
Algorithmic Game Theory

Paul W. Goldberg1

1Department of Computer Science
Oxford University, U. K.

STACS’15 tutorial, Munich
March 2015

Goldberg Algorithmic Game Theory

Topics

Mainly, complexity of equilibrium computation...

Problem statements, Nash equilibrium

NP-completeness of finding certain Nash equilibria1

Total search problems, PPAD and related complexity classes

PPAD-completeness of finding unrestricted Nash equilibria 2

Computation of approximate Nash equilibria

models for “constrained” computation of NE/CE:
communication-bounded, query-bounded

Apology: I won’t cover potential games/PLS, and various other
things

1I will give you definitions soon!
2Daskalakis, G, Papadimitriou: The Complexity of Computing a Nash

equilibrium. SICOMP/CACM Feb’09.
Chen, Deng, Teng: Settling the complexity of computing two-player Nash
equilibria. JACM, 2009.

Goldberg Algorithmic Game Theory

Game Theory and Computer Science

Modern CS and GT originated with
John von Neumann at Princeton in
the 1950’s (Yoav Shoham:
Computer Science and Game
Theory. CACM Aug’08.))

Common motivations:

modeling rationality (interaction
of selfish agents on Internet);
AI: solve cognitive tasks such as
negotiation

It turns out that GT gives rise to problems that pose very
interesting mathematical challenges, e.g. w.r.t. computational
complexity. Complexity classes PPAD and PLS.

Goldberg Algorithmic Game Theory

Game Theory and Computer Science

Modern CS and GT originated with
John von Neumann at Princeton in
the 1950’s (Yoav Shoham:
Computer Science and Game
Theory. CACM Aug’08.))

Common motivations:

modeling rationality (interaction
of selfish agents on Internet);
AI: solve cognitive tasks such as
negotiation

It turns out that GT gives rise to problems that pose very
interesting mathematical challenges, e.g. w.r.t. computational
complexity. Complexity classes PPAD and PLS.

Goldberg Algorithmic Game Theory

Example 1: Prisoners’ dilemma

cooperate

0

defect

1

cooperate defect

0 1

8
8

0
10

10
0

1
1

There’s a row player and a column player.

Solution: both players defect. Numbers in red are probabilities.

Nash equilibrium: no incentive to change

Goldberg Algorithmic Game Theory

Example 1: Prisoners’ dilemma

cooperate 0

defect 1

cooperate defect
0 1

8
8

0
10

10
0

1
1

There’s a row player and a column player.
Solution: both players defect. Numbers in red are probabilities.
Nash equilibrium: no incentive to change

Goldberg Algorithmic Game Theory

Example 2: Rock-paper-scissors

2008 Rock-paper-scissors Championship (Las Vegas, USA)

Goldberg Algorithmic Game Theory

Rock-paper-scissors: payoff matrix

rock

1/3

paper

1/3

scissors

1/3

rock paper scissors

1/3 1/3 1/3

0
0

-1
1

1
-1

1
-1

0
0

-1
1

-1
1

1
-1

0
0

Solution: both players randomize: probabilities are shown in red.

Goldberg Algorithmic Game Theory

Rock-paper-scissors: payoff matrix

rock 1/3

paper 1/3

scissors 1/3

rock paper scissors
1/3 1/3 1/3

0
0

-1
1

1
-1

1
-1

0
0

-1
1

-1
1

1
-1

0
0

Solution: both players randomize: probabilities are shown in red.

Goldberg Algorithmic Game Theory

Rock-paper-scissors: a non-symmetrical variant

rock

1/3

paper

1/3

scissors

1/3

rock paper scissors

1/3 5/12 1/4

0
0

-1
1

-1

1
-1

0
0

-1
1

-1
1

1
-1

0
0

2

What is the solution?

(thanks to Rahul Savani’s on-line Nash equilibrium solver.)

Goldberg Algorithmic Game Theory

Rock-paper-scissors: a non-symmetrical variant

rock 1/3

paper 1/3

scissors 1/3

rock paper scissors
1/3 5/12 1/4

0
0

-1
1

-1

1
-1

0
0

-1
1

-1
1

1
-1

0
0

2

What is the solution?
(thanks to Rahul Savani’s on-line Nash equilibrium solver.)

Goldberg Algorithmic Game Theory

Example 3: Stag hunt

2 hunters; each chooses whether to hunt stag or rabbit...

It takes 2 hunters to catch a stag, but only one to catch a rabbit.

Goldberg Algorithmic Game Theory

Example 3: Stag hunt

2 hunters; each chooses whether to hunt stag or rabbit...
It takes 2 hunters to catch a stag,

but only one to catch a rabbit.

Goldberg Algorithmic Game Theory

Example 3: Stag hunt

2 hunters; each chooses whether to hunt stag or rabbit...
It takes 2 hunters to catch a stag, but only one to catch a rabbit.

Goldberg Algorithmic Game Theory

Stag hunt: payoff matrix

hunt stag 1

0 1/8

hunt rabbit 0

1 7/8

hunt stag hunt rabbit
1

0 1/8

0

1 7/8

8
8

0
1

1
0

1
1

Solution: both hunt stag (the best solution).

Or, both players
hunt rabbit. Or, both players randomize (with the right
probabilities).

Goldberg Algorithmic Game Theory

Stag hunt: payoff matrix

hunt stag

1

0

1/8

hunt rabbit

0

1

7/8

hunt stag hunt rabbit

1

0

1/8 0

1

7/8

8
8

0
1

1
0

1
1

Solution: both hunt stag (the best solution). Or, both players
hunt rabbit.

Or, both players randomize (with the right
probabilities).

Goldberg Algorithmic Game Theory

Stag hunt: payoff matrix

hunt stag

1 0

1/8

hunt rabbit

0 1

7/8

hunt stag hunt rabbit

1 0

1/8

0 1

7/8

8
8

0
1

1
0

1
1

Solution: both hunt stag (the best solution). Or, both players
hunt rabbit. Or, both players randomize (with the right
probabilities).

Goldberg Algorithmic Game Theory

Nash equilibrium; general motivation

it should specify a strategy for each player, such
that each player is receiving optimal payoff in
the context of the other players’ choices.

A pure Nash equilibrium is one in which each
player chooses a pure strategy — problem: for
some games, there is no pure Nash equilibrium!

A mixed Nash equilibrium assigns, for each
player, a probability distribution over his pure
strategies, so that a player’s payoff is his
expected payoff w.r.t. these distributions —
Nash’s theorem shows that this always exists!
Every game has an outcome— as required
Generally, an odd number of equilibria. I return
to this later, it is important

John Forbes
Nash

Goldberg Algorithmic Game Theory

Nash equilibrium; general motivation

it should specify a strategy for each player, such
that each player is receiving optimal payoff in
the context of the other players’ choices.

A pure Nash equilibrium is one in which each
player chooses a pure strategy — problem: for
some games, there is no pure Nash equilibrium!

A mixed Nash equilibrium assigns, for each
player, a probability distribution over his pure
strategies, so that a player’s payoff is his
expected payoff w.r.t. these distributions —
Nash’s theorem shows that this always exists!
Every game has an outcome— as required
Generally, an odd number of equilibria. I return
to this later, it is important

John Forbes
Nash

Goldberg Algorithmic Game Theory

Nash equilibrium; general motivation

it should specify a strategy for each player, such
that each player is receiving optimal payoff in
the context of the other players’ choices.

A pure Nash equilibrium is one in which each
player chooses a pure strategy — problem: for
some games, there is no pure Nash equilibrium!

