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Constraint Satisfaction Problems

Let Γ be a structure with a finite relational signature τ.
Γ also called the template.

Definition 1 (CSP).

CSP(Γ) is the computational problem to decide whether a given finite
τ-structure A homomorphically maps to Γ .

Example: 3-colorability is CSP(K3)

G K3
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More Examples of CSPs

Positive 1-in-3-3SAT
Input: A set V and a subset T of V 3.

Question: Is there a map V → {0,1} such that exactly one entry in each
triple in T is mapped to 1?

Is a CSP: Template is
(
{0,1}; {(0,0,1), (0,1,0), (1,0,0)}

)
Complexity: NP-complete (Garey and Johnson)

Digraph Acyclicity
Input: A directed graph (V ;E)

Question: Is (V ;E) acyclic?

Is a CSP: Template is (Q;<)

Complexity: In P (e.g. by depth-first search)
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Logic Formulation of the CSP

Let Γ = (D;R1, . . . ,Rl) be a τ-structure.

CSP(Γ)

Input: A primitive positive τ-sentence Φ,
i.e., a first-order sentence of the form

∃x1, . . . , xn (ψ1 ∧ · · ·∧ψl)

where ψi are atomic, i.e. of the form R(xi1 , . . . , xik ) for R ∈ τ.
Question: Is Φ true in Γ?

Example:

not homomorphic to (Q;<).

∃x1, x2, x3 (x1<x2 ∧ x2<x3 ∧ x3<x1) is false in (Q;<).
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More Examples of CSPs

Betweenness:
Input: A finite set V , and a subset S of V 3.

Question: Is there a linear order < on V such that for every (u, v ,w) ∈ S
we have u < v < w or w < v < u?

Is a CSP: template is
(
Q; Betw) where

Betw := {(x , y , z) | (x < y < z)∨ (z < y < x)}
)

Complexity: NP-complete (Garey and Johnson)

And/Or Precedence Constraints:
Input: A finite set V , and a subset T of V 3.

Question: Is there a linear order < on V such that u < v or u < w for all
(u, v ,w) ∈ T .

Is a CSP: template is
(
Q; {(u, v ,w) | u < max(v ,w)}

)
Complexity: in P
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CSPs of Open Complexity

CSP(R;<,R+,R=1,Rsq) where
R+ :=

{
(x , y , z) | x = y + z

}
,

R=1 := {1}, and
Rsq :=

{
(x , y) | y ≥ x2}.

At least as hard as Sums of Square Roots.
Not known to be in P.

CSP(Q;S+1,S·2,Smax) where
S+1 :=

{
(x , y) | y = x + 1

}
,

S·2 :=
{
(x , y) | y = 2x

}
, and

Smax :=
{
(x , y , z) | x ≤ max(y , z)

}
.

At least as hard as Mean Payoff Games.
Not known to be in P.

Complexity of CSPs Manuel Bodirsky 7



CSPs of Open Complexity

CSP(R;<,R+,R=1,Rsq) where
R+ :=

{
(x , y , z) | x = y + z

}
,

R=1 := {1}, and
Rsq :=

{
(x , y) | y ≥ x2}.

At least as hard as Sums of Square Roots.

Not known to be in P.

CSP(Q;S+1,S·2,Smax) where
S+1 :=

{
(x , y) | y = x + 1

}
,

S·2 :=
{
(x , y) | y = 2x

}
, and

Smax :=
{
(x , y , z) | x ≤ max(y , z)

}
.

At least as hard as Mean Payoff Games.
Not known to be in P.

Complexity of CSPs Manuel Bodirsky 7



CSPs of Open Complexity

CSP(R;<,R+,R=1,Rsq) where
R+ :=

{
(x , y , z) | x = y + z

}
,

R=1 := {1}, and
Rsq :=

{
(x , y) | y ≥ x2}.

At least as hard as Sums of Square Roots.
Not known to be in P.

CSP(Q;S+1,S·2,Smax) where
S+1 :=

{
(x , y) | y = x + 1

}
,

S·2 :=
{
(x , y) | y = 2x

}
, and

Smax :=
{
(x , y , z) | x ≤ max(y , z)

}
.

