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Motivation
‣ What is “social choice theory”? 

‣ How to aggregate possibly conflicting preferences into collective 
choices in a fair and satisfactory way? 

‣ Origins: mathematics, economics, and political science 
‣ Essential ingredients 

- Autonomous agents (e.g., human or software agents) 
- A set of alternatives (depending on the application, alternatives can be 

political candidates, resource allocations, coalition structures, etc.) 
- Preferences over alternatives 
- Aggregation functions 

‣ The axiomatic method will play a crucial role in this tutorial. 
‣ Which formal properties should an aggregation function satisfy? 
‣ Which of these properties can be satisfied simultaneously?
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Plurality
‣ Why are there different voting rules? 

‣ What’s wrong with plurality (the most widespread voting rule) 
where alternatives that are ranked first by most voters win? 

‣ Consider a preference profile with 21 voters, who  
rank four alternatives as in the table on the right. 
 

‣ Alternative a is the unique plurality winner despite 
- a majority of voters think a is the worst alternative, 
- a loses against b, c, and d in pairwise majority comparisons, and 
- if the preferences of all voters are reversed, a still wins. 

‣ In July 2010, 22 experts on social choice theory met in France 
and voted on which voting rules should be used.  
Plurality received no support at all (among 18 rules).
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5 Common Voting Rules
‣ Plurality  

‣ Used in most democratic countries, ubiquitous 
‣ Alternatives that are ranked first by most voters 

‣ Borda  
‣ Used in Slovenia, academic institutions, Eurovision song contest 
‣ The most preferred alternative of each voter gets m-1 points, the 

second most-preferred m-2 points, etc. Alternatives with highest 
accumulated score win. 

‣ Plurality with runoff  
‣ Used to elect the President of France 
‣ The two alternatives that are ranked first by most voters face off in 

a majority runoff.
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5 Common Voting Rules 
(ctd.)

‣ Instant-runoff  
‣ Used in Australia, Ireland, Malta, Academy awards 
‣ Alternatives that are ranked first by the lowest number of voters 

are deleted. Repeat until no more alternatives can be deleted. The 
remaining alternatives win. 

‣ In the UK 2011 alternative vote referendum, people chose plurality 
over instant-runoff. 

‣ Sequential majority comparisons  
‣ Used by US congress to pass laws (aka amendment procedure) 

and in many committees 
‣ Alternatives that win a fixed sequence of pairwise comparisons 

(e.g., ((a vs. b) vs. c), etc.).
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A Curious Preference Profile
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‣ Plurality: a wins 

‣ Borda: b wins 

‣ Sequential majority comparisons (any order): c wins 

‣ Instant-runoff: d wins 

‣ Plurality with runoff: e wins

Example due to Michel Balinski
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Rational Choice Theory
‣ A prerequisite for analyzing collective choice  

is to understand individual choice. 
‣ Let U be a finite universe of alternatives. 
‣ A choice function f maps a feasible set A⊆U  

to a choice set f(A)⊆A. 
‣ We require that f(A)=∅ only if A=∅. 

‣ Not every choice function complies with our 
intuitive understanding of rationality. 
‣ Certain patterns of choice from varying feasible 

sets may be deemed inconsistent, e.g., choosing 
a from {a,b,c}, but b from {a,b}.
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Rationalizable Choice
‣ Binary preference relation ≽ on U 

‣ x ≽ y is interpreted as “x is at least as good as y”. 
‣ ≽ is assumed to be transitive and complete. 

‣ Best alternatives 
‣ For a binary relation ≽ and a feasible set A, 

Max(≽,A)= {x∈A | ∄y∈A such that y ≻ x} 

‣ f is rationalizable if there exists a preference relation ≽ on U 
such that f(A)=Max(≽,A) for all A. 
‣ The previously mentioned choice function f with f({a,b,c})={a} and 

f({a,b})={b} cannot be rationalized.
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Consistent Choice
‣ It would be a nice if the non-existence of a rationalizing 

relation could be pointed out by finding inconsistencies. 
‣ f satisfies consistency if for all A,B with B⊆A,  

f(A)∩B ≠∅ implies f(B)=f(A)∩B. 
 