A mixed Nash equilibrium assigns, for each
player, a probability distribution over his pure
strategies, so that a player’s payoff is his
expected payoff w.r.t. these distributions —
Nash’s theorem shows that this always exists!
Every game has an outcome— as required
Generally, an odd number of equilibria. I return
to this later, it is important

John Forbes
Nash

Goldberg Algorithmic Game Theory

Definition and notation

Game: set of players, each player has his own set of allowed
actions (also known as “pure strategies”). Any combination of
actions will result in a numerical payoff (or value, or utility) for
each player. (A game should specify the payoffs, for every player
and every combination of actions.)

Number the players 1, 2, ..., k .
Let Sp denote player p’s set of actions. e.g. in rock-paper-scissors,
S1 = S2 = {rock,paper, scissors}.
n denotes the size of the largest Sp. (So, in rock-paper-scissors,
k = 2, n = 3.) If k is a constant, we seek algorithms polynomial in
n. Indeed, much work studies special case k = 2, where a game’s
payoffs can be written down in 2 matrices.
S = S1 × S2 × . . .× Sk is the set of pure strategy profiles. i.e. if
s ∈ S , s denotes a choice of action, for each player.
Each s ∈ S gives rise to utility or payoff to each player. ups will
denote the payoff to player p when all players choose s.

Goldberg Algorithmic Game Theory

Definition and notation

Game: set of players, each player has his own set of allowed
actions (also known as “pure strategies”). Any combination of
actions will result in a numerical payoff (or value, or utility) for
each player. (A game should specify the payoffs, for every player
and every combination of actions.)
Number the players 1, 2, ..., k .

Let Sp denote player p’s set of actions. e.g. in rock-paper-scissors,
S1 = S2 = {rock,paper, scissors}.
n denotes the size of the largest Sp. (So, in rock-paper-scissors,
k = 2, n = 3.) If k is a constant, we seek algorithms polynomial in
n. Indeed, much work studies special case k = 2, where a game’s
payoffs can be written down in 2 matrices.
S = S1 × S2 × . . .× Sk is the set of pure strategy profiles. i.e. if
s ∈ S , s denotes a choice of action, for each player.
Each s ∈ S gives rise to utility or payoff to each player. ups will
denote the payoff to player p when all players choose s.

Goldberg Algorithmic Game Theory

Definition and notation

Game: set of players, each player has his own set of allowed
actions (also known as “pure strategies”). Any combination of
actions will result in a numerical payoff (or value, or utility) for
each player. (A game should specify the payoffs, for every player
and every combination of actions.)
Number the players 1, 2, ..., k .
Let Sp denote player p’s set of actions. e.g. in rock-paper-scissors,
S1 = S2 = {rock,paper, scissors}.

n denotes the size of the largest Sp. (So, in rock-paper-scissors,
k = 2, n = 3.) If k is a constant, we seek algorithms polynomial in
n. Indeed, much work studies special case k = 2, where a game’s
payoffs can be written down in 2 matrices.
S = S1 × S2 × . . .× Sk is the set of pure strategy profiles. i.e. if
s ∈ S , s denotes a choice of action, for each player.
Each s ∈ S gives rise to utility or payoff to each player. ups will
denote the payoff to player p when all players choose s.

Goldberg Algorithmic Game Theory

Definition and notation

Game: set of players, each player has his own set of allowed
actions (also known as “pure strategies”). Any combination of
actions will result in a numerical payoff (or value, or utility) for
each player. (A game should specify the payoffs, for every player
and every combination of actions.)
Number the players 1, 2, ..., k .
Let Sp denote player p’s set of actions. e.g. in rock-paper-scissors,
S1 = S2 = {rock,paper, scissors}.
n denotes the size of the largest Sp. (So, in rock-paper-scissors,
k = 2, n = 3.) If k is a constant, we seek algorithms polynomial in
n. Indeed, much work studies special case k = 2, where a game’s
payoffs can be written down in 2 matrices.
S = S1 × S2 × . . .× Sk is the set of pure strategy profiles. i.e. if
s ∈ S , s denotes a choice of action, for each player.

Each s ∈ S gives rise to utility or payoff to each player. ups will
denote the payoff to player p when all players choose s.

Goldberg Algorithmic Game Theory

Definition and notation

Game: set of players, each player has his own set of allowed
actions (also known as “pure strategies”). Any combination of
actions will result in a numerical payoff (or value, or utility) for
each player. (A game should specify the payoffs, for every player
and every combination of actions.)
Number the players 1, 2, ..., k .
Let Sp denote player p’s set of actions. e.g. in rock-paper-scissors,
S1 = S2 = {rock,paper, scissors}.
n denotes the size of the largest Sp. (So, in rock-paper-scissors,
k = 2, n = 3.) If k is a constant, we seek algorithms polynomial in
n. Indeed, much work studies special case k = 2, where a game’s
payoffs can be written down in 2 matrices.
S = S1 × S2 × . . .× Sk is the set of pure strategy profiles. i.e. if
s ∈ S , s denotes a choice of action, for each player.
Each s ∈ S gives rise to utility or payoff to each player. ups will
denote the payoff to player p when all players choose s.

Goldberg Algorithmic Game Theory

Definition and notation

Two parameters, k and n.
normal-form game: list of all ups ’s

2-player: 2 n × n matrices; so 2n2 numbers

k-player: knk numbers

...poly for constant k

General issue:

Input: Game; Output: NE.
run-time of algorithms in terms of n
k is small constant; often k = 2.
When can it be polynomial in n?

So you want large k? Fixes:

“concisely represented” multi-player games

Consider game with “query access” to payoff function

Goldberg Algorithmic Game Theory

Definition and notation

Two parameters, k and n.
normal-form game: list of all ups ’s

2-player: 2 n × n matrices; so 2n2 numbers

k-player: knk numbers

...poly for constant k

General issue:

Input: Game; Output: NE.
run-time of algorithms in terms of n
k is small constant; often k = 2.
When can it be polynomial in n?

So you want large k? Fixes:

“concisely represented” multi-player games

Consider game with “query access” to payoff function

Goldberg Algorithmic Game Theory

limitations

The basic model has limited expressive power. In a Bayesian
game, ups could be probability distribution over p’s payoff,
allowing one to represent uncertainty about a payoff.

This is not really intended to describe combinatorial games like
chess, where players take turns. One could define a strategy in
advance, but it would be impossibly large to represent...

We are just considering “one shot” games

Goldberg Algorithmic Game Theory

Computational problem

Pure Nash

Input: A game in normal form, essentially consisting of all
the values ups for each player p and strategy profile s.

Question: Is there a pure Nash equilibrium.

That decision problem has corresponding search problem that
replaces the question with

Output: A pure Nash equilibrium.
If the number of players k is a constant, the above problems are in
P. If k is not a constant, you should really study “concise
representations” of games.

Goldberg Algorithmic Game Theory

Computational problem

Pure Nash

Input: A game in normal form, essentially consisting of all
the values ups for each player p and strategy profile s.

Question: Is there a pure Nash equilibrium.

That decision problem has corresponding search problem that
replaces the question with

Output: A pure Nash equilibrium.
If the number of players k is a constant, the above problems are in
P. If k is not a constant, you should really study “concise
representations” of games.

Goldberg Algorithmic Game Theory

Another computational problem

Nash

Input: A game in normal form, essentially consisting of all
the values ups for each player p and strategy profile s.

Output: A (mixed) Nash equilibrium.

By Nash’s theorem, intrinsically a search problem, not a decision
problem.

3+ players: big problem: solution may involve irrational numbers.
Quick/dirty fix: switch to approximation:

Replace “no incentive to change” by “low incentive”

Useful Analogy

(total) search for root of (odd-degree) polynomial: look for
approximation

Goldberg Algorithmic Game Theory

Another computational problem

Nash

Input: A game in normal form, essentially consisting of all
the values ups for each player p and strategy profile s.

