitive positive definition in $\Gamma$.
Then $\operatorname{CSP}(\Gamma)$ and $\operatorname{CSP}\left(D ; R, R_{1}, \ldots, R_{k}\right)$ are polynomial-time equivalent.

Example. Claim: $\operatorname{CSP}\left(C_{5}\right)$ is NP-hard.


## Primitive Positive Definability

## Lemma (Jeavons et al'97).

Let $\Gamma=\left(D ; R_{1}, \ldots, R_{k}\right)$ be a relational structure, and
let $R$ be a relation that has a primitive positive definition in $\Gamma$.
Then $\operatorname{CSP}(\Gamma)$ and $\operatorname{CSP}\left(D ; R, R_{1}, \ldots, R_{k}\right)$ are polynomial-time equivalent.

Example. Claim: $\operatorname{CSP}\left(C_{5}\right)$ is NP-hard.
 Proof: $K_{5}=\left(V ; E^{\prime}\right)$ has a primitive positive definition in $C_{5}=(V ; E)$

## Primitive Positive Definability

## Lemma (Jeavons et al'97).

Let $\Gamma=\left(D ; R_{1}, \ldots, R_{k}\right)$ be a relational structure, and let $R$ be a relation that has a primitive positive definition in $\Gamma$.
Then $\operatorname{CSP}(\Gamma)$ and $\operatorname{CSP}\left(D ; R, R_{1}, \ldots, R_{k}\right)$ are polynomial-time equivalent.

Example. Claim: $\operatorname{CSP}\left(C_{5}\right)$ is NP-hard.


Proof: $K_{5}=\left(V ; E^{\prime}\right)$ has a primitive positive definition in $C_{5}=(V ; E)$

$$
\begin{aligned}
E^{\prime}(x, y) \equiv \exists p_{1}, p_{2}, p_{3}, q_{1}, q_{2} & \left(E\left(x, p_{1}\right) \wedge E\left(p_{1}, p_{2}\right) \wedge E\left(p_{2}, p_{3}\right) \wedge E\left(p_{3}, y\right)\right. \\
& \left.\wedge E\left(x, q_{1}\right) \wedge E\left(q_{1}, q_{2}\right) \wedge E\left(q_{2}, y\right)\right)
\end{aligned}
$$

## Polymorphisms

## Polymorphisms

A function $f: D^{k} \rightarrow D$ preserves $R \subseteq D^{m}$ if $\left(f\left(a_{1}^{1}, \ldots, a_{1}^{k}\right), \ldots, f\left(a_{m}^{1}, \ldots, a_{m}^{k}\right)\right) \in R$ whenever $\left(a_{1}^{i}, \ldots, a_{m}^{i}\right) \in R$ for all $i \leq k$.

## Polymorphisms

A function $f: D^{k} \rightarrow D$ preserves $R \subseteq D^{m}$ if $\left(f\left(a_{1}^{1}, \ldots, a_{1}^{k}\right), \ldots, f\left(a_{m}^{1}, \ldots, a_{m}^{k}\right)\right) \in R$ whenever $\left(a_{1}^{i}, \ldots, a_{m}^{i}\right) \in R$ for all $i \leq k$.

Example: $(x, y) \mapsto \max (x, y)$ preserves a linear half-space given by $a_{1} x_{1}+\cdots+a_{n} x_{n} \leq a_{0}$ iff at most one of $a_{1}, \ldots, a_{n}$ is positive.


## Polymorphisms

A function $f: D^{k} \rightarrow D$ preserves $R \subseteq D^{m}$ if $\left(f\left(a_{1}^{1}, \ldots, a_{1}^{k}\right), \ldots, f\left(a_{m}^{1}, \ldots, a_{m}^{k}\right)\right) \in R$ whenever $\left(a_{1}^{i}, \ldots, a_{m}^{i}\right) \in R$ for all $i \leq k$.

Example: $(x, y) \mapsto \max (x, y)$ preserves a linear half-space given by $a_{1} x_{1}+\cdots+a_{n} x_{n} \leq a_{0}$ iff at most one of $a_{1}, \ldots, a_{n}$ is positive.


We say that $f$ is a polymorphism of $\Gamma$ if $f$ preserves all relations of $\Gamma$.

## Polymorphisms

A function $f: D^{k} \rightarrow D$ preserves $R \subseteq D^{m}$ if $\left(f\left(a_{1}^{1}, \ldots, a_{1}^{k}\right), \ldots, f\left(a_{m}^{1}, \ldots, a_{m}^{k}\right)\right) \in R$ whenever $\left(a_{1}^{i}, \ldots, a_{m}^{i}\right) \in R$ for all $i \leq k$.

Example: $(x, y) \mapsto \max (x, y)$ preserves a linear half-space given by $a_{1} x_{1}+\cdots+a_{n} x_{n} \leq a_{0}$ iff at most one of $a_{1}, \ldots, a_{n}$ is positive.


We say that $f$ is a polymorphism of $\Gamma$ if $f$ preserves all relations of $\Gamma$.
Example: Every structure $\Gamma$ has the projections as polymorphisms.

## Polymorphisms and Primitive Positive Definability

Equivalent definition:
Polymorphisms are homomorphisms from $\Gamma^{k}$ to $\Gamma$.

## Polymorphisms and Primitive Positive Definability

Equivalent definition:
Polymorphisms are homomorphisms from $\Gamma^{k}$ to $\Gamma$.

## Theorem (Geiger'68, Bodnarcuk et al'69).

Let $\Gamma$ be finite. Then a relation $R$ has a primitive positive definition in $\Gamma$ if and only if $R$ is preserved by all finitary polymorphisms of $\Gamma$.

## Polymorphisms and Primitive Positive Definability

Equivalent definition:
Polymorphisms are homomorphisms from $\Gamma^{k}$ to $\Gamma$.

## Theorem (Geiger'68, Bodnarcuk et al'69).

Let $\Gamma$ be finite. Then a relation $R$ has a primitive positive definition in $\Gamma$ if and only if $R$ is preserved by all finitary polymorphisms of $\Gamma$.

## Polymorphisms $\leftrightarrow$ Algorithms

## Weak Near Unanimities

## Weak Near Unanimities

Assume that $\Gamma$ has a finite domain $D$.

## Theorem (Bulatov+Jeavons+Krokhin'05,Maroti+McKenzie'08).

Let $\Gamma$ be a finite structure. Then $\Gamma$ has a weak near unanimity polymorphism of arity $n \geq 2$, this is, a polymorphism $f$ such that for all elements $x, y$ of $\Gamma$

$$
f(y, x, \ldots, x)=f(x, y, \ldots, x)=\cdots=f(x, \ldots, x, y)
$$

or $\operatorname{CSP}(\Gamma)$ is NP-hard.

## Weak Near Unanimities

Assume that $\Gamma$ has a finite domain $D$.

## Theorem (Bulatov+Jeavons+Krokhin'05,Maroti+McKenzie'08).

Let $\Gamma$ be a finite structure. Then $\Gamma$ has a weak near unanimity polymorphism of arity $n \geq 2$, this is, a polymorphism $f$ such that for all elements $x, y$ of $\Gamma$

$$
f(y, x, \ldots, x)=f(x, y, \ldots, x)=\cdots=f(x, \ldots, x, y)
$$

or $\operatorname{CSP}(\Gamma)$ is NP-hard.

## Example:

$$
(x, y) \mapsto \max (x, y)
$$

is a weak near unanimity polymorphism of $(\mathbb{Q} ;<)$.