At least as hard as Mean Payoff Games.
Not known to be in P.

Complexity of CSPs Manuel Bodirsky 7



CSPs of Open Complexity

CSP(R;<,R+,R=1,Rsq) where
R+ :=

{
(x , y , z) | x = y + z

}
,

R=1 := {1}, and
Rsq :=

{
(x , y) | y ≥ x2}.

At least as hard as Sums of Square Roots.
Not known to be in P.

CSP(Q;S+1,S·2,Smax) where
S+1 :=

{
(x , y) | y = x + 1

}
,

S·2 :=
{
(x , y) | y = 2x

}
, and

Smax :=
{
(x , y , z) | x ≤ max(y , z)

}
.

At least as hard as Mean Payoff Games.
Not known to be in P.

Complexity of CSPs Manuel Bodirsky 7



CSPs of Open Complexity

CSP(R;<,R+,R=1,Rsq) where
R+ :=

{
(x , y , z) | x = y + z

}
,

R=1 := {1}, and
Rsq :=

{
(x , y) | y ≥ x2}.

At least as hard as Sums of Square Roots.
Not known to be in P.

CSP(Q;S+1,S·2,Smax) where
S+1 :=

{
(x , y) | y = x + 1

}
,

S·2 :=
{
(x , y) | y = 2x

}
, and

Smax :=
{
(x , y , z) | x ≤ max(y , z)

}
.

At least as hard as Mean Payoff Games.

Not known to be in P.

Complexity of CSPs Manuel Bodirsky 7



CSPs of Open Complexity

CSP(R;<,R+,R=1,Rsq) where
R+ :=

{
(x , y , z) | x = y + z

}
,

R=1 := {1}, and
Rsq :=

{
(x , y) | y ≥ x2}.

At least as hard as Sums of Square Roots.
Not known to be in P.

CSP(Q;S+1,S·2,Smax) where
S+1 :=

{
(x , y) | y = x + 1

}
,

S·2 :=
{
(x , y) | y = 2x

}
, and

Smax :=
{
(x , y , z) | x ≤ max(y , z)

}
.

At least as hard as Mean Payoff Games.
Not known to be in P.

Complexity of CSPs Manuel Bodirsky 7



The Feder-Vardi Dichotomy Conjecture

What can be said about CSP(Γ) when Γ is a finite structure?

Conjecture 1 (Feder-Vardi’93).

For finite Γ , the problem CSP(Γ) is either in P or NP-complete.

This dichotomy has been confirmed in many special cases, for example

For 2-element structures Γ (Schaefer’78)
and 3-element structures Γ (Bulatov’06)

For undirected graphs (Hell+Nešetřil’90)
and digraphs without sources and sinks (Barto+Kozik+Niven’08)

Open for digraphs Γ

Open for 5-element structures Γ

Strongest evidence comes from the so-called universal algebraic approach.

Complexity of CSPs Manuel Bodirsky 8
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Primitive Positive Definability

Lemma (Jeavons et al’97).

Let Γ = (D;R1, . . . ,Rk ) be a relational structure, and
let R be a relation that has a primitive positive definition in Γ .
Then CSP(Γ) and CSP(D;R,R1, . . . ,Rk ) are polynomial-time equivalent.

Example. Claim: CSP(C5) is NP-hard.
C5

Proof: K5 = (V ;E ′) has a primitive positive definition in C5 = (V ;E)

E ′(x , y) ≡ ∃p1,p2,p3,q1,q2
(
E(x ,p1)∧ E(p1,p2)∧ E(p2,p3)∧ E(p3, y)

∧ E(x ,q1)∧ E(q1,q2)∧ E(q2, y)
)

Complexity of CSPs Manuel Bodirsky 9
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Then CSP(Γ) and CSP(D;R,R1, . . . ,Rk ) are polynomial-time equivalent.