Output: A (mixed) Nash equilibrium.

By Nash’s theorem, intrinsically a search problem, not a decision
problem.
3+ players: big problem: solution may involve irrational numbers.
Quick/dirty fix: switch to approximation:

Replace “no incentive to change” by “low incentive”

Useful Analogy

(total) search for root of (odd-degree) polynomial: look for
approximation

Goldberg Algorithmic Game Theory

Re-state the problem

ε-Nash equilibrium: Expected payoff +ε ≥ exp’d payoff of best
possible response

Approximate Nash

Input: A game in normal form, essentially consisting of all
the values ups for each player p and strategy profile s.
ups ∈ [0, 1].
small ε > 0

Output: A (mixed) ε-Nash equilibrium.

Notice that we restrict payoffs to [0, 1] (why?)
Formulate computational problem as: Algorithm to be polynomial
in n and 1/ε.
If the above is hard, then it’s hard to find a true Nash equilibrium.

Goldberg Algorithmic Game Theory

Computational complexity

Let’s think about the distinction between search problems and
decision problems.

We still have decision problems like: Does there exist a mixed Nash
equilibrium with total payoff ≥ 2

3 ?

Goldberg Algorithmic Game Theory

Polynomial-time reductions

I(X) denotes instances of problem X
For decision problems, where x ∈ I(X) has output(x) ∈ {yes, no},
to reduce X to X ′,
poly-time computable function f :I(X) −→ I(X ′)

output(f (x)) = output(x)

Search problems:
Given x ∈ I(X), output(x) is a poly-length string.3

Poly-time computable functions

f : I(X) −→ I(X ′) and g : solutions(X ′) −→ solutions(X)

If y = f (x) then g(output(y)) = output(x).
This achieves aim of showing that if X ′ ∈ P then X ∈ P;
equivalently if X 6∈ P then X ′ 6∈ P.

3I should really talk about poly-time checkable relations
Goldberg Algorithmic Game Theory

Polynomial-time reductions

I(X) denotes instances of problem X
For decision problems, where x ∈ I(X) has output(x) ∈ {yes, no},
to reduce X to X ′,
poly-time computable function f :I(X) −→ I(X ′)

output(f (x)) = output(x)

Search problems:
Given x ∈ I(X), output(x) is a poly-length string.3

Poly-time computable functions

f : I(X) −→ I(X ′) and g : solutions(X ′) −→ solutions(X)

If y = f (x) then g(output(y)) = output(x).
This achieves aim of showing that if X ′ ∈ P then X ∈ P;
equivalently if X 6∈ P then X ′ 6∈ P.

3I should really talk about poly-time checkable relations
Goldberg Algorithmic Game Theory

All NP decision problems have corresponding NP search problems
where y is certificate of “output(x) = yes”
e.g. given boolean formula Φ, is it satisfiable? y is satisfying
assignment (which is hard to find but easy to check)
Total search problems (e.g. Nash and others) are more tractable
in the sense that for all problem instances x , output(x) = yes.
So, every instance has a solution, and a certificate.

Goldberg Algorithmic Game Theory

NP-Completeness of finding “good” Nash equilibria

2-player game: specified by two n × n matrices; so we care about
algorithms that run in time polynomial in n. 4

It is NP-hard to find (for 2-player games) the NE with highest
social welfare.5 CS’03 paper gives a class of games for which
various restricted NE are hard to find, e.g. NE that guarantees
player 1 a payoff of α.

The following is a brief sketch of their construction (note: after
this, I will give 2 simpler reductions in detail)

4Other desiderata: e.g. “decentralised” style of algorithm
5Gilboa and Zemel: Nash and Correlated Equilibria: Some Complexity

Considerations, GEB ’89. Conitzer and Sandholm: Complexity Results about
Nash Equilibria, IJCAI ’03

Goldberg Algorithmic Game Theory

NP-Completeness of finding “good” Nash equilibria

2-player game: specified by two n × n matrices; so we care about
algorithms that run in time polynomial in n. 4

It is NP-hard to find (for 2-player games) the NE with highest
social welfare.5 CS’03 paper gives a class of games for which
various restricted NE are hard to find, e.g. NE that guarantees
player 1 a payoff of α.

The following is a brief sketch of their construction (note: after
this, I will give 2 simpler reductions in detail)

4Other desiderata: e.g. “decentralised” style of algorithm
5Gilboa and Zemel: Nash and Correlated Equilibria: Some Complexity

Considerations, GEB ’89. Conitzer and Sandholm: Complexity Results about
Nash Equilibria, IJCAI ’03

Goldberg Algorithmic Game Theory

NP-Completeness of finding “good” Nash equilibria

2-player game: specified by two n × n matrices; so we care about
algorithms that run in time polynomial in n. 4

It is NP-hard to find (for 2-player games) the NE with highest
social welfare.5 CS’03 paper gives a class of games for which
various restricted NE are hard to find, e.g. NE that guarantees
player 1 a payoff of α.

The following is a brief sketch of their construction (note: after
this, I will give 2 simpler reductions in detail)

4Other desiderata: e.g. “decentralised” style of algorithm
5Gilboa and Zemel: Nash and Correlated Equilibria: Some Complexity

Considerations, GEB ’89. Conitzer and Sandholm: Complexity Results about
Nash Equilibria, IJCAI ’03

Goldberg Algorithmic Game Theory

NP-Completeness of finding “good” Nash equilibria

Reduce from Satisfiability: Given a CNF formula Φ with n
variables and m clauses, find a satisfying assignment
Construct game GΦ having 3n + m + 1 actions per player (hence of
size polynomial in Φ)

Goldberg Algorithmic Game Theory

NP-Completeness of finding “good” Nash equilibria

0
1

0
1

0
1

1
0

1
0

1
0

ε
ε

f

f
x

x
+x

+x
-x

-x
C

C

1

n

1

n

1

n

1

m

x x +x +x -x -x C C1 n 1 n 1 n 1 m

Goldberg Algorithmic Game Theory

NP-Completeness of finding “good” Nash equilibria

0
1

0
1

0
1

1
0

1
0

1
0

ε
ε

f

f
x

x
+x

+x
-x

-x
C

C

1

n

1

n

1

n

1

m

x x +x +x -x -x C C1 n 1 n 1 n 1 m

(f , f) is a Nash equilibrium.

Various other payoffs between 0 and n apply when neither player
plays f . They are chosen such that

if Φ is satisfiable, so also is a uniform distribution over a
satisfying set of literals.

No other Nash equilibria!

Goldberg Algorithmic Game Theory

NP-Completeness of finding “good” Nash equilibria

0
1

0
1

0
1

1
0

1
0

1
0

ε
ε

f

f
x

x
+x

+x
-x

-x
C

C

1

n

1

n

1

n

1

m

x x +x +x -x -x C C1 n 1 n 1 n 1 m

(f , f) is a Nash equilibrium.

Various other payoffs between 0 and n apply when neither player
plays f . They are chosen such that

if Φ is satisfiable, so also is a uniform distribution over a
satisfying set of literals.

No other Nash equilibria!

Goldberg Algorithmic Game Theory

NP-Completeness of finding “good” Nash equilibria

Comment: This shows it is hard to find “best” NE, but clearly
(f , f) is always easy to find.

Should we expect it to be NP-hard to find unrestricted NE?

General agenda of next part is to explain why we believe this is still
hard, but not NP-hard.

Goldberg Algorithmic Game Theory

NP-Completeness of finding “good” Nash equilibria

Comment: This shows it is hard to find “best” NE, but clearly
(f , f) is always easy to find.

Should we expect it to be NP-hard to find unrestricted NE?

General agenda of next part is to explain why we believe this is still
hard, but not NP-hard.