## The Finite-Domain Tractability Conjecture

Bulatov+Jeavons+Krokhin'04 (in different, but equivalent form):
Conjecture 2.
If $\Gamma$ has a weak near unanimity polymorphism, then $\operatorname{CSP}(\Gamma)$ is in P .

## The Finite-Domain Tractability Conjecture

Bulatov+Jeavons+Krokhin'04 (in different, but equivalent form):

## Conjecture 2.

If $\Gamma$ has a weak near unanimity polymorphism, then $\operatorname{CSP}(\Gamma)$ is in P .
Confirmed for the following polymorphisms:

## The Finite-Domain Tractability Conjecture

Bulatov+Jeavons+Krokhin'04 (in different, but equivalent form):

## Conjecture 2.

If $\Gamma$ has a weak near unanimity polymorphism, then $\operatorname{CSP}(\Gamma)$ is in P .
Confirmed for the following polymorphisms:
■ majority, that is, satisfies $\forall x, y . f(x, x, y)=f(x, y, x)=f(y, x, x)=x$.

## The Finite-Domain Tractability Conjecture

Bulatov+Jeavons+Krokhin'04 (in different, but equivalent form):

## Conjecture 2.

If $\Gamma$ has a weak near unanimity polymorphism, then $\operatorname{CSP}(\Gamma)$ is in P .
Confirmed for the following polymorphisms:
■ majority, that is, satisfies $\forall x, y . f(x, x, y)=f(x, y, x)=f(y, x, x)=x$.
■ Maltsev, that is, satisfies $\forall x, y . f(x, y, y)=f(y, y, x)=x$.

## The Finite-Domain Tractability Conjecture

Bulatov+Jeavons+Krokhin'04 (in different, but equivalent form):

## Conjecture 2.

If $\Gamma$ has a weak near unanimity polymorphism, then $\operatorname{CSP}(\Gamma)$ is in P .
Confirmed for the following polymorphisms:
■ majority, that is, satisfies $\forall x, y . f(x, x, y)=f(x, y, x)=f(y, x, x)=x$.

- Maltsev, that is, satisfies $\forall x, y . f(x, y, y)=f(y, y, x)=x$.

■ semi-lattice, that is, is binary commutative, associative, idempotent.

## The Finite-Domain Tractability Conjecture

Bulatov+Jeavons+Krokhin'04 (in different, but equivalent form):

## Conjecture 2.

If $\Gamma$ has a weak near unanimity polymorphism, then $\operatorname{CSP}(\Gamma)$ is in P .
Confirmed for the following polymorphisms:
■ majority, that is, satisfies $\forall x, y . f(x, x, y)=f(x, y, x)=f(y, x, x)=x$.

- Maltsev, that is, satisfies $\forall x, y . f(x, y, y)=f(y, y, x)=x$.

■ semi-lattice, that is, is binary commutative, associative, idempotent.

There are two algorithmic techniques to obtain those results:

## The Finite-Domain Tractability Conjecture

Bulatov+Jeavons+Krokhin'04 (in different, but equivalent form):
Conjecture 2.
If $\Gamma$ has a weak near unanimity polymorphism, then $\operatorname{CSP}(\Gamma)$ is in P .
Confirmed for the following polymorphisms:
■ majority, that is, satisfies $\forall x, y . f(x, x, y)=f(x, y, x)=f(y, x, x)=x$.

- Maltsev, that is, satisfies $\forall x, y . f(x, y, y)=f(y, y, x)=x$.

■ semi-lattice, that is, is binary commutative, associative, idempotent.
■...
There are two algorithmic techniques to obtain those results:
■ Generalizations of Gaussian elimination (works for example when $\Gamma$ has Maltsev polymorphism)
■ 'Constraint Propagation' / Datalog

## CSPs and Datalog

## CSPs and Datalog

Datalog: captures many algorithmic techniques used for CSPs in AI

## CSPs and Datalog

Datalog: captures many algorithmic techniques used for CSPs in AI Elegant formalism. "Datalog = Prolog without function symbols".

## CSPs and Datalog

Datalog: captures many algorithmic techniques used for CSPs in AI Elegant formalism. "Datalog = Prolog without function symbols".

Example: $\operatorname{CSP}(\mathbb{Q} ;<)$ can be solved by Datalog.

## CSPs and Datalog

Datalog: captures many algorithmic techniques used for CSPs in AI Elegant formalism. "Datalog = Prolog without function symbols".

Example: $\operatorname{CSP}(\mathbb{Q} ;<)$ can be solved by Datalog.

$$
\begin{aligned}
\operatorname{tc}(x, y) & :-\quad x<y \\
\operatorname{tc}(x, y) & :-\operatorname{tc}(x, z), z<y \\
\text { false }() & :-\quad \operatorname{tc}(x, x)
\end{aligned}
$$

## CSPs and Datalog

Datalog: captures many algorithmic techniques used for CSPs in AI Elegant formalism. "Datalog = Prolog without function symbols".

Example: $\operatorname{CSP}(\mathbb{Q} ;<)$ can be solved by Datalog.

$$
\begin{aligned}
\operatorname{tc}(x, y) & :-\quad x<y \\
\operatorname{tc}(x, y) & :-\operatorname{tc}(x, z), z<y \\
\text { false }() & :-\operatorname{tc}(x, x)
\end{aligned}
$$

## Question (Feder+Vardi'93)

For which finite templates $\Gamma$ can $\operatorname{CSP}(\Gamma)$ be solved by Datalog?

## CSPs and Datalog

Datalog: captures many algorithmic techniques used for CSPs in AI Elegant formalism. "Datalog = Prolog without function symbols".

Example: $\operatorname{CSP}(\mathbb{Q} ;<)$ can be solved by Datalog.

$$
\begin{aligned}
\operatorname{tc}(x, y) & :-\quad x<y \\
\operatorname{tc}(x, y) & :-\operatorname{tc}(x, z), z<y \\
\text { false( } & :-\operatorname{tc}(x, x)
\end{aligned}
$$

## Question (Feder+Vardi'93)

For which finite templates $\Gamma$ can $\operatorname{CSP}(\Gamma)$ be solved by Datalog?

## Larose-Zadori'07:

- If $\Gamma$ interprets primitively positively linear equations over a finite field, then CSP $(\Gamma)$ is not in Datalog;


## CSPs and Datalog

Datalog: captures many algorithmic techniques used for CSPs in AI Elegant formalism. "Datalog = Prolog without function symbols".

Example: $\operatorname{CSP}(\mathbb{Q} ;<)$ can be solved by Datalog.

$$
\begin{aligned}
\operatorname{tc}(x, y) & :-\quad x<y \\
\operatorname{tc}(x, y) & :-\operatorname{tc}(x, z), z<y \\
\text { false( }) & :-\quad \operatorname{tc}(x, x)
\end{aligned}
$$

## Question (Feder+Vardi'93)

For which finite templates $\Gamma$ can $\operatorname{CSP}(\Gamma)$ be solved by Datalog?

## Larose-Zadori'07:

- If $\Gamma$ interprets primitively positively linear equations over a finite field, then CSP $(\Gamma)$ is not in Datalog;
■ conjecture that $\operatorname{CSP}(\Gamma)$ is in Datalog otherwise.