Example. Claim: CSP(C5) is NP-hard.
C5 K5

Proof: K5 = (V ;E ′) has a primitive positive definition in C5 = (V ;E)

E ′(x , y) ≡ ∃p1,p2,p3,q1,q2
(
E(x ,p1)∧ E(p1,p2)∧ E(p2,p3)∧ E(p3, y)

∧ E(x ,q1)∧ E(q1,q2)∧ E(q2, y)
)
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Polymorphisms

A function f : Dk → D preserves R ⊆ Dm if(
f (a1

1, . . . ,a
k
1), . . . , f (a

1
m, . . . ,ak

m)
)
∈ R whenever (ai

1, . . . ,a
i
m) ∈ R for all i ≤ k .

Example: (x , y) 7→ max(x , y) preserves a linear half-space given by
a1x1 + · · ·+ anxn ≤ a0 iff at most one of a1, . . . ,an is positive.

x1+x2 ≤ 1

We say that f is a polymorphism of Γ if f preserves all relations of Γ .

Example: Every structure Γ has the projections as polymorphisms.
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Polymorphisms and Primitive Positive Definability

Equivalent definition:
Polymorphisms are homomorphisms from Γ k to Γ .

Theorem (Geiger’68, Bodnarcuk et al’69).

Let Γ be finite. Then a relation R has a primitive positive definition in Γ
if and only if R is preserved by all finitary polymorphisms of Γ .

Polymorphisms↔ Algorithms

Complexity of CSPs Manuel Bodirsky 11
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Weak Near Unanimities

Assume that Γ has a finite domain D.

Theorem (Bulatov+Jeavons+Krokhin’05,Maroti+McKenzie’08).

Let Γ be a finite structure. Then Γ has a weak near unanimity polymorphism of
arity n ≥ 2, this is, a polymorphism f such that for all elements x , y of Γ

f (y , x , . . . , x) = f (x , y , . . . , x) = · · · = f (x , . . . , x , y) ,

or CSP(Γ) is NP-hard.

Example:
(x , y) 7→ max(x , y)

is a weak near unanimity polymorphism of (Q;<).
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The Finite-Domain Tractability Conjecture

Bulatov+Jeavons+Krokhin’04 (in different, but equivalent form):

Conjecture 2.

If Γ has a weak near unanimity polymorphism, then CSP(Γ) is in P.

Confirmed for the following polymorphisms:

majority, that is, satisfies ∀x , y . f (x , x , y) = f (x , y , x) = f (y , x , x) = x .

Maltsev, that is, satisfies ∀x , y . f (x , y , y) = f (y , y , x) = x .

semi-lattice, that is, is binary commutative, associative, idempotent.

. . .

There are two algorithmic techniques to obtain those results:

Generalizations of Gaussian elimination
(works for example when Γ has Maltsev polymorphism)

‘Constraint Propagation’ / Datalog

Complexity of CSPs Manuel Bodirsky 13
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CSPs and Datalog

Datalog: captures many algorithmic techniques used for CSPs in AI
Elegant formalism. “Datalog = Prolog without function symbols”.

Example: CSP(Q;<) can be solved by Datalog.

tc(x , y) :− x < y

tc(x , y) :− tc(x , z), z < y

false() :− tc(x , x)

Question (Feder+Vardi’93)

For which finite templates Γ can CSP(Γ) be solved by Datalog?

Larose-Zadori’07:

If Γ interprets primitively positively linear equations over a finite field, then
CSP(Γ) is not in Datalog;

conjecture that CSP(Γ) is in Datalog otherwise.

Complexity of CSPs Manuel Bodirsky 14
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CSPs in Datalog

Theorem (Barto+Kozik’09,Kozik+Krokhin+Valeriote+Willard’14).

Let Γ be a finite structure. Then CSP(Γ) is in Datalog if and only if

Γ has weak
near-unanimity polymorphisms f ,g such that for all elements x , y of Γ

f (x , x , y) = g(x , x , x , y) .

Corollary: Given Γ , we can effectively decide whether CSP(Γ) is in Datalog.

In fact: Given Γ , we can efficiently decide whether CSP(Γ) is in Datalog.