Goldberg Algorithmic Game Theory

NP-Completeness of finding “good” Nash equilibria

Comment: This shows it is hard to find “best” NE, but clearly
(f , f) is always easy to find.

Should we expect it to be NP-hard to find unrestricted NE?

General agenda of next part is to explain why we believe this is still
hard, but not NP-hard.

Goldberg Algorithmic Game Theory

Reduction between 2 versions of search for unrestricted
NE: A simple example

zero-sum game (e.g. rock-paper-scissors): total payoff of all the
players is constant. 2-player 0-sum games can be solved by LP
(easy; later) unlike general 2-player games.

Simple theorem

3-player zero-sum games are at least as hard as 2-player games.

To see this, take any n × n 2-player game G.
Now add player 3 to G, who is “passive” — he has just one action,
which does not affect players 1 and 2, and player 3’s payoff is the
negation of the total payoffs of players 1 and 2. So, players 1 and 2
behave as they did before, and player 3 just has the effect of
making the game zero-sum. Any Nash equilibrium of this 3-player
game is, for players 1 and 2, a NE of the original 2-player game.

Goldberg Algorithmic Game Theory

Reduction between 2 versions of search for unrestricted
NE: A simple example

zero-sum game (e.g. rock-paper-scissors): total payoff of all the
players is constant. 2-player 0-sum games can be solved by LP
(easy; later) unlike general 2-player games.

Simple theorem

3-player zero-sum games are at least as hard as 2-player games.

To see this, take any n × n 2-player game G.
Now add player 3 to G, who is “passive” — he has just one action,
which does not affect players 1 and 2, and player 3’s payoff is the
negation of the total payoffs of players 1 and 2. So, players 1 and 2
behave as they did before, and player 3 just has the effect of
making the game zero-sum. Any Nash equilibrium of this 3-player
game is, for players 1 and 2, a NE of the original 2-player game.

Goldberg Algorithmic Game Theory

Reduction between 2 versions of search for unrestricted
NE: A simple example

zero-sum game (e.g. rock-paper-scissors): total payoff of all the
players is constant. 2-player 0-sum games can be solved by LP
(easy; later) unlike general 2-player games.

Simple theorem

3-player zero-sum games are at least as hard as 2-player games.

To see this, take any n × n 2-player game G.
Now add player 3 to G, who is “passive” — he has just one action,
which does not affect players 1 and 2, and player 3’s payoff is the
negation of the total payoffs of players 1 and 2.

So, players 1 and 2
behave as they did before, and player 3 just has the effect of
making the game zero-sum. Any Nash equilibrium of this 3-player
game is, for players 1 and 2, a NE of the original 2-player game.

Goldberg Algorithmic Game Theory

Reduction between 2 versions of search for unrestricted
NE: A simple example

zero-sum game (e.g. rock-paper-scissors): total payoff of all the
players is constant. 2-player 0-sum games can be solved by LP
(easy; later) unlike general 2-player games.

Simple theorem

3-player zero-sum games are at least as hard as 2-player games.

To see this, take any n × n 2-player game G.
Now add player 3 to G, who is “passive” — he has just one action,
which does not affect players 1 and 2, and player 3’s payoff is the
negation of the total payoffs of players 1 and 2. So, players 1 and 2
behave as they did before, and player 3 just has the effect of
making the game zero-sum. Any Nash equilibrium of this 3-player
game is, for players 1 and 2, a NE of the original 2-player game.

Goldberg Algorithmic Game Theory

Reduction: 2-player to symmetric 2-player

A symmetric game is one where “all players are the same”: they all
have the same set of actions, payoffs do not depend on a player’s
identity, only on actions chosen.
For 2-player games, this means the matrix diagrams (of the kind
we use here) should be symmetric (as in fact they are in the
examples we saw earlier).

A slightly more interesting theorem

symmetric 2-player games are as hard as general 2-player games.

Goldberg Algorithmic Game Theory

Reduction: 2-player to symmetric 2-player

Given a n × n game G, construct a symmetric 2n × 2n game
G′ = f (G), such that given any Nash equilibrium of G′ we can
efficiently reconstruct a NE of G.

First step: if any payoffs in G are negative, add a constant to all
payoffs to make them all positive.

Example:

4
-1

0
1

2
3

-2
5

7
2

3
4

5
6

1
8

Nash equilibria are unchanged by this (game is “strategically
equivalent”)

Goldberg Algorithmic Game Theory

Reduction: 2-player to symmetric 2-player

Given a n × n game G, construct a symmetric 2n × 2n game
G′ = f (G), such that given any Nash equilibrium of G′ we can
efficiently reconstruct a NE of G.

First step: if any payoffs in G are negative, add a constant to all
payoffs to make them all positive.

Example:

4
-1

0
1

2
3

-2
5

7
2

3
4

5
6

1
8

Nash equilibria are unchanged by this (game is “strategically
equivalent”)

Goldberg Algorithmic Game Theory

Reduction: 2-player to symmetric 2-player

So now let’s assume G’s payoffs are all positive. Next stage:

G′ =

(
0 G
GT 0

)

Example:

7
2

3
4

5
6

1
8

0
0

0
0

7
2

3
4

0
0

0
0

5
6

1
8

2
7

6
5

0
0

0
0

4
3

8
1

0
0

0
0

Goldberg Algorithmic Game Theory

Reduction: 2-player to symmetric 2-player

Now suppose we solve the 2n × 2n game G′ =

(
0 G
GT 0

)
Let p and q denote the probabilities that players 1 and 2 use their
first n actions, in some given solution.

q 1− q
p

1− p

(
0 G
GT 0

)
If p = q = 1, both players receive payoff 0, and both have
incentive to change their behavior, by assumption that G’s payoffs
are all positive. (and similarly if p = q = 0).
So we have p > 0 and 1− q > 0, or alternatively, 1− p > 0 and
q > 0.
Assume p > 0 and 1− q > 0 (the analysis for the other case is
similar).

Goldberg Algorithmic Game Theory

Reduction: 2-player to symmetric 2-player

Let {p1, ..., pn} be the probabilities used by player 1 for his first n
actions, {q1, . . . qn} the probs for player 2’s second n actions.

q (q1...qn)
(p1, ...pn)

1− p

(
0 G
GT 0

)
Note that p1 + . . .+ pn = p and q1 + . . .+ qn = 1− q.

Then (p1/p, . . . , pn/p) and (q1/(1− q), . . . , qn/(1− q)) are a
Nash equilibrium of G!
To see this, consider the diagram; they form a best response to
each other for the top-right part.

Goldberg Algorithmic Game Theory

Reduction: 2-player to symmetric 2-player

Let {p1, ..., pn} be the probabilities used by player 1 for his first n
actions, {q1, . . . qn} the probs for player 2’s second n actions.

q (q1...qn)
(p1, ...pn)

1− p

(
0 G
GT 0

)
Note that p1 + . . .+ pn = p and q1 + . . .+ qn = 1− q.

Then (p1/p, . . . , pn/p) and (q1/(1− q), . . . , qn/(1− q)) are a
Nash equilibrium of G!
To see this, consider the diagram; they form a best response to
each other for the top-right part.

Goldberg Algorithmic Game Theory

Road-map of where we’re going

I pointed out (without proof) that Nash is a total search
problem

In fact, it’s a NP total search problem

We can relate variants of Nash, via reductions

Next:

Let’s make sure we understand the different between typical
NP search problem, and NP total search problem

We’ll see that it would be hard to relate the two

We can sometimes relate various NP total search problems
(easier to “compare like with like”)

Goldberg Algorithmic Game Theory

NP Search Problems

NP decision problems: answer yes/no to questions that belong to
some class. e.g. Satisfiability: questions of the form Is boolean
formula Φ satisfiable?