## CSPs in Datalog

## Theorem (Barto+Kozik'09,Kozik+Krokhin+Valeriote+Willard'14).

Let $\Gamma$ be a finite structure. Then $\operatorname{CSP}(\Gamma)$ is in Datalog if and only if

## CSPs in Datalog

## Theorem (Barto+Kozik'09,Kozik+Krokhin+Valeriote+Willard'14).

Let $\Gamma$ be a finite structure. Then $\operatorname{CSP}(\Gamma)$ is in Datalog if and only if $\Gamma$ has weak near-unanimity polymorphisms $f, g$ such that for all elements $x, y$ of $\Gamma$

$$
f(x, x, y)=g(x, x, x, y)
$$

## CSPs in Datalog

## Theorem (Barto+Kozik'09,Kozik+Krokhin+Valeriote+Willard'14).

Let $\Gamma$ be a finite structure. Then $\operatorname{CSP}(\Gamma)$ is in Datalog if and only if $\Gamma$ has weak near-unanimity polymorphisms $f, g$ such that for all elements $x, y$ of $\Gamma$

$$
f(x, x, y)=g(x, x, x, y)
$$

Corollary: Given $\Gamma$, we can effectively decide whether $\operatorname{CSP}(\Gamma)$ is in Datalog.

## CSPs in Datalog

## Theorem (Barto+Kozik'09,Kozik+Krokhin+Valeriote+Willard'14).

Let $\Gamma$ be a finite structure. Then $\operatorname{CSP}(\Gamma)$ is in Datalog if and only if $\Gamma$ has weak near-unanimity polymorphisms $f, g$ such that for all elements $x, y$ of $\Gamma$

$$
f(x, x, y)=g(x, x, x, y) .
$$

Corollary: Given $\Gamma$, we can effectively decide whether $\operatorname{CSP}(\Gamma)$ is in Datalog.
In fact: Given $\Gamma$, we can efficiently decide whether $\operatorname{CSP}(\Gamma)$ is in Datalog.

## CSPs over Infinite Domains

## CSPs over Infinite Domains

## Observation (B+Grohe'08)

For every computational problem $P$, there exists an infinite structure $\Gamma$ such that $P$ and $\operatorname{CSP}(\Gamma)$ are equivalent under polynomial-time Turing reductions.

## CSPs over Infinite Domains

## Observation (B+Grohe'08)

For every computational problem $P$, there exists an infinite structure $\Gamma$ such that $P$ and $\operatorname{CSP}(\Gamma)$ are equivalent under polynomial-time Turing reductions.

Two directions:
1 For which infinite structures can we use the universal-algebraic approach?

## CSPs over Infinite Domains

## Observation (B+Grohe'08)

For every computational problem $P$, there exists an infinite structure $\Gamma$ such that $P$ and $\operatorname{CSP}(\Gamma)$ are equivalent under polynomial-time Turing reductions.

Two directions:
1 For which infinite structures can we use the universal-algebraic approach?
2 Study those infinite structures that are of particular interest in computer science and mathematics.

## CSPs over Infinite Domains

## Observation (B+Grohe'08)

For every computational problem $P$, there exists an infinite structure $\Gamma$ such that $P$ and $\operatorname{CSP}(\Gamma)$ are equivalent under polynomial-time Turing reductions.

Two directions:
1 For which infinite structures can we use the universal-algebraic approach?
2 Study those infinite structures that are of particular interest in computer science and mathematics.
E.g. systematically study CSPs over the integers, rationals, and reals.

## Reducts

Let $\Delta$ be a structure, the 'base structure'.

## Reducts

Let $\Delta$ be a structure, the 'base structure'.

## Definition.

A relational structure $\Gamma$ is a reduct of $\Delta$ if $\Gamma$ has the same domain as $\Delta$, and all relations of $\Gamma$ are first-order definable over $\Delta$ (without parameters).

## Reducts

Let $\Delta$ be a structure, the 'base structure'.

## Definition.

A relational structure $\Gamma$ is a reduct of $\Delta$ if $\Gamma$ has the same domain as $\Delta$, and all relations of $\Gamma$ are first-order definable over $\Delta$ (without parameters).

## Examples:

$\square(\mathbb{Q} ;$ Betw $)$ is a reduct of $(\mathbb{Q} ;<)$.

## Reducts

Let $\Delta$ be a structure, the 'base structure'.

## Definition.

A relational structure $\Gamma$ is a reduct of $\Delta$ if $\Gamma$ has the same domain as $\Delta$, and all relations of $\Gamma$ are first-order definable over $\Delta$ (without parameters).

## Examples:

$\square(\mathbb{Q} ;$ Betw $)$ is a reduct of $(\mathbb{Q} ;<)$.
■ ( $\mathbb{Q} ;\{(x, y, z) \mid x<\max (y, z)\})$ is a reduct of $(\mathbb{Q} ;<)$.

## Reducts

Let $\Delta$ be a structure, the 'base structure'.

## Definition.

A relational structure $\Gamma$ is a reduct of $\Delta$ if $\Gamma$ has the same domain as $\Delta$, and all relations of $\Gamma$ are first-order definable over $\Delta$ (without parameters).

## Examples:

$\square(\mathbb{Q} ;$ Betw $)$ is a reduct of $(\mathbb{Q} ;<)$.
■ ( $\mathbb{Q} ;\{(x, y, z) \mid x<\max (y, z)\})$ is a reduct of $(\mathbb{Q} ;<)$.

## Remarks:

■ Reducts studied in model theory.

## Reducts

Let $\Delta$ be a structure, the 'base structure'.

## Definition.

A relational structure $\Gamma$ is a reduct of $\Delta$ if $\Gamma$ has the same domain as $\Delta$, and all relations of $\Gamma$ are first-order definable over $\Delta$ (without parameters).

## Examples:

$\square(\mathbb{Q} ;$ Betw $)$ is a reduct of $(\mathbb{Q} ;<)$.
■ ( $\mathbb{Q} ;\{(x, y, z) \mid x<\max (y, z)\})$ is a reduct of $(\mathbb{Q} ;<)$.

## Remarks:

- Reducts studied in model theory.
- Every automorphism of $\Delta$ is also an automorphism of all reducts of $\Delta$.


## Reducts

Let $\Delta$ be a structure, the 'base structure'.

## Definition.

A relational structure $\Gamma$ is a reduct of $\Delta$ if $\Gamma$ has the same domain as $\Delta$, and all relations of $\Gamma$ are first-order definable over $\Delta$ (without parameters).

## Examples:

$\square(\mathbb{Q} ;$ Betw $)$ is a reduct of $(\mathbb{Q} ;<)$.
$\square(\mathbb{Q} ;\{(x, y, z) \mid x<\max (y, z)\})$ is a reduct of $(\mathbb{Q} ;<)$.

## Remarks:

- Reducts studied in model theory.
- Every automorphism of $\Delta$ is also an automorphism of all reducts of $\Delta$.


## General Goal:

for interesting base structures $\Delta$, classify $\operatorname{CSP}(\Gamma)$ for all reducts $\Gamma$ of $\Delta$.

## Generalising the Universal-Algebraic Approach

## Generalising the Universal-Algebraic Approach

The universal-algebraic approach can be generalised to infinite structures $\Gamma$ that are $\omega$-categorical.

## Generalising the Universal-Algebraic Approach

The universal-algebraic approach can be generalised to infinite structures $\Gamma$ that are $\omega$-categorical.

Definition (Equivalent to standard definition by Thm. of Ryll-Nardzewski)
A countable structure $\Gamma$ is $\omega$-categorical iff for all $n \in \mathbb{N}$, the componentwise action of $\operatorname{Aut}(\Gamma)$ on $n$-tuples of elements from $\Gamma$ has only finitely many orbits.

## Generalising the Universal-Algebraic Approach

The universal-algebraic approach can be generalised to infinite structures $\Gamma$ that are $\omega$-categorical.