Complexity of CSPs Manuel Bodirsky 15
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CSPs over Infinite Domains

Observation (B+Grohe’08)

For every computational problem P, there exists an infinite structure Γ such
that P and CSP(Γ) are equivalent under polynomial-time Turing reductions.

Two directions:

1 For which infinite structures can we use the universal-algebraic
approach?

2 Study those infinite structures that are of particular interest in computer
science and mathematics.
E.g. systematically study CSPs over the integers, rationals, and reals.
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Reducts

Let ∆ be a structure, the ‘base structure’.

Definition.
A relational structure Γ is a reduct of ∆ if Γ has the same domain as ∆, and all
relations of Γ are first-order definable over ∆ (without parameters).

Examples:(
Q;Betw

)
is a reduct of (Q;<).(

Q; {(x , y , z) | x < max(y , z)}
)

is a reduct of (Q;<).

Remarks:

Reducts studied in model theory.

Every automorphism of ∆ is also an automorphism of all reducts of ∆.

General Goal:
for interesting base structures ∆, classify CSP(Γ) for all reducts Γ of ∆.
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Generalising the Universal-Algebraic Approach

The universal-algebraic approach can be generalised to infinite structures Γ
that are ω-categorical.

Definition (Equivalent to standard definition by Thm. of Ryll-Nardzewski)

A countable structure Γ is ω-categorical iff for all n ∈ N, the componentwise
action of Aut(Γ) on n-tuples of elements from Γ has only finitely many orbits.

Examples:

(Q;<);

Reducts of ω-categorical structures are ω-categorical;

Finite structures Γ ;

Fraı̈ssé-limits of amalgamation classes with finite relational signature.

Theorem (B+Nešetřil’03).

Let Γ be ω-categorical. Then a relation R has a primitive positive definition in
Γ if and only if R is preserved by all polymorphisms of Γ .
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Generalising the Universal-Algebraic Approach

The universal-algebraic approach can be generalised to infinite structures Γ
that are ω-categorical.

Definition (Equivalent to standard definition by Thm. of Ryll-Nardzewski)

A countable structure Γ is ω-categorical iff for all n ∈ N, the componentwise
action of Aut(Γ) on n-tuples of elements from Γ has only finitely many orbits.

Examples:

(Q;<);

Reducts of ω-categorical structures are ω-categorical;

Finite structures Γ ;
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Reducts of (Q;<): Classification
Consider reducts of (Q;<).

Examples: Betweenness problem, And/or scheduling, Cyclic Ordering
Problem, Point Algebra in Temporal Reasoning, Nebel’s Ord-Horn Class, . . .

Theorem (B+Kara’08).

Let Γ be a reduct of (Q;<). Then CSP(Γ) is in P if Γ has polymorphisms
f ,e1,e2,e3 such that for all x , y ∈ Q

e1(f (x , x , y)) = e2(f (x , y , x)) = e3(f (y , x , x)) .

Otherwise, CSP(Γ) is NP-hard.

Remarks.
Interesting class from descriptive complexity point of view: e.g.,
CSP

(
Q; {(x , y , z) | x < max(y , z)}

)
is in LFP, but not in Datalog.

Proof makes essential use of Ramsey theory.
STACS Proceedings: tractability conjecture for a large class of
ω-categorical structures Γ .

Complexity of CSPs Manuel Bodirsky 19
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Reducts of Linear Program Feasibility

Let ∆ := (Q;<,R+,R=1) where R+ :=
{
(x , y , z) | x = y + z

}
and R=1 := {1}.

Remarks.

CSP(∆) is equivalent to the feasibility problem for linear programming.

Classification of CSP(Γ) for reducts Γ of ∆: open!

∆ is not ω-categorical.

A reduct Γ of ∆ contains only convex relations if and only if Γ has the
polymorphism (x , y) 7→ (x + y)/2.

Which relations can be added to ∆ such that CSP(∆) remains in P?

Examples.

CSP(∆, 6=) is in P (but 6= is not convex).

CSP(∆, {(u, v , x , y) | u = v ⇒ x = y }) is in P (Bäckström,Jonsson’98).