‣ Consequence: If x is chosen from a feasible set,  
then it is also chosen from all subsets that contain x. 

‣ Example: Plurality does not satisfy consistency  
(when scores are computed for each feasible set). 
- f({a,b,c}) = {a} and f({a,b}) = {b} 

‣ Theorem (Samuelson, 1938; Arrow, 1959): A choice 
function is rationalizable iff it satisfies consistency.
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From Choice to  
Social Choice

‣ N is a finite set of at least two voters. 
‣ R(U) is the set of all preference relations over U. 
‣ Every R=(≽1, ..., ≽|N|) ∈ R(U)|N| is called a preference profile. 
‣ A social choice function (SCF) is a function f that assigns a 

choice function to each preference profile. 
‣ An SCF is rationalizable (consistent) if its underlying choice 

functions are rationalizable (consistent) for all preference profiles. 
‣ We will write f(R,A) as a function of both R and A. 

‣ Let nxy = |{i∈N | x ≽i y}| and define the majority rule relation as 
(x RM y) ⇔ nxy > nyx.
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Condorcet’s Paradox
‣ Social choice from feasible sets of size two is easy. 

‣ The majority rule SCF is defined as f(R,{x,y}) = Max(RM,{x,y}). 
‣ Majority rule can easily be characterized using uncontroversial 

axioms (e.g., May, 1952). 
‣ Problems arise whenever there are more than two 

alternatives. 
‣ Condorcet paradox (1785): RM can be intransitive. 
‣ Alternative x is a Condorcet winner in A if  

x RM y for all y∈A\{x}. 
‣ An SCF f is a Condorcet extension if f(R,A)={x}  

whenever x is a Condorcet winner in A.
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Arrow’s Impossibility
‣ An SCF satisfies independence of infeasible alternatives (IIA) if 

the choice set only depends on preferences over alternatives 
within the feasible set. 

‣ An SCF satisfies Pareto-optimality if an alternative will not be 
chosen if there exists another alternative such that all voters 
prefer the latter to the former. 

‣ An SCF is dictatorial if there exists a voter whose most 
preferred alternative is always uniquely chosen. 

‣ Theorem (Arrow, 1951): Every rationalizable SCF that satisfies 
IIA and Pareto-optimality is dictatorial when |U|≥3. 
‣ Nipkow (2009) has verified a proof of Arrow’s theorem using Isabelle. 
‣ Tang & Lin (2009) reduced the statement to a finite base case that  

was solved by a computer.
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What now?
‣ Rationalizability (or, equivalently, consistency) is incompatible 

with collective choice when |U|≥3. 
‣ Dropping IIA offers little relief (Banks, 1995). 
‣ Dropping Pareto-optimality offers little relief (Wilson, 1972). 
‣ Dropping non-dictatorship is unacceptable. 

‣ In this tutorial, we will consider two escape routes from 
Arrow’s impossibility: 
‣ SCFs that satisfy weaker notions of consistency 

- Top cycle, uncovered set, Banks set, tournament equilibrium set 
‣ Randomized SCFs 

- Random dictatorship, maximal lotteries

14
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Weakly Consistent SCFs

15
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Tournaments
‣ For a given preference profile R, a feasible set A and 

majority rule RM define a directed graph (A,RM). 
‣ We say that b dominates a if b RM a. 
‣ Every asymmetric directed graph is induced by some preference 

profile (McGarvey, 1953). 
‣ A majoritarian SCF is an SCF whose output only depends 

on (A,RM). 
‣ For simplicity, we will assume that individual preferences are anti-

symmetric and that |N| is odd. Hence, (A,RM) is a tournament. 
‣ SCF f is said to be finer than SCF g if f ⊆ g. 
‣ Dominion D(x)={y∈A | x RM y} 
‣ Dominators D̅(x)={y∈A | y RM x}

16
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Expansion

Weak expansion

Strong retentiveness

Retentiveness

Majoritarianness

Non-dictatorship IIA Pareto-optimality Rationalizability/ 
Consistency Arrow’s Impossibility

|A|=2
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The Top Cycle
‣ Consistency can be weakened to expansion:  