Definition (Equivalent to standard definition by Thm. of Ryll-Nardzewski)
A countable structure $\Gamma$ is $\omega$-categorical iff for all $n \in \mathbb{N}$, the componentwise action of $\operatorname{Aut}(\Gamma)$ on $n$-tuples of elements from $\Gamma$ has only finitely many orbits.

## Examples:

■ ( $\mathbb{Q} ;<$ );

## Generalising the Universal-Algebraic Approach

The universal-algebraic approach can be generalised to infinite structures $\Gamma$ that are $\omega$-categorical.

Definition (Equivalent to standard definition by Thm. of Ryll-Nardzewski)
A countable structure $\Gamma$ is $\omega$-categorical iff for all $n \in \mathbb{N}$, the componentwise action of $\operatorname{Aut}(\Gamma)$ on $n$-tuples of elements from $\Gamma$ has only finitely many orbits.

## Examples:

- ( $\mathbb{Q} ;<$ );

■ Reducts of $\omega$-categorical structures are $\omega$-categorical;

## Generalising the Universal-Algebraic Approach

The universal-algebraic approach can be generalised to infinite structures $\Gamma$ that are $\omega$-categorical.

Definition (Equivalent to standard definition by Thm. of Ryll-Nardzewski)
A countable structure $\Gamma$ is $\omega$-categorical iff for all $n \in \mathbb{N}$, the componentwise action of $\operatorname{Aut}(\Gamma)$ on $n$-tuples of elements from $\Gamma$ has only finitely many orbits.

## Examples:

■ ( $\mathbb{Q} ;<$ );
■ Reducts of $\omega$-categorical structures are $\omega$-categorical;
■ Finite structures $\Gamma$;

## Generalising the Universal-Algebraic Approach

The universal-algebraic approach can be generalised to infinite structures $\Gamma$ that are $\omega$-categorical.

Definition (Equivalent to standard definition by Thm. of Ryll-Nardzewski)
A countable structure $\Gamma$ is $\omega$-categorical iff for all $n \in \mathbb{N}$, the componentwise action of Aut $(\Gamma)$ on $n$-tuples of elements from $\Gamma$ has only finitely many orbits.

## Examples:

■ ( $\mathbb{Q} ;<$ );
■ Reducts of $\omega$-categorical structures are $\omega$-categorical;

- Finite structures $\Gamma$;

■ Fraïssé-limits of amalgamation classes with finite relational signature.

## Generalising the Universal-Algebraic Approach

The universal-algebraic approach can be generalised to infinite structures $\Gamma$ that are $\omega$-categorical.

Definition (Equivalent to standard definition by Thm. of Ryll-Nardzewski)
A countable structure $\Gamma$ is $\omega$-categorical iff for all $n \in \mathbb{N}$, the componentwise action of $\operatorname{Aut}(\Gamma)$ on $n$-tuples of elements from $\Gamma$ has only finitely many orbits.

## Examples:

■ ( $\mathbb{Q} ;<$ );
■ Reducts of $\omega$-categorical structures are $\omega$-categorical;

- Finite structures $\Gamma$;
- Fraïssé-limits of amalgamation classes with finite relational signature.


## Theorem (B+Nešetřil'03).

Let $\Gamma$ be $\omega$-categorical. Then a relation $R$ has a primitive positive definition in $\Gamma$ if and only if $R$ is preserved by all polymorphisms of $\Gamma$.

## Reducts of $(\mathbb{Q} ;<)$ : Classification

Consider reducts of $(\mathbb{Q} ;<)$.

## Reducts of $(\mathbb{Q} ;<)$ : Classification

Consider reducts of $(\mathbb{Q} ;<)$.
Examples: Betweenness problem, And/or scheduling,

## Reducts of $(\mathbb{Q} ;<)$ : Classification

Consider reducts of $(\mathbb{Q} ;<)$.
Examples: Betweenness problem, And/or scheduling, Cyclic Ordering Problem,

## Reducts of $(\mathbb{Q} ;<)$ : Classification

Consider reducts of $(\mathbb{Q} ;<)$.
Examples: Betweenness problem, And/or scheduling, Cyclic Ordering Problem, Point Algebra in Temporal Reasoning,

## Reducts of $(\mathbb{Q} ;<)$ : Classification

Consider reducts of $(\mathbb{Q} ;<)$.
Examples: Betweenness problem, And/or scheduling, Cyclic Ordering Problem, Point Algebra in Temporal Reasoning, Nebel's Ord-Horn Class, ...

## Reducts of $(\mathbb{Q} ;<)$ : Classification

Consider reducts of $(\mathbb{Q} ;<)$.
Examples: Betweenness problem, And/or scheduling, Cyclic Ordering Problem, Point Algebra in Temporal Reasoning, Nebel's Ord-Horn Class, ...

## Theorem (B+Kara'08).

Let $\Gamma$ be a reduct of $(\mathbb{Q} ;<)$. Then $\operatorname{CSP}(\Gamma)$ is in P if $\Gamma$ has polymorphisms $f, e_{1}, e_{2}, e_{3}$ such that for all $x, y \in \mathbb{Q}$

$$
e_{1}(f(x, x, y))=e_{2}(f(x, y, x))=e_{3}(f(y, x, x)) .
$$

Otherwise, $\operatorname{CSP}(\Gamma)$ is NP-hard.

## Reducts of $(\mathbb{Q} ;<)$ : Classification

Consider reducts of $(\mathbb{Q} ;<)$.
Examples: Betweenness problem, And/or scheduling, Cyclic Ordering Problem, Point Algebra in Temporal Reasoning, Nebel's Ord-Horn Class, ...

## Theorem (B+Kara'08).

Let $\Gamma$ be a reduct of $(\mathbb{Q} ;<)$. Then $\operatorname{CSP}(\Gamma)$ is in P if $\Gamma$ has polymorphisms $f, e_{1}, e_{2}, e_{3}$ such that for all $x, y \in \mathbb{Q}$

$$
e_{1}(f(x, x, y))=e_{2}(f(x, y, x))=e_{3}(f(y, x, x)) .
$$

Otherwise, $\operatorname{CSP}(\Gamma)$ is NP-hard.

## Remarks.

■ Interesting class from descriptive complexity point of view: e.g., $\operatorname{CSP}(\mathbb{Q} ;\{(x, y, z) \mid x<\max (y, z)\})$ is in LFP, but not in Datalog.

## Reducts of $(\mathbb{Q} ;<)$ : Classification

Consider reducts of $(\mathbb{Q} ;<)$.
Examples: Betweenness problem, And/or scheduling, Cyclic Ordering Problem, Point Algebra in Temporal Reasoning, Nebel's Ord-Horn Class, ...

## Theorem (B+Kara'08).

Let $\Gamma$ be a reduct of $(\mathbb{Q} ;<)$. Then $\operatorname{CSP}(\Gamma)$ is in P if $\Gamma$ has polymorphisms $f, e_{1}, e_{2}, e_{3}$ such that for all $x, y \in \mathbb{Q}$

$$
e_{1}(f(x, x, y))=e_{2}(f(x, y, x))=e_{3}(f(y, x, x)) .
$$

Otherwise, $\operatorname{CSP}(\Gamma)$ is NP-hard.

## Remarks.

■ Interesting class from descriptive complexity point of view: e.g., $\operatorname{CSP}(\mathbb{Q} ;\{(x, y, z) \mid x<\max (y, z)\})$ is in LFP, but not in Datalog.
■ Proof makes essential use of Ramsey theory.

## Reducts of $(\mathbb{Q} ;<)$ : Classification

Consider reducts of $(\mathbb{Q} ;<)$.
Examples: Betweenness problem, And/or scheduling, Cyclic Ordering Problem, Point Algebra in Temporal Reasoning, Nebel's Ord-Horn Class, ...