Given the question Is formula Φ satisfiable? there is a fundamental
asymmetry between answering yes and no.
If yes, there exists a small “certificate” that the answer is yes,
namely a satisfying assignment. A certificate consists of
information that allows us to check (in poly time) that the answer
is yes.
A NP decision problem has a corresponding search problem: e.g.
given Φ, find x such that Φ(x) = true (or say “no” if Φ is not
satisfiable.)

Goldberg Algorithmic Game Theory

NP Search Problems

NP decision problems: answer yes/no to questions that belong to
some class. e.g. Satisfiability: questions of the form Is boolean
formula Φ satisfiable?
Given the question Is formula Φ satisfiable? there is a fundamental
asymmetry between answering yes and no.

If yes, there exists a small “certificate” that the answer is yes,
namely a satisfying assignment. A certificate consists of
information that allows us to check (in poly time) that the answer
is yes.
A NP decision problem has a corresponding search problem: e.g.
given Φ, find x such that Φ(x) = true (or say “no” if Φ is not
satisfiable.)

Goldberg Algorithmic Game Theory

NP Search Problems

NP decision problems: answer yes/no to questions that belong to
some class. e.g. Satisfiability: questions of the form Is boolean
formula Φ satisfiable?
Given the question Is formula Φ satisfiable? there is a fundamental
asymmetry between answering yes and no.
If yes, there exists a small “certificate” that the answer is yes,
namely a satisfying assignment. A certificate consists of
information that allows us to check (in poly time) that the answer
is yes.

A NP decision problem has a corresponding search problem: e.g.
given Φ, find x such that Φ(x) = true (or say “no” if Φ is not
satisfiable.)

Goldberg Algorithmic Game Theory

NP Search Problems

NP decision problems: answer yes/no to questions that belong to
some class. e.g. Satisfiability: questions of the form Is boolean
formula Φ satisfiable?
Given the question Is formula Φ satisfiable? there is a fundamental
asymmetry between answering yes and no.
If yes, there exists a small “certificate” that the answer is yes,
namely a satisfying assignment. A certificate consists of
information that allows us to check (in poly time) that the answer
is yes.
A NP decision problem has a corresponding search problem: e.g.
given Φ, find x such that Φ(x) = true (or say “no” if Φ is not
satisfiable.)

Goldberg Algorithmic Game Theory

Example of Total search problem in NP

Factoring

Input number N
Output prime factorisation of N

e.g. Input 50 should result in output 2× 5× 5.
Given output N = N1 × N2 × . . .Np, it can be checked in
polynomial time6 that the numbers N1, . . . ,Np are prime, and their
product is N.
Hence, Factoring is in FNP. But, it’s a total search problem —
every number has a prime factorization.
It also seems to be hard! Cryptographic protocols use the belief
that it is intrinsically hard. But probably not NP-complete

6polynomial in the number of digits in N
Goldberg Algorithmic Game Theory

Example of Total search problem in NP

Factoring

Input number N
Output prime factorisation of N

e.g. Input 50 should result in output 2× 5× 5.

Given output N = N1 × N2 × . . .Np, it can be checked in
polynomial time6 that the numbers N1, . . . ,Np are prime, and their
product is N.
Hence, Factoring is in FNP. But, it’s a total search problem —
every number has a prime factorization.
It also seems to be hard! Cryptographic protocols use the belief
that it is intrinsically hard. But probably not NP-complete

6polynomial in the number of digits in N
Goldberg Algorithmic Game Theory

Example of Total search problem in NP

Factoring

Input number N
Output prime factorisation of N

e.g. Input 50 should result in output 2× 5× 5.
Given output N = N1 × N2 × . . .Np, it can be checked in
polynomial time6 that the numbers N1, . . . ,Np are prime, and their
product is N.

Hence, Factoring is in FNP. But, it’s a total search problem —
every number has a prime factorization.
It also seems to be hard! Cryptographic protocols use the belief
that it is intrinsically hard. But probably not NP-complete

6polynomial in the number of digits in N
Goldberg Algorithmic Game Theory

Example of Total search problem in NP

Factoring

Input number N
Output prime factorisation of N

e.g. Input 50 should result in output 2× 5× 5.
Given output N = N1 × N2 × . . .Np, it can be checked in
polynomial time6 that the numbers N1, . . . ,Np are prime, and their
product is N.
Hence, Factoring is in FNP. But, it’s a total search problem —
every number has a prime factorization.

It also seems to be hard! Cryptographic protocols use the belief
that it is intrinsically hard. But probably not NP-complete

6polynomial in the number of digits in N
Goldberg Algorithmic Game Theory

Example of Total search problem in NP

Factoring

Input number N
Output prime factorisation of N

e.g. Input 50 should result in output 2× 5× 5.
Given output N = N1 × N2 × . . .Np, it can be checked in
polynomial time6 that the numbers N1, . . . ,Np are prime, and their
product is N.
Hence, Factoring is in FNP. But, it’s a total search problem —
every number has a prime factorization.
It also seems to be hard! Cryptographic protocols use the belief
that it is intrinsically hard. But probably not NP-complete

6polynomial in the number of digits in N
Goldberg Algorithmic Game Theory

Another NP total search problem

Equal-subsets

Input positive integers a1, . . . , an; Σiai < 2n − 1
Output Two distinct subsets of these numbers that add up

to the same total

Example:
42, 5, 90, 98, 99, 100, 64, 70, 78, 51

Solutions include 42 + 78 + 100 = 51 + 70 + 99 and
42 + 5 + 51 = 98.
Equal-subsets ∈ NP (usual “guess and test” approach). But it
is not known how to find solutions in polynomial time. The
problem looks a bit like the NP-complete problem Subset sum.

Goldberg Algorithmic Game Theory

Another NP total search problem

Equal-subsets

Input positive integers a1, . . . , an; Σiai < 2n − 1
Output Two distinct subsets of these numbers that add up

to the same total

Example:
42, 5, 90, 98, 99, 100, 64, 70, 78, 51

Solutions include 42 + 78 + 100 = 51 + 70 + 99 and
42 + 5 + 51 = 98.
Equal-subsets ∈ NP (usual “guess and test” approach). But it
is not known how to find solutions in polynomial time. The
problem looks a bit like the NP-complete problem Subset sum.

Goldberg Algorithmic Game Theory

Another NP total search problem

Equal-subsets

Input positive integers a1, . . . , an; Σiai < 2n − 1
Output Two distinct subsets of these numbers that add up

to the same total

Example:
42, 5, 90, 98, 99, 100, 64, 70, 78, 51

Solutions include 42 + 78 + 100 = 51 + 70 + 99 and
42 + 5 + 51 = 98.

Equal-subsets ∈ NP (usual “guess and test” approach). But it
is not known how to find solutions in polynomial time. The
problem looks a bit like the NP-complete problem Subset sum.

Goldberg Algorithmic Game Theory

Another NP total search problem

Equal-subsets

Input positive integers a1, . . . , an; Σiai < 2n − 1
Output Two distinct subsets of these numbers that add up

to the same total

Example:
42, 5, 90, 98, 99, 100, 64, 70, 78, 51

Solutions include 42 + 78 + 100 = 51 + 70 + 99 and
42 + 5 + 51 = 98.
Equal-subsets ∈ NP (usual “guess and test” approach). But it
is not known how to find solutions in polynomial time. The
problem looks a bit like the NP-complete problem Subset sum.

Goldberg Algorithmic Game Theory

So, should we expect Equal-subsets to be NP-hard?

No we should not [Megiddo (1988)] (The following is important.
Also works for FACTORING etc.)