Complexity of CSPs Manuel Bodirsky 20
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Tractable Expansions of Linear Programming

Definition:
R ⊆ Qk is called essentially convex
if for all a,b ∈ R there are only finitely many
points on the line segment between a and b
that are not in R.

Theorem (B+Jonsson+vonOertzen’09).

Let Γ be a reduct of ∆ of the form (Q;<,R+,R=1,S1, . . . ,Sn).
Then: all relations in Γ are essentially convex, and CSP(Γ) is in P,
or CSP(Γ) is NP-hard.

Remarks.

Essential convexity is not a polymorphism condition.

But: essential convexity is a polymorphism condition
in a saturated elementary extension of Γ (B.,Mamino’14).

Complexity of CSPs Manuel Bodirsky 21
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Remarks.

Essential convexity is not a polymorphism condition.

But: essential convexity is a polymorphism condition
in a saturated elementary extension of Γ (B.,Mamino’14).
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Max-Closed Constraints

Revisit
CSP(Q;S+1,S·2,Smax)

where

S+1 :=
{
(x , y) | y = x + 1

}
,

S·2 :=
{
(x , y) | y = 2x

}
, and

Smax :=
{
(x , y , z) | x ≤ y ∨ x ≤ z)

}
.

Remarks:

max is a polymorphism.

At least as hard as determining the winner in mean payoff games,
which is in NP ∩ coNP, but not known to be in P.

Theorem (Möhring, Skutella, Stork’04).

Mean payoff games are polynomial-time equivalent to deciding satisfiability of
constraints of the form x ≤ max(y , z)+c where c ∈ Z is represented in binary.
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The Integers with Successor

Consider CSPs for reducts Γ of (Z; succ) where succ := {(x , y) | y = x + 1}.

Simplest finite-signature structure which is not ω-categorical.

(Z; succ) satisfies the same first-order sentences as(
Q; {(x , y) | y = x + 1}

)
and

(
R; {(x , y) | y = x + 1}

)
.

CSPs for reducts of (Z; succ) appear as CSPs for reducts of
(Q; R+,R=1) and (R; R+,R=1).

Examples:

(Z; 6=, {(x , y) : |x − y | = 2}).

(Z;F ) where F :=
{
(x , y ,u, v) | y = x + 1⇔ v = u + 1

}
.

Theorem (B,Martin,Mottet’15).

Let Γ be a reduct of (Z; succ). Then CSP(Γ) is in P, or NP-complete, or equals
a finite-domain CSP.
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Ideas from the proof

Half-way:

Lemma.

Let Γ be a reduct of (Z; succ).
Then CSP(Γ) equals CSP(∆) where ∆ is one of the following:

1 a finite structure;

2 a reduct of (Z; =);

3 a reduct of
(
Z; {(x , y ,u, v) | y = x + 1⇔ v = u + 1}

)
where |x − y | = d is primitive positive definable for all d ∈ Z;

4 a reduct of (Z; succ) where succ is primitive positive definable.

Examples.

CSP
(
Z; {(x , y) : |x − y | ∈ {1,2}}

)
equals CSP(K3).

CSP
(
Z; {(x , y) : x − y = 2}

)
equals CSP(Z; succ).

CSP
(
Z; {(x , y) : x − y 6= 1}

)
equals CSP(Z; 6=).
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A Non-Dichotomy

Proposition (B’12).

Every recursively enumerable language is polynomial-time equivalent to the
CSP of a reduct of (Z; +, ∗).

Use a theorem of Davis, Matiyasevich, Putnam, Robinson:
U ⊆ Z is recursively enumerable if and only if
it has a primitive positive definition in (Z; ∗,+,1).
Consider Γ = (Z;U,S+1,S·2).
There is polynomial-time reduction from “n ∈ U?” to CSP(Γ).

Need to modify Γ and use more coding tricks so that CSP(Γ) is
polynomial-time equivalent to “n ∈ U?” . . .
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Open Problems

Classify CSP(Γ) for all reducts of (Z;<).
Generalizes classification for (Q;<) and for (Z; succ).

Non-dichotomy for CSPs of reducts of
(
Q;S+1,S·2

)
?

These problems are all in NP.
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