## Theorem (B+Kara'08).

Let $\Gamma$ be a reduct of $(\mathbb{Q} ;<)$. Then $\operatorname{CSP}(\Gamma)$ is in P if $\Gamma$ has polymorphisms $f, e_{1}, e_{2}, e_{3}$ such that for all $x, y \in \mathbb{Q}$

$$
e_{1}(f(x, x, y))=e_{2}(f(x, y, x))=e_{3}(f(y, x, x)) .
$$

Otherwise, $\operatorname{CSP}(\Gamma)$ is NP-hard.

## Remarks.

■ Interesting class from descriptive complexity point of view: e.g., $\operatorname{CSP}(\mathbb{Q} ;\{(x, y, z) \mid x<\max (y, z)\})$ is in LFP, but not in Datalog.
■ Proof makes essential use of Ramsey theory.
■ STACS Proceedings: tractability conjecture for a large class of $\omega$-categorical structures $\Gamma$.

## Reducts of Linear Program Feasibility

## Reducts of Linear Program Feasibility

Let $\Delta:=\left(\mathbb{Q} ;<, R_{+}, R_{=1}\right)$ where $R_{+}:=\{(x, y, z) \mid x=y+z\}$ and $R_{=1}:=\{1\}$.

## Reducts of Linear Program Feasibility

Let $\Delta:=\left(\mathbb{Q} ;<, R_{+}, R_{=1}\right)$ where $R_{+}:=\{(x, y, z) \mid x=y+z\}$ and $R_{=1}:=\{1\}$. Remarks.
■ $\operatorname{CSP}(\Delta)$ is equivalent to the feasibility problem for linear programming.

## Reducts of Linear Program Feasibility

Let $\Delta:=\left(\mathbb{Q} ;<, R_{+}, R_{=1}\right)$ where $R_{+}:=\{(x, y, z) \mid x=y+z\}$ and $R_{=1}:=\{1\}$.

## Remarks.

- $\operatorname{CSP}(\Delta)$ is equivalent to the feasibility problem for linear programming.
- Classification of $\operatorname{CSP}(\Gamma)$ for reducts $\Gamma$ of $\Delta$ : open!


## Reducts of Linear Program Feasibility

Let $\Delta:=\left(\mathbb{Q} ;<, R_{+}, R_{=1}\right)$ where $R_{+}:=\{(x, y, z) \mid x=y+z\}$ and $R_{=1}:=\{1\}$.

## Remarks.

- $\operatorname{CSP}(\Delta)$ is equivalent to the feasibility problem for linear programming.
- Classification of $\operatorname{CSP}(\Gamma)$ for reducts $\Gamma$ of $\Delta$ : open!
- $\Delta$ is not $\omega$-categorical.


## Reducts of Linear Program Feasibility

Let $\Delta:=\left(\mathbb{Q} ;<, R_{+}, R_{=1}\right)$ where $R_{+}:=\{(x, y, z) \mid x=y+z\}$ and $R_{=1}:=\{1\}$.

## Remarks.

- $\operatorname{CSP}(\Delta)$ is equivalent to the feasibility problem for linear programming.

■ Classification of $\operatorname{CSP}(\Gamma)$ for reducts $\Gamma$ of $\Delta$ : open!

- $\Delta$ is not $\omega$-categorical.
- A reduct $\Gamma$ of $\Delta$ contains only convex relations if and only if $\Gamma$ has the polymorphism $(x, y) \mapsto(x+y) / 2$.


## Reducts of Linear Program Feasibility

$$
\text { Let } \Delta:=\left(\mathbb{Q} ;<, R_{+}, R_{=1}\right) \text { where } R_{+}:=\{(x, y, z) \mid x=y+z\} \text { and } R_{=1}:=\{1\} .
$$

## Remarks.

- $\operatorname{CSP}(\Delta)$ is equivalent to the feasibility problem for linear programming.
- Classification of $\operatorname{CSP}(\Gamma)$ for reducts $\Gamma$ of $\Delta$ : open!
- $\Delta$ is not $\omega$-categorical.

■ A reduct $\Gamma$ of $\Delta$ contains only convex relations if and only if $\Gamma$ has the polymorphism $(x, y) \mapsto(x+y) / 2$.

Which relations can be added to $\Delta$ such that $\operatorname{CSP}(\Delta)$ remains in $\mathbf{P}$ ?

## Reducts of Linear Program Feasibility

$$
\text { Let } \Delta:=\left(\mathbb{Q} ;<, R_{+}, R_{=1}\right) \text { where } R_{+}:=\{(x, y, z) \mid x=y+z\} \text { and } R_{=1}:=\{1\} .
$$

## Remarks.

- $\operatorname{CSP}(\Delta)$ is equivalent to the feasibility problem for linear programming.
- Classification of $\operatorname{CSP}(\Gamma)$ for reducts $\Gamma$ of $\Delta$ : open!
- $\Delta$ is not $\omega$-categorical.

■ A reduct $\Gamma$ of $\Delta$ contains only convex relations if and only if $\Gamma$ has the polymorphism $(x, y) \mapsto(x+y) / 2$.

## Which relations can be added to $\Delta$ such that $\operatorname{CSP}(\Delta)$ remains in $\mathbf{P}$ ?

## Examples.

- $\operatorname{CSP}(\Delta, \neq)$ is in P (but $\neq$ is not convex).


## Reducts of Linear Program Feasibility

$$
\text { Let } \Delta:=\left(\mathbb{Q} ;<, R_{+}, R_{=1}\right) \text { where } R_{+}:=\{(x, y, z) \mid x=y+z\} \text { and } R_{=1}:=\{1\} .
$$

## Remarks.

- $\operatorname{CSP}(\Delta)$ is equivalent to the feasibility problem for linear programming.
- Classification of $\operatorname{CSP}(\Gamma)$ for reducts $\Gamma$ of $\Delta$ : open!
- $\Delta$ is not $\omega$-categorical.

■ A reduct $\Gamma$ of $\Delta$ contains only convex relations if and only if $\Gamma$ has the polymorphism $(x, y) \mapsto(x+y) / 2$.

## Which relations can be added to $\Delta$ such that $\operatorname{CSP}(\Delta)$ remains in $\mathbf{P}$ ?

## Examples.

■ $\operatorname{CSP}(\Delta, \neq)$ is in P (but $\neq$ is not convex).
■ $\operatorname{CSP}(\Delta,\{(u, v, x, y) \mid u=v \Rightarrow x=y\})$ is in P (Bäckström,Jonsson'98).

## Tractable Expansions of Linear Programming

## Definition:

$R \subseteq \mathbb{Q}^{k}$ is called essentially convex if for all $a, b \in R$ there are only finitely many points on the line segment between $a$ and $b$ that are not in $R$.


## Tractable Expansions of Linear Programming

## Definition:

$R \subseteq \mathbb{Q}^{k}$ is called essentially convex if for all $a, b \in R$ there are only finitely many points on the line segment between $a$ and $b$ that are not in $R$.


## Theorem (B+Jonsson+vonOertzen'09).

Let $\Gamma$ be a reduct of $\Delta$ of the form $\left(\mathbb{Q} ;<, R_{+}, R_{=1}, S_{1}, \ldots, S_{n}\right)$.

## Tractable Expansions of Linear Programming

## Definition:

$R \subseteq \mathbb{Q}^{k}$ is called essentially convex if for all $a, b \in R$ there are only finitely many points on the line segment between $a$ and $b$ that are not in $R$.