If any total search problem (e.g. Equal-subsets) is
NP-complete, then it follows that NP=co-NP, which is generally
believed not to be the case.
To see why, suppose it is NP-complete, thus
SAT ≤p Equal-subsets.
Then there is an algorithm A for SAT that runs in polynomial
time, provided that it has access to poly-time algorithm A′ for
Equal subsets.
Now suppose A is given a non-satisfiable formula Φ. Presumably it
calls A′ some number of times, and receives a sequence of
solutions to various instances of Equal subsets, and eventually
the algorithm returns the answer “no, Φ is not satisfiable”.

Goldberg Algorithmic Game Theory

So, should we expect Equal-subsets to be NP-hard?

No we should not [Megiddo (1988)] (The following is important.
Also works for FACTORING etc.)

If any total search problem (e.g. Equal-subsets) is
NP-complete, then it follows that NP=co-NP, which is generally
believed not to be the case.

To see why, suppose it is NP-complete, thus
SAT ≤p Equal-subsets.
Then there is an algorithm A for SAT that runs in polynomial
time, provided that it has access to poly-time algorithm A′ for
Equal subsets.
Now suppose A is given a non-satisfiable formula Φ. Presumably it
calls A′ some number of times, and receives a sequence of
solutions to various instances of Equal subsets, and eventually
the algorithm returns the answer “no, Φ is not satisfiable”.

Goldberg Algorithmic Game Theory

So, should we expect Equal-subsets to be NP-hard?

No we should not [Megiddo (1988)] (The following is important.
Also works for FACTORING etc.)

If any total search problem (e.g. Equal-subsets) is
NP-complete, then it follows that NP=co-NP, which is generally
believed not to be the case.
To see why, suppose it is NP-complete, thus
SAT ≤p Equal-subsets.
Then there is an algorithm A for SAT that runs in polynomial
time, provided that it has access to poly-time algorithm A′ for
Equal subsets.
Now suppose A is given a non-satisfiable formula Φ. Presumably it
calls A′ some number of times, and receives a sequence of
solutions to various instances of Equal subsets, and eventually
the algorithm returns the answer “no, Φ is not satisfiable”.

Goldberg Algorithmic Game Theory

So, should we expect EQUAL SUBSETS to be NP-hard?

Now suppose that we replace A′ with the natural “guess and test”
non-deterministic algorithm for Equal-subsets.
We get a non-deterministic polynomial-time algorithm for SAT.
Notice that when Φ is given to this new algorithm, the “guess and
test” subroutine for EQUAL SUBSETS can produce the same
sequence of solutions to the instances it receives, and as a result,
the entire algorithm can recognize this non-satisfiable formula Φ as
before. Thus we have NP algorithm that recognizes unsatisfiable
formulae, which gives the consequence NP=co-NP.

Goldberg Algorithmic Game Theory

Classes of total search problems

TFNP: total function problems in NP. We want to understanding
the difficulty of certain TFNP problems.
Nash and Equal-subsets do not seem to belong to P but are
probably not NP-complete, due to being total search problems.
Papadimitriou (1991,4) introduced a number of classes of total
search problems.

General observation:

“X ∈ TFNP” doesn’t say why X is total. But...
syntactic sub-classes of TFNP contain problems whose totality is
due to some combinatorial principle. (there’s a non-constructive
existence proof with hard-to-compute step)

PPP stands for “polynomial pigeonhole principle”; used to prove
that Equal-subsets is a total search problem.
“A function whose domain is larger than its range has 2 inputs
with the same output”

Goldberg Algorithmic Game Theory

Classes of total search problems

TFNP: total function problems in NP. We want to understanding
the difficulty of certain TFNP problems.
Nash and Equal-subsets do not seem to belong to P but are
probably not NP-complete, due to being total search problems.
Papadimitriou (1991,4) introduced a number of classes of total
search problems.

General observation:

“X ∈ TFNP” doesn’t say why X is total. But...
syntactic sub-classes of TFNP contain problems whose totality is
due to some combinatorial principle. (there’s a non-constructive
existence proof with hard-to-compute step)

PPP stands for “polynomial pigeonhole principle”; used to prove
that Equal-subsets is a total search problem.
“A function whose domain is larger than its range has 2 inputs
with the same output”

Goldberg Algorithmic Game Theory

The generic PPP problem

Definition:

Pigeonhole circuit is the following search problem:

Input: boolean circuit C , n
inputs, n outputs
Output: A boolean vector x
such that C (x) = 0, or
alternatively, vectors x and x′

such that C (x) = C (x′).

The “most general” computational total search problem for which
the pigeonhole principle guarantees an efficiently checkable
solution.

Goldberg Algorithmic Game Theory

Various equivalent definitions of Pigeonhole circuit

With regard to questions of polynomial time computation, the
following are equivalent

n inputs/outputs; C of size n2

Let p be a polynomial; n inputs/outputs, C of size p(n)

n is number of gates in C , number of inputs = number of
outputs.

Proof of equivalences via reductions: If version i is in P then
version j is in P.

Goldberg Algorithmic Game Theory

The complexity class PPP

Definition

A problem X belongs to PPP if X reduces to Pigeonhole
circuit (in poly time).
Problem X is PPP-complete is in addition, Pigeonhole circuit
reduces to X .

Analogy
Thus, PPP is to Pigeonhole circuit as NP is to
satisfiability (or circuit sat, or any other NP-complete
problem).

Pigeonhole circuit seems to be hard (it looks like Circuit
sat) but (recall) probably not NP-hard.

Goldberg Algorithmic Game Theory

The complexity class PPP

Definition

A problem X belongs to PPP if X reduces to Pigeonhole
circuit (in poly time).
Problem X is PPP-complete is in addition, Pigeonhole circuit
reduces to X .

Analogy
Thus, PPP is to Pigeonhole circuit as NP is to
satisfiability (or circuit sat, or any other NP-complete
problem).

Pigeonhole circuit seems to be hard (it looks like Circuit
sat) but (recall) probably not NP-hard.

Goldberg Algorithmic Game Theory

What we know about Equal-subsets

Equal-subsets belongs to
PPP...

but it is not known whether it
is complete for PPP. (this is
unsatisfying.)

Goldberg Algorithmic Game Theory

What we know about Equal-subsets

Equal-subsets belongs to
PPP...
but it is not known whether it
is complete for PPP. (this is
unsatisfying.)

Goldberg Algorithmic Game Theory

Subclasses of PPP

Problem with PPP: no interesting PPP-completeness results.
PPP fails to “capture the complexity” of apparently hard
problems, such as Nash.
Here is a specialisation of the pigeonhole principle:

“Suppose directed graph G has indegree and outdegree at most 1.
Given a source, there must be a sink.”

Why is this the pigeonhole principle?
G = (V ,E); f : V → V defined as follows:
For all e = (u, v), let f (u) = v . If u is a sink, let f (u) = u.
Let s ∈ E be a source. So s 6∈ range(f). The pigeonhole principle
says that 2 vertices must be mapped by f to the same vertex.

Goldberg Algorithmic Game Theory

Subclasses of PPP

Problem with PPP: no interesting PPP-completeness results.
PPP fails to “capture the complexity” of apparently hard
problems, such as Nash.
Here is a specialisation of the pigeonhole principle:

“Suppose directed graph G has indegree and outdegree at most 1.
Given a source, there must be a sink.”

Why is this the pigeonhole principle?
G = (V ,E); f : V → V defined as follows:
For all e = (u, v), let f (u) = v . If u is a sink, let f (u) = u.
Let s ∈ E be a source. So s 6∈ range(f). The pigeonhole principle
says that 2 vertices must be mapped by f to the same vertex.