B⊆A and f(A)∩B ≠∅ implies f(B) ⊆ f(A). 
‣ Theorem (Bordes, 1976): There is a unique finest 

majoritarian SCF satisfying expansion: the top cycle. 
‣ A dominant set is a nonempty set of alternatives B⊆A such 

that for all x∈B and y∈A\B, x RM y. 
‣ The set of dominant sets is totally ordered by set inclusion  

(Good, 1971). 
‣ Hence, every tournament contains a unique minimal dominant set 

called the top cycle (TC). 
‣ TC is a Condorcet extension.
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Examples

19
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TC(A,RM)={c,e,f}TC(A,RM)={a,b,c} TC(A,RM)={a,b,c,d}
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Transitive Closure
‣ The essence of Condorcet’s paradox and Arrow’s 

impossibility is that majority rule fails to be transitive. 
‣ Why not just take the transitive (reflexive) closure RM*? 

‣ Theorem (Deb, 1977): TC(A,RM) = Max(RM*,A). 
‣ Consequences 

‣ TC itself is a cycle. It is the source component in the DAG 
(directed acyclic graph) of strongly connected components. 

‣ Linear-time algorithms for computing TC using Kosaraju’s or 
Tarjan’s algorithm for finding strongly connected components 
- Alternatively, one can initialize working set B with all alternatives of 

maximal outdegree and then iteratively add all alternatives that dominate 
an alternative in B until no more such alternatives can be found.
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Top Cycle and  
Pareto-Optimality

21

‣ The top cycle is very large. 
‣ In fact, it is so large that it fails to be Pareto-optimal  

when there are more than three alternatives  
(Ferejohn & Grether, 1977).  
 

‣ Since Pareto-optimality is an essential ingredient of Arrow’s 
impossibility, this escape route is (so far) not entirely 
convincing. 
‣ Although, technically, Arrow’s theorem only requires Pareto-

optimality for two-element sets (which the top cycle satisfies).
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The Uncovered Set

‣ Expansion can be further weakened to weak expansion:  
f(A)∩f(B) ⊆ f(A∪B). 

‣ Theorem (Moulin, 1986): There is a unique finest majoritarian 
SCF satisfying weak expansion: the uncovered set. 

‣ Given a tournament (A,RM), x covers y (x C y), if D(y)⊂D(x). 
‣ Proposed independently by Fishburn (1977) and Miller (1980) 
‣ Transitive subrelation of majority rule 
‣ The uncovered set (UC) consists of all uncovered alternatives, i.e., 

UC(A,PM) = Max(C,A).
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Examples

24
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UC(A,RM)={a,b,c}

TC(A,RM)={a,b,c,d}

UC(A,RM)={a,b,c}
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Properties of the  
Uncovered Set

‣ Since expansion ⇒ weak expansion, UC⊆TC. 
‣ UC is a Condorcet extension. 

‣ UC satisfies Pareto-optimality. 
‣ Theorem (B. and Geist, 2014): UC is the largest majoritarian SCF 

satisfying Pareto-optimality. 
‣ How can the uncovered set be efficiently computed? 

‣ Straightforward O(n3) algorithm that computes the covering 
relation for every pair of alternatives 

‣ Can we do better than that?

25



Computational Social Choice (STACS 2015) Felix Brandt

Uncovered Set Algorithm
‣ Equivalent characterization of UC 

‣ Theorem (Shepsle & Weingast, 1984): UC consists precisely of all 
alternatives that reach every other alternative in at most two 
steps. 
- Such alternatives are called kings in graph theory. 