## Theorem (B+Jonsson+vonOertzen'09).

Let $\Gamma$ be a reduct of $\Delta$ of the form ( $\mathbb{Q} ;<, R_{+}, R_{=1}, S_{1}, \ldots, S_{n}$ ). Then: all relations in $\Gamma$ are essentially convex, and $\operatorname{CSP}(\Gamma)$ is in P ,

## Tractable Expansions of Linear Programming

## Definition:

$R \subseteq \mathbb{Q}^{k}$ is called essentially convex if for all $a, b \in R$ there are only finitely many points on the line segment between $a$ and $b$ that are not in $R$.


## Theorem (B+Jonsson+vonOertzen'09).

Let $\Gamma$ be a reduct of $\Delta$ of the form ( $\mathbb{Q} ;<, R_{+}, R_{=1}, S_{1}, \ldots, S_{n}$ ). Then: all relations in $\Gamma$ are essentially convex, and CSP $(\Gamma)$ is in $P$, or $\operatorname{CSP}(\Gamma)$ is NP-hard.

## Tractable Expansions of Linear Programming

## Definition:

$R \subseteq \mathbb{Q}^{k}$ is called essentially convex if for all $a, b \in R$ there are only finitely many points on the line segment between $a$ and $b$ that are not in $R$.


## Theorem (B+Jonsson+vonOertzen'09).

Let $\Gamma$ be a reduct of $\Delta$ of the form ( $\mathbb{Q} ;<, R_{+}, R_{=1}, S_{1}, \ldots, S_{n}$ ). Then: all relations in $\Gamma$ are essentially convex, and $\operatorname{CSP}(\Gamma)$ is in $P$, or $\operatorname{CSP}(\Gamma)$ is NP-hard.

## Remarks.

■ Essential convexity is not a polymorphism condition.

## Tractable Expansions of Linear Programming

## Definition:

$R \subseteq \mathbb{Q}^{k}$ is called essentially convex if for all $a, b \in R$ there are only finitely many points on the line segment between $a$ and $b$ that are not in $R$.


## Theorem (B+Jonsson+vonOertzen'09).

Let $\Gamma$ be a reduct of $\Delta$ of the form ( $\mathbb{Q} ;<, R_{+}, R_{=1}, S_{1}, \ldots, S_{n}$ ). Then: all relations in $\Gamma$ are essentially convex, and CSP $(\Gamma)$ is in $P$, or $\operatorname{CSP}(\Gamma)$ is NP-hard.

## Remarks.

■ Essential convexity is not a polymorphism condition.
■ But: essential convexity is a polymorphism condition in a saturated elementary extension of $\Gamma$ (B.,Mamino'14).

## Max-Closed Constraints

## Max-Closed Constraints

Revisit

$$
\operatorname{CSP}\left(\mathbb{Q} ; S_{+1}, S_{2}, S_{\max }\right)
$$

where
■ $S_{+1}:=\{(x, y) \mid y=x+1\}$,

- $S_{2}:=\{(x, y) \mid y=2 x\}$, and

■ $\left.S_{\text {max }}:=\{(x, y, z) \mid x \leq y \vee x \leq z)\right\}$.

## Max-Closed Constraints

Revisit

$$
\operatorname{CSP}\left(\mathbb{Q} ; S_{+1}, S_{2}, S_{\max }\right)
$$

where
■ $S_{+1}:=\{(x, y) \mid y=x+1\}$,

- $S_{2}:=\{(x, y) \mid y=2 x\}$, and

■ $\left.S_{\text {max }}:=\{(x, y, z) \mid x \leq y \vee x \leq z)\right\}$.

## Remarks:

- max is a polymorphism.


## Max-Closed Constraints

Revisit

$$
\operatorname{CSP}\left(\mathbb{Q} ; S_{+1}, S_{2}, S_{\max }\right)
$$

where
■ $S_{+1}:=\{(x, y) \mid y=x+1\}$,

- $S_{2}:=\{(x, y) \mid y=2 x\}$, and

■ $\left.S_{\text {max }}:=\{(x, y, z) \mid x \leq y \vee x \leq z)\right\}$.

## Remarks:

- max is a polymorphism.

■ At least as hard as determining the winner in mean payoff games,

## Max-Closed Constraints

Revisit

$$
\operatorname{CSP}\left(\mathbb{Q} ; S_{+1}, S_{2}, S_{\max }\right)
$$

where
■ $S_{+1}:=\{(x, y) \mid y=x+1\}$,

- . $2:=\{(x, y) \mid y=2 x\}$, and

■ $\left.S_{\text {max }}:=\{(x, y, z) \mid x \leq y \vee x \leq z)\right\}$.

## Remarks:

- max is a polymorphism.
- At least as hard as determining the winner in mean payoff games, which is in NP $\cap$ coNP, but not known to be in $P$.


## Max-Closed Constraints

Revisit

$$
\operatorname{CSP}\left(\mathbb{Q} ; S_{+1}, S_{2}, S_{\max }\right)
$$

where
■ $S_{+1}:=\{(x, y) \mid y=x+1\}$,
■ $S_{2}:=\{(x, y) \mid y=2 x\}$, and
■ $\left.S_{\text {max }}:=\{(x, y, z) \mid x \leq y \vee x \leq z)\right\}$.

## Remarks:

- max is a polymorphism.

■ At least as hard as determining the winner in mean payoff games, which is in NP $\cap$ coNP, but not known to be in $P$.

## Theorem (Möhring, Skutella, Stork'04).

Mean payoff games are polynomial-time equivalent to deciding satisfiability of constraints of the form $x \leq \max (y, z)+c$ where $c \in \mathbb{Z}$ is represented in binary.

## The Integers with Successor

Consider CSPs for reducts $\Gamma$ of $(\mathbb{Z} ;$ succ $)$ where succ $:=\{(x, y) \mid y=x+1\}$.

## The Integers with Successor

Consider CSPs for reducts $\Gamma$ of $(\mathbb{Z} ;$ succ $)$ where succ : $=\{(x, y) \mid y=x+1\}$.
■ Simplest finite-signature structure which is not $\omega$-categorical.

## The Integers with Successor

Consider CSPs for reducts $\Gamma$ of $(\mathbb{Z} ;$ succ $)$ where succ : $=\{(x, y) \mid y=x+1\}$.
■ Simplest finite-signature structure which is not $\omega$-categorical.
■ ( $\mathbb{Z}$; succ) satisfies the same first-order sentences as $(\mathbb{Q} ;\{(x, y) \mid y=x+1\})$ and $(\mathbb{R} ;\{(x, y) \mid y=x+1\})$.

## The Integers with Successor

Consider CSPs for reducts $\Gamma$ of $(\mathbb{Z} ;$ succ $)$ where succ : $=\{(x, y) \mid y=x+1\}$.
■ Simplest finite-signature structure which is not $\omega$-categorical.
■ ( $\mathbb{Z}$; succ) satisfies the same first-order sentences as $(\mathbb{Q} ;\{(x, y) \mid y=x+1\})$ and $(\mathbb{R} ;\{(x, y) \mid y=x+1\})$.
$■$ CSPs for reducts of ( $\mathbb{Z}$; succ) appear as CSPs for reducts of $\left(\mathbb{Q} ; R_{+}, R_{=1}\right)$ and ( $\left.\mathbb{R} ; R_{+}, R_{=1}\right)$.