Goldberg Algorithmic Game Theory

Subclasses of PPP

G = (V ,E), V = {0, 1}n.
G is represented using 2 circuits P and S (“predecessor” and
“successor”) with n inputs/outputs.
G has 2n vertices (bit strings); 0 is source. (x, x′) is an edge iff
x′ = S(x) and x = P(x′).
Thus, G is a BIG graph and it’s not clear how best to find a sink,
even though you know it’s there!

Definition: Find a sink

Input: (concisely represented) graph G , source v ∈ G
Output: v ′ ∈ G , v ′ is a sink

picture on next slide...

Goldberg Algorithmic Game Theory

Subclasses of PPP

G = (V ,E), V = {0, 1}n.
G is represented using 2 circuits P and S (“predecessor” and
“successor”) with n inputs/outputs.
G has 2n vertices (bit strings); 0 is source. (x, x′) is an edge iff
x′ = S(x) and x = P(x′).
Thus, G is a BIG graph and it’s not clear how best to find a sink,
even though you know it’s there!

Definition: Find a sink

Input: (concisely represented) graph G , source v ∈ G
Output: v ′ ∈ G , v ′ is a sink

picture on next slide...

Goldberg Algorithmic Game Theory

Search the graph for a sink

• •
• • • •

0 S(0)

S(S(0))

• •

•

••

•

• •

But, if you find a sink, it’s easy to check it’s genuine! So, search is
in FNP.

Goldberg Algorithmic Game Theory

Parity argument on a graph

A weaker version of the “there must be a sink”:

“Suppose directed graph G has indegree and outdegree at most 1.
Given a source, there must be another vertex that is either a
source or a sink.”
picture on next slide...

Definition: End of line

Input: graph G , source v ∈ G
Output: v ′ ∈ G , v ′ 6= v is either a source or a sink

PPAD is defined in terms of End of line the same way that
PPP is defined in terms of Pigeonhole circuit.

Equivalent (more general-looking) formulation: If G (not
necessarily of in/out-degree 1) has an “unbalanced vertex”, then it
must have another one. “parity argument on a directed graph”

Goldberg Algorithmic Game Theory

END 0F LINE graph

You are given a node with degree 1 (colored red here)

Goldberg Algorithmic Game Theory

END 0F LINE graph

The highlighted nodes are PPAD-complete to find...
(NOTE: odd number of solutions!)

Goldberg Algorithmic Game Theory

END 0F LINE graph

"the line"

The one attached to the red node is PSPACE-complete to find!

Goldberg Algorithmic Game Theory

Digression on PSPACE-completeness

Given a graph G (presented as circuits S and P) with source 0,
there exists a sink x such that x = S(S(. . . (S(0)) . . .)).

It’s total search problem, but completely different; note the
solution has no (obvious) certificate...

PSPACE-complete — the search for this x is computationally
equivalent to search for the final configuration of a polynomially
space-bounded Turing machine.7

Nash equilibria computed by the Lemke-Howson algorithm are also
PSPACE-complete to compute8“paradox” since L-H is “efficient
in practice”

7Papadimitriou: On the complexity of the parity argument and other
inefficient proofs of existence. JCSS ’94; Crescenzi & Papadimitriou: Reversible
Simulation of Space-Bounded Computations. TCS ’95

8G, Papadimitriou, Savani: The Complexity of the Homotopy Method,
Equilibrium Selection, and Lemke-Howson Solutions. FOCS ’11

Goldberg Algorithmic Game Theory

Subclasses of PPP

PPADS is the complexity class defined w.r.t. Find a sink
(i.e. problems reducible to Find a sink)

PPAD: problems reducible to End of line.

PPAD ⊆ PPADS ⊆ PPP

because

End of line ≤p Find a sink ≤p Pigeonhole circuit.

If we could e.g. reduce Find a sink back to End of line, then
that would show that PPAD and PPADS are the same, but this
has not been achieved...

In the mean time, it turns out that PPAD is the sub-class of PPP
that captures the complexity of Nash and related problems.
PPAD turns out to give rise to “interesting” reductions

Goldberg Algorithmic Game Theory

Subclasses of PPP

PPADS is the complexity class defined w.r.t. Find a sink
(i.e. problems reducible to Find a sink)

PPAD: problems reducible to End of line.

PPAD ⊆ PPADS ⊆ PPP

because

End of line ≤p Find a sink ≤p Pigeonhole circuit.

If we could e.g. reduce Find a sink back to End of line, then
that would show that PPAD and PPADS are the same, but this
has not been achieved...
In the mean time, it turns out that PPAD is the sub-class of PPP
that captures the complexity of Nash and related problems.
PPAD turns out to give rise to “interesting” reductions

Goldberg Algorithmic Game Theory

Nash is PPAD-complete

Finally, here is why we care about PPAD. It seems to capture the
complexity of a number of problems where a solution is guaranteed
by Brouwer’s fixed point Theorem.

Two parts to the proof:

1 Nash is in PPAD, i.e. Nash ≤p End of line

2 End of line ≤p Nash

Goldberg Algorithmic Game Theory

Nash is PPAD-complete

Finally, here is why we care about PPAD. It seems to capture the
complexity of a number of problems where a solution is guaranteed
by Brouwer’s fixed point Theorem.

Two parts to the proof:

1 Nash is in PPAD, i.e. Nash ≤p End of line

2 End of line ≤p Nash

Goldberg Algorithmic Game Theory

Reducing Nash to End of line

We need to show Nash ≤p End of line.
That is, we need two functions f and g such that given a game G,
f (G) = (P,S) where P and S are circuits that define an End of
line instance...
Given a solution x to (P, S), g(x) is a solution to G.

Notes

Nash is taken to mean: find an approximate NE

Reduction is a computational version of Nash’s theorem

Nash’s theorem uses Brouwer’s fixed point theorem, which in
turn uses Sperner’s lemma; the reduction shows how these
results are proven...

Goldberg Algorithmic Game Theory

Reducing Nash to End of line

For a k-player game G, solution space is compact domain (∆n)k

Given a candidate solution (p1
1 , ...p

1
n, . . . , p

k
1 , ...p

k
n), a point in this

compact domain, fG displaces that point according to the direction
that player(s) prefer to change their behavior.
fG is a Brouwer function, a continuous function from a compact
domain to itself.
Brouwer FPT: There exists x with fG(x) = x — why?

Goldberg Algorithmic Game Theory

Reduction to Brouwer

domain (∆n)k

divide into simplices of size ε/n

Arrows show direction of

Brouwer function, e.g. fG

If fG is constructed sensibly, look for simplex where arrows go in all
directions — sufficient condition for being near ε-NE.

Goldberg Algorithmic Game Theory

Reduction to Sperner

Color “grid points”:

red direction away from
top;

green away from bottom
RH corner

blue away from bottom
LH corner

(∆n)k : polytope in Rnk ; nk + 1 colors.

Goldberg Algorithmic Game Theory

Reduction to Sperner

Sperner’s Lemma (in 2-D):
promises “trichomatic
triangle”

If so, trichromatic triangles at increasingly higher and higher
resolutions should lead us to a Brouwer fixpoint...

Goldberg Algorithmic Game Theory

Reduction to Sperner

Let’s try that out (and then
we’ll prove Sperner’s lemma)

Goldberg Algorithmic Game Theory

Reduction to Sperner

Black spots show the
trichromatic triangles

Goldberg Algorithmic Game Theory

Reduction to Sperner

Higher-resolution version

Goldberg Algorithmic Game Theory

Reduction to Sperner

Again, black spots show
trichromatic triangles

Goldberg Algorithmic Game Theory

Reduction to Sperner

Once more — again we find
trichromatic triangles!

Next: convince ourselves they always can be found, for any
Brouwer function.