‣ Hence, UC can be computed by squaring the tournament’s 
adjacency matrix. 
‣ Fastest known matrix multiplication algorithm  

(Le Gall, 2014): O(n2.3728639) 
‣ Just slightly faster than Vassilevska Williams, 2011: O(n2.372873) 
‣ Based on Coppersmith & Winograd (1990): O(n2.376) 
‣ Matrix multiplication is believed to be feasible in linear time (O(n2)).  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Banks Set
‣ Weak expansion can be weakened to strong retentiveness: 

f(D̅(x)) ⊆ f(A) for all x∈A. 
‣ Theorem (B., 2011): There is a unique finest majoritarian 

SCF satisfying strong retentiveness: the Banks set. 
‣ A transitive subset of a tournament (A,RM) is a set of 

alternatives B⊆A such that RM is transitive within B. 
‣ Let Trans(A,RM) = {B⊆A | B is transitive}. 
‣ The Banks set (BA) consists of the maximal elements of all 

inclusion-maximal transitive subsets (Banks, 1985), i.e.,  
BA(A,RM) = {Max(RM,B) | B∈Max(⊇,Trans(A,RM))}

29
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Examples
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BA(A,RM)={a,b,c}

UC(A,RM)={a,b,c}

a b c

d

e f g

TC(A,RM)={a,b,c,d,e,f,g}

UC(A,RM)={a,b,c,d}

BA(A,RM)={a,b,c}

(All missing edges are pointing downwards.)
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Properties of the Banks Set
‣ Since expansion ⇒ weak expansion ⇒ strong retentiveness, 

BA⊆UC⊆TC. 
‣ As a consequence, BA is a Condorcet extension and satisfies 

Pareto-optimality. 
‣ Random alternatives in BA can be found in linear time by 

iteratively constructing maximal transitive sets. 
‣ Yet, computing the Banks set is NP-hard (Woeginger, 2003) 

and remains NP-hard even for 5 voters (B. et al., 2013). 
‣ Strong retentiveness can be further weakened to 

retentiveness: 
f(D̅(x)) ⊆ f(A) for all x∈f(A).
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Expansion
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Strong retentiveness
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Majoritarianness
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Tournament  
Equilibrium Set

‣ Let f be an arbitrary choice function. 
‣ A non-empty set of alternatives B is f-retentive if  

f(D̅(x))⊆B for all x∈B. 
‣ Idea: No alternative in the set should be “properly”  

dominated by an outside alternative. 
‣ f is a new choice function that yields the union of all 

inclusion-minimal f-retentive sets. 
‣ f satisfies retentiveness. 

‣ The tournament equilibrium set (TEQ) of a tournament is 
defined as TEQ=TEQ. 
‣ Recursive definition (unique fixed point of ring-operator) 
‣ Theorem (Schwartz, 1990): TEQ⊆BA.

33
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Example
‣ {a,b,c} is the unique minimal TEQ-retentive set. 

‣ TEQ(D̅(a)) = TEQ({c}) = {c} 
‣ TEQ(D̅(b)) = TEQ({a,e}) = {a} 
‣ TEQ(D̅(c)) = TEQ({b,d}) = {b} 
‣ TEQ(D̅(d)) = TEQ({a,b}) = {a} 
‣ TEQ(D̅(e)) = TEQ({a,c,d}) = {a,c,d}

34
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A thick edge from y to x  
denotes that y ∈ TEQ(D̅(x)).
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Properties of TEQ
‣ Computing TEQ is NP-hard (B. et al., 2010) and remains 

NP-hard even for 7 voters (Bachmeier et al., 2015). 
‣ The best known upper bound is PSPACE! 

‣ Theorem (Laffond et al., 1993; Houy 2009; B., 2011; B. and 
Harrenstein, 2011): The following statements are equivalent: 
‣ Every tournament contains a unique minimal TEQ-retentive set. 

(Schwartz’ Conjecture, 1990) 
‣ TEQ is the unique finest majoritarian SCF satisfying retentiveness.  
‣ TEQ satisfies monotonicity (and many other desirable properties). 

‣ All or nothing:  
Either TEQ is a most appealing SCF or it is severely flawed.
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Schwartz’s  
Conjecture

‣ There exists no counterexample with less than 13 
alternatives (154 billion tournaments have been checked).  
‣ TEQ satisfies all nice properties if |A|<13. 

‣ No counterexample was found by searching billions of 
random tournaments with up to 50 alternatives. 
‣ Checking significantly larger tournaments is intractable. 

‣ Many non-trivial weakenings of Schwartz’s conjecture are 
known to hold (Good, 1971; Dutta, 1988; B. et al., 2010;  
B., 2011). 