## The Integers with Successor

Consider CSPs for reducts $\Gamma$ of $(\mathbb{Z} ;$ succ $)$ where succ $:=\{(x, y) \mid y=x+1\}$.
■ Simplest finite-signature structure which is not $\omega$-categorical.
■ ( $\mathbb{Z}$; succ) satisfies the same first-order sentences as $(\mathbb{Q} ;\{(x, y) \mid y=x+1\})$ and $(\mathbb{R} ;\{(x, y) \mid y=x+1\})$.
$■$ CSPs for reducts of ( $\mathbb{Z}$; succ) appear as CSPs for reducts of $\left(\mathbb{Q} ; R_{+}, R_{=1}\right)$ and ( $\left.\mathbb{R} ; R_{+}, R_{=1}\right)$.

## Examples:

■ ( $\mathbb{Z} ; \neq,\{(x, y):|x-y|=2\})$.

## The Integers with Successor

Consider CSPs for reducts $\Gamma$ of $(\mathbb{Z} ;$ succ $)$ where succ $:=\{(x, y) \mid y=x+1\}$.
■ Simplest finite-signature structure which is not $\omega$-categorical.

- ( $\mathbb{Z}$; succ) satisfies the same first-order sentences as $(\mathbb{Q} ;\{(x, y) \mid y=x+1\})$ and $(\mathbb{R} ;\{(x, y) \mid y=x+1\})$.
$■$ CSPs for reducts of ( $\mathbb{Z}$; succ) appear as CSPs for reducts of $\left(\mathbb{Q} ; R_{+}, R_{=1}\right)$ and $\left(\mathbb{R} ; R_{+}, R_{=1}\right)$.


## Examples:

■ ( $\mathbb{Z} ; \neq,\{(x, y):|x-y|=2\})$.
■ ( $\mathbb{Z} ; F)$ where $F:=\{(x, y, u, v) \mid y=x+1 \Leftrightarrow v=u+1\}$.

## The Integers with Successor

Consider CSPs for reducts $\Gamma$ of $(\mathbb{Z} ;$ succ $)$ where succ $:=\{(x, y) \mid y=x+1\}$.
■ Simplest finite-signature structure which is not $\omega$-categorical.
■ ( $\mathbb{Z} ;$ succ) satisfies the same first-order sentences as $(\mathbb{Q} ;\{(x, y) \mid y=x+1\})$ and $(\mathbb{R} ;\{(x, y) \mid y=x+1\})$.
■ CSPs for reducts of ( $\mathbb{Z} ;$ succ $)$ appear as CSPs for reducts of $\left(\mathbb{Q} ; R_{+}, R_{=1}\right)$ and $\left(\mathbb{R} ; R_{+}, R_{=1}\right)$.

## Examples:

■ ( $\mathbb{Z} ; \neq,\{(x, y):|x-y|=2\})$.
■ ( $\mathbb{Z} ; F)$ where $F:=\{(x, y, u, v) \mid y=x+1 \Leftrightarrow v=u+1\}$.

## Theorem (B,Martin,Mottet'15).

Let $\Gamma$ be a reduct of $(\mathbb{Z} ;$ succ). Then $\operatorname{CSP}(\Gamma)$ is in P , or NP-complete, or equals a finite-domain CSP.

## Ideas from the proof

## Ideas from the proof

Half-way:

## Lemma.

Let $\Gamma$ be a reduct of $(\mathbb{Z}$; succ $)$.

## Ideas from the proof

Half-way:

## Lemma.

Let $\Gamma$ be a reduct of $(\mathbb{Z}$; succ $)$.
Then $\operatorname{CSP}(\Gamma)$ equals $\operatorname{CSP}(\Delta)$ where $\Delta$ is one of the following:
1 a finite structure;

## Ideas from the proof

Half-way:

## Lemma.

Let $\Gamma$ be a reduct of $(\mathbb{Z}$; succ $)$.
Then $\operatorname{CSP}(\Gamma)$ equals $\operatorname{CSP}(\Delta)$ where $\Delta$ is one of the following:
1 a finite structure;
2 a reduct of $(\mathbb{Z} ;=)$;

## Ideas from the proof

## Half-way:

## Lemma.

Let $\Gamma$ be a reduct of $(\mathbb{Z} ;$ succ $)$.
Then $\operatorname{CSP}(\Gamma)$ equals $\operatorname{CSP}(\Delta)$ where $\Delta$ is one of the following:
1 a finite structure;
2 a reduct of ( $\mathbb{Z} ;=$ );
3 a reduct of $(\mathbb{Z} ;\{(x, y, u, v) \mid y=x+1 \Leftrightarrow v=u+1\})$ where $|x-y|=d$ is primitive positive definable for all $d \in \mathbb{Z}$;

## Ideas from the proof

## Half-way:

## Lemma.

Let $\Gamma$ be a reduct of $(\mathbb{Z} ;$ succ $)$.
Then $\operatorname{CSP}(\Gamma)$ equals $\operatorname{CSP}(\Delta)$ where $\Delta$ is one of the following:
1 a finite structure;
2 a reduct of $(\mathbb{Z} ;=)$;
3 a reduct of $(\mathbb{Z} ;\{(x, y, u, v) \mid y=x+1 \Leftrightarrow v=u+1\})$ where $|x-y|=d$ is primitive positive definable for all $d \in \mathbb{Z}$;
4 a reduct of ( $\mathbb{Z} ;$ succ) where succ is primitive positive definable.

## Ideas from the proof

## Half-way:

## Lemma.

Let $\Gamma$ be a reduct of $(\mathbb{Z} ;$ succ $)$.
Then $\operatorname{CSP}(\Gamma)$ equals $\operatorname{CSP}(\Delta)$ where $\Delta$ is one of the following:
1 a finite structure;
2 a reduct of ( $\mathbb{Z} ;=$ );
3 a reduct of $(\mathbb{Z} ;\{(x, y, u, v) \mid y=x+1 \Leftrightarrow v=u+1\})$ where $|x-y|=d$ is primitive positive definable for all $d \in \mathbb{Z}$;
4 a reduct of ( $\mathbb{Z} ;$ succ) where succ is primitive positive definable.

## Examples.

■ $\operatorname{CSP}(\mathbb{Z} ;\{(x, y):|x-y| \in\{1,2\}\})$

## Ideas from the proof

## Half-way:

## Lemma.

Let $\Gamma$ be a reduct of $(\mathbb{Z} ;$ succ $)$.
Then $\operatorname{CSP}(\Gamma)$ equals $\operatorname{CSP}(\Delta)$ where $\Delta$ is one of the following:
1 a finite structure;
2 a reduct of $(\mathbb{Z} ;=)$;
3 a reduct of $(\mathbb{Z} ;\{(x, y, u, v) \mid y=x+1 \Leftrightarrow v=u+1\})$ where $|x-y|=d$ is primitive positive definable for all $d \in \mathbb{Z}$;
4 a reduct of ( $\mathbb{Z} ;$ succ) where succ is primitive positive definable.

## Examples.

■ $\operatorname{CSP}(\mathbb{Z} ;\{(x, y):|x-y| \in\{1,2\}\})$ equals $\operatorname{CSP}\left(K_{3}\right)$.

## Ideas from the proof

## Half-way:

## Lemma.

Let $\Gamma$ be a reduct of $(\mathbb{Z} ;$ succ $)$.
Then $\operatorname{CSP}(\Gamma)$ equals $\operatorname{CSP}(\Delta)$ where $\Delta$ is one of the following:
1 a finite structure;
2 a reduct of ( $\mathbb{Z} ;=$ );
3 a reduct of $(\mathbb{Z} ;\{(x, y, u, v) \mid y=x+1 \Leftrightarrow v=u+1\})$ where $|x-y|=d$ is primitive positive definable for all $d \in \mathbb{Z}$;
4 a reduct of ( $\mathbb{Z} ;$ succ) where succ is primitive positive definable.

## Examples.

■ $\operatorname{CSP}(\mathbb{Z} ;\{(x, y):|x-y| \in\{1,2\}\})$ equals $\operatorname{CSP}\left(K_{3}\right)$.
■ $\operatorname{CSP}(\mathbb{Z} ;\{(x, y): x-y=2\})$

## Ideas from the proof

## Half-way:

## Lemma.

Let $\Gamma$ be a reduct of $(\mathbb{Z} ;$ succ $)$.
Then $\operatorname{CSP}(\Gamma)$ equals $\operatorname{CSP}(\Delta)$ where $\Delta$ is one of the following:
1 a finite structure;
2 a reduct of ( $\mathbb{Z} ;=$ );
3 a reduct of $(\mathbb{Z} ;\{(x, y, u, v) \mid y=x+1 \Leftrightarrow v=u+1\})$ where $|x-y|=d$ is primitive positive definable for all $d \in \mathbb{Z}$;
4 a reduct of ( $\mathbb{Z} ;$ succ) where succ is primitive positive definable.

## Examples.

■ $\operatorname{CSP}(\mathbb{Z} ;\{(x, y):|x-y| \in\{1,2\}\})$ equals $\operatorname{CSP}\left(K_{3}\right)$.
■ $\operatorname{CSP}(\mathbb{Z} ;\{(x, y): x-y=2\})$ equals $\operatorname{CSP}(\mathbb{Z} ;$ succ $)$.

## Ideas from the proof

## Half-way:

## Lemma.

Let $\Gamma$ be a reduct of $(\mathbb{Z} ;$ succ $)$.
Then $\operatorname{CSP}(\Gamma)$ equals $\operatorname{CSP}(\Delta)$ where $\Delta$ is one of the following:
1 a finite structure;
2 a reduct of ( $\mathbb{Z} ;=$ );
3 a reduct of $(\mathbb{Z} ;\{(x, y, u, v) \mid y=x+1 \Leftrightarrow v=u+1\})$ where $|x-y|=d$ is primitive positive definable for all $d \in \mathbb{Z}$;
4 a reduct of ( $\mathbb{Z} ;$ succ) where succ is primitive positive definable.

## Examples.

■ $\operatorname{CSP}(\mathbb{Z} ;\{(x, y):|x-y| \in\{1,2\}\})$ equals $\operatorname{CSP}\left(K_{3}\right)$.
■ $\operatorname{CSP}(\mathbb{Z} ;\{(x, y): x-y=2\})$ equals $\operatorname{CSP}(\mathbb{Z} ; \operatorname{succ})$.

- $\operatorname{CSP}(\mathbb{Z} ;\{(x, y): x-y \neq 1\})$


## Ideas from the proof

## Half-way:

## Lemma.

Let $\Gamma$ be a reduct of $(\mathbb{Z} ;$ succ $)$.
Then $\operatorname{CSP}(\Gamma)$ equals $\operatorname{CSP}(\Delta)$ where $\Delta$ is one of the following:
1 a finite structure;
2 a reduct of ( $\mathbb{Z} ;=$ );
3 a reduct of $(\mathbb{Z} ;\{(x, y, u, v) \mid y=x+1 \Leftrightarrow v=u+1\})$ where $|x-y|=d$ is primitive positive definable for all $d \in \mathbb{Z}$;
4 a reduct of ( $\mathbb{Z} ;$ succ) where succ is primitive positive definable.

## Examples.

■ $\operatorname{CSP}(\mathbb{Z} ;\{(x, y):|x-y| \in\{1,2\}\})$ equals $\operatorname{CSP}\left(K_{3}\right)$.
■ $\operatorname{CSP}(\mathbb{Z} ;\{(x, y): x-y=2\})$ equals $\operatorname{CSP}(\mathbb{Z} ;$ succ $)$.
■ $\operatorname{CSP}(\mathbb{Z} ;\{(x, y): x-y \neq 1\})$ equals $\operatorname{CSP}(\mathbb{Z} ; \neq)$.

## A Non-Dichotomy

## A Non-Dichotomy

## Proposition ( $\mathrm{B}^{\prime} 12$ ).

Every recursively enumerable language is polynomial-time equivalent to the CSP of a reduct of $(\mathbb{Z} ;+, *)$.

## A Non-Dichotomy

## Proposition (B'12).

Every recursively enumerable language is polynomial-time equivalent to the CSP of a reduct of $(\mathbb{Z} ;+, *)$.

■ Use a theorem of Davis, Matiyasevich, Putnam, Robinson:

## A Non-Dichotomy

## Proposition (B'12).

Every recursively enumerable language is polynomial-time equivalent to the CSP of a reduct of $(\mathbb{Z} ;+, *)$.

■ Use a theorem of Davis, Matiyasevich, Putnam, Robinson:
$U \subseteq \mathbb{Z}$ is recursively enumerable if and only if it has a primitive positive definition in $(\mathbb{Z} ; *,+, 1)$.

## A Non-Dichotomy

## Proposition (B'12).

Every recursively enumerable language is polynomial-time equivalent to the CSP of a reduct of $(\mathbb{Z} ;+, *)$.

■ Use a theorem of Davis, Matiyasevich, Putnam, Robinson:
$U \subseteq \mathbb{Z}$ is recursively enumerable if and only if it has a primitive positive definition in $(\mathbb{Z} ; *,+, 1)$.
■ Consider $\Gamma=\left(\mathbb{Z} ; U, S_{+1}, S_{2}\right)$.
There is polynomial-time reduction from " $n \in U$ ?" to $\operatorname{CSP}(\Gamma)$.

## A Non-Dichotomy

## Proposition (B'12).

Every recursively enumerable language is polynomial-time equivalent to the CSP of a reduct of $(\mathbb{Z} ;+, *)$.

■ Use a theorem of Davis, Matiyasevich, Putnam, Robinson:
$U \subseteq \mathbb{Z}$ is recursively enumerable if and only if it has a primitive positive definition in $(\mathbb{Z} ; *,+, 1)$.
■ Consider $\Gamma=\left(\mathbb{Z} ; U, S_{+1}, S_{2}\right)$.
There is polynomial-time reduction from " $n \in U$ ?" to $\operatorname{CSP}(\Gamma)$.
■ Need to modify $\Gamma$ and use more coding tricks so that $\operatorname{CSP}(\Gamma)$ is polynomial-time equivalent to " $n \in U$ ?" ...

## Open Problems

## Open Problems

■ Classify $\operatorname{CSP}(\Gamma)$ for all reducts of $(\mathbb{Z} ;<)$.

## Open Problems

- Classify $\operatorname{CSP}(\Gamma)$ for all reducts of $(\mathbb{Z} ;<)$.

Generalizes classification for $(\mathbb{Q} ;<)$ and for $(\mathbb{Z}$; succ $)$.

## Open Problems

- Classify $\operatorname{CSP}(\Gamma)$ for all reducts of $(\mathbb{Z} ;<)$.

Generalizes classification for $(\mathbb{Q} ;<)$ and for $(\mathbb{Z} ;$ succ $)$.

■ Non-dichotomy for CSPs of reducts of $\left(\mathbb{Q} ; S_{+1}, S_{.2}\right)$ ?

## Open Problems

■ Classify $\operatorname{CSP}(\Gamma)$ for all reducts of $(\mathbb{Z} ;<)$.
Generalizes classification for $(\mathbb{Q} ;<)$ and for $(\mathbb{Z} ;$ succ $)$.

■ Non-dichotomy for CSPs of reducts of $\left(\mathbb{Q} ; S_{+1}, S_{.2}\right)$ ? These problems are all in NP.