‣ Theorem (B., Chudnovsky, Kim, Liu, Norin, Scott, Seymour, 
and Thomassé, 2012): Schwartz’s conjecture is false.

36
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Aftermath
‣ Non-constructive proof relying on a probabilistic argument 

by Erdős and Moser (1964) 
‣ Neither the counter-example nor its size can be deduced from 

proof. 
‣ Smallest counter-example of this type requires about 10136 

alternatives. 
‣ More recently, a counter-example with 24 alternatives was 

found with the help of a computer (B. & Seedig, 2013).  
‣ In principle, TEQ is severely flawed. However, counter-

examples are so extremely rare that this has no practical 
consequences. 
‣ This casts doubt on the axiomatic method.
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Weakly Consistent SCFs

38

Top Cycle (1971) TC expansion O(n2)

Uncovered Set (1977) UC weak expansion O(n2.38)

Banks Set (1985) BA strong retentiveness 2O(n)

Tournament Equilibrium Set (1990) TEQ (retentiveness) 2O(n)

TC
UC
BA
TEQ
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Randomized SCFs

39
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Random Dictatorship
‣ A randomized SCF maps a preference profile to a lottery 

(probability distribution) over the alternatives. 
‣ Perhaps the most notorious randomized SCF is random 

dictatorship. 
‣ One agent is picked uniformly at random and his most preferred 

alternative is implemented as the social choice. 
‣ Random dictatorship is not as bad as it may sound. 

‣ It satisfies most of the axioms that are usually considered in social 
choice theory. 

‣ Random dictatorship is the only Pareto-optimal randomized 
SCF that is strategyproof, i.e., it cannot be manipulated by 
lying about one’s preferences (Gibbard, 1977).

40

Allan Gibbard



Computational Social Choice (STACS 2015) Felix Brandt

Maximal Lotteries
‣ Kreweras (1965) and Fishburn (1984) 

‣ Rediscovered by Laffond et al. (1993), Felsenthal and Machover 
(1992), Fisher and Ryan (1995), Rivest and Shen (2010) 

‣ Let g(x,y) = nxy - nyx be the majority margin of x and y. 
‣ Alternative x is a (weak) Condorcet winner if g(x,y)≥0 for all y. 
‣ Extend g to lotteries: g(p,q) = ∑x,y p(x)·q(y)·g(x,y) 

‣ Expected majority margin 
‣ p is a maximal lottery if g(p,q)≥0 for all q. 

‣ Randomized (weak) Condorcet winner 
‣ Always exists due to Minimax Theorem (v. Neumann, 1928)

41
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Examples
‣ Two alternatives 
 
 
 
 

‣ R can be transformed into a symmetric zero-sum game. 
‣ Maximal lotteries are mixed minimax strategies (or Nash equilibria). 
 
 
 
 

‣ The unique maximal lottery is 3/5 a + 1/5 b + 1/5 c.

42
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Properties of  
Maximal Lotteries (ML)

‣ Maximal lotteries are almost always unique. 
‣ Always unique for odd number of voters (Laffond et al., 1997) 

‣ ML does not require asymmetry, completeness, or even 
transitivity of preferences. 
‣ Random dictatorship requires unique maximum.  
‣ Canonical generalization (RSD) requires at least one maximum. 

‣ ML can be efficiently computed via linear programming. 
‣ Computing RSD probabilities, on the other hand, is #P-complete 

(Aziz et al., 2013). 
‣ In the assignment domain, maximal lotteries are known as 

popular mixed matchings (Kavitha et al., 2011).

43



Computational Social Choice (STACS 2015) Felix Brandt

‣ Pareto-dominated alternatives always get zero probability in 
every maximal lottery. 
‣ In fact, ML is even efficient with respect to stochastic dominance. 
‣ No lottery gives more expected utility for any utility representation 

consistent with the voters’ preferences (Aziz et al., 2012). 
‣ Violated by RSD (Bogomolnaia and Moulin, 2001). 

‣ ML is weakly strategyproof in a well-defined sense  
(Aziz et al., 2013). 

‣ ML can be uniquely characterized using a version of 
consistency for randomized SCFs (Brandl et al., 2015).

44

Properties of  
Maximal Lotteries (ctd.)
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