Goldberg Algorithmic Game Theory

Sperner’s Lemma

Suppose we color the grid
points under the constraint
shown in the diagram. Why
can we be sure that there is a
trichromatic triangle?

Goldberg Algorithmic Game Theory

Reduction to Sperner

Add some edges such that only
one red/green edge is open to
the outside

Goldberg Algorithmic Game Theory

Reduction to Sperner

red/green edges are
“doorways” that connect the
triangles

Goldberg Algorithmic Game Theory

Reduction to Sperner

Keep going — we end up at a
trichromatic triangle!

Goldberg Algorithmic Game Theory

Reduction to Sperner

We can do the same trick
w.r.t. the red/blue edges

Goldberg Algorithmic Game Theory

Reduction to Sperner

Now the red/blue edges are
doorways

Goldberg Algorithmic Game Theory

Reduction to Sperner

Keep going through them —
eventually find a panchromatic
triangle!

Goldberg Algorithmic Game Theory

Reduction to Sperner

Degree-2 Directed Graph

Each little triangle is a vertex

Graph has one known source

Essentially, Sperner’s
lemma converts the
function into an End of
line graph!

Goldberg Algorithmic Game Theory

Reduction to Sperner

Degree-2 Directed Graph

Each little triangle is a vertex

Graph has one known source

Other than the known source,
there must be an odd number
of degree-1 vertices.

Goldberg Algorithmic Game Theory

Reducing End of line to Nash

End of line ≤p Brouwer

Brouwer ≤p Graphical Nash

Graphical Nash ≤p Nash

red

redyellow

yellow

black

black

trichromatic point corresponds to fixpoint
Goldberg Algorithmic Game Theory

Graphical games

Players 1, ..., n
Players: nodes of graph
G of low degree d
strategies 1, ..., t
utility depends on
strategies in
neighbourhood
n.t(d+1) numbers
describe game

Compact representation of game with many players.

Goldberg Algorithmic Game Theory

Graphical Nash ≤pNash

Color the graph s.t.

proper coloring

each vertex’s
neighbors get
distinct colors

Normal-form game:

one “super-player”
for each color

Each super-player
simulates entire set
of players having
that color

Naive bound of d2 + 1 on number of colors needed

Goldberg Algorithmic Game Theory

Graphical Nash ≤pNash

So we have a small number of super-players (given that d is small).
Problem: If blue super-player chooses an action for each member
of his “team” he has tn possible actions — can’t write that down
in normal form!

Solution: Instead, he will just choose one member v of his team
at random, and choose an action for v , just t.n possible actions!
so what we have to do is: Incentivize each super-player to pick a
random team member v ; and further, incentivize him to pick a
best response for v afterwards
This is done by choice of payoffs to super-players (in our graph,
{red , blue, green, brown})

Goldberg Algorithmic Game Theory

Graphical Nash ≤pNash

So we have a small number of super-players (given that d is small).
Problem: If blue super-player chooses an action for each member
of his “team” he has tn possible actions — can’t write that down
in normal form!
Solution: Instead, he will just choose one member v of his team
at random, and choose an action for v , just t.n possible actions!

so what we have to do is: Incentivize each super-player to pick a
random team member v ; and further, incentivize him to pick a
best response for v afterwards
This is done by choice of payoffs to super-players (in our graph,
{red , blue, green, brown})

Goldberg Algorithmic Game Theory

Graphical Nash ≤pNash

So we have a small number of super-players (given that d is small).
Problem: If blue super-player chooses an action for each member
of his “team” he has tn possible actions — can’t write that down
in normal form!
Solution: Instead, he will just choose one member v of his team
at random, and choose an action for v , just t.n possible actions!
so what we have to do is: Incentivize each super-player to pick a
random team member v ; and further, incentivize him to pick a
best response for v afterwards
This is done by choice of payoffs to super-players (in our graph,
{red , blue, green, brown})

Goldberg Algorithmic Game Theory

Graphical Nash ≤pNash

If we have coloring {red , blue, green, brown}
The actions of the red super-player are of the form: Choose a red
vertex on the graph, then choose an action in {1, ..., s}.
Payoffs:

If I choose a node v , and the other super-players choose nodes
in v ’s neighborhood, then red gets the payoff that v would
receive

Also, if red chooses the i-th red vertex (in some given
ordering) and blue chooses his i-th vertex, then red receives
(big) payoff M and blue gets penalty −M (and simialrly for
other pairs of super-players)

The 2nd of these means a super-player will randomize amongst
nodes of his color in G . The first means that when he his chosen
v ∈ G , his choice of v ’s action should be a best response.

Goldberg Algorithmic Game Theory

Graphical Nash ≤p Nash

Why we needed a proper colouring:
Because when a super-player chooses v , there should be some
positive probability that v ’s neighbors get chosen; AND these
choices should be made independently.

Next: the quest for positive results: poly-time algorithms for
approximate equilibria

Goldberg Algorithmic Game Theory

Approximate Nash equilibria

Hardness results apply to ε = 1/n; generally ε = 1/p(n) for
polynomial p. No FPTAS; main open problem is possible existence
of a PTAS. Failing that, better constant approximations would be
nice
What if e.g. ε = 1/3?

2 players - let R and C be matrices of row/column players’s
utils

let x and y denote the row and column players’ strategies; let
ei be vector with 1 in component i , zero elsewhere.

For all i , xTRy ≥ eTi Ry − ε.
For all j , xTCy ≥ xTCej − ε.
Remember: payoffs are re-scaled into [0, 1].

Goldberg Algorithmic Game Theory

Zero-sum games are in P

Zero-sum games: C = −R.

Player 1: minx maxy (−xRy)
−xRy is player 2’s payoff
Equivalently: minx maxj(−xRej)
Player 2’s best response can be achieved by a pure strategy

LP:

minimise v2 subject to the constraints

x ≥ 0n; xT1n = 1

y ≥ 0n; yT1n = 1

for all j , v2 ≥ −xTRej

Goldberg Algorithmic Game Theory

A simple algorithm (no LP required)

Guarantee ε = 1
2

9

1
2

1
2

1

0
0.2

0.1
0.9

0.2
0.2

0.3
0.2

0.4
0.1

0.5
0.2

0.6
0.2

0.7
0.2

0.8
0.8

1 Player 1 chooses arbitrary strategy i ; gives it probability 1
2 .

2 Player 1 chooses best response j ; gives it probability 1.

3 Player 1 chooses best response to j ; gives it probability 1
2 .

9Daskalakis, Mehta and Papadimitriou: A note on approximate Nash
equilibria, WINE’06, TCS’09

Goldberg Algorithmic Game Theory

A simple algorithm (no LP required)

Guarantee ε = 1
2

9

1
2

1
2

1

0
0.2

0.1
0.9

0.2
0.2

0.3
0.2

0.4
0.1

0.5
0.2

0.6
0.2

0.7
0.2

0.8
0.8

1 Player 1 chooses arbitrary strategy i ; gives it probability 1
2 .

2 Player 1 chooses best response j ; gives it probability 1.

3 Player 1 chooses best response to j ; gives it probability 1
2 .

9Daskalakis, Mehta and Papadimitriou: A note on approximate Nash
equilibria, WINE’06, TCS’09

Goldberg Algorithmic Game Theory

A simple algorithm (no LP required)

Guarantee ε = 1
2

9

1
2

1
2

1

0
0.2

0.1
0.9

0.2
0.2

0.3
0.2

0.4
0.1

0.5
0.2

0.6
0.2

0.7
0.2

0.8
0.8

1 Player 1 chooses arbitrary strategy i ; gives it probability 1
2 .

2 Player 1 chooses best response j ; gives it probability 1.

3 Player 1 chooses best response to j ; gives it probability 1
2 .

9Daskalakis, Mehta and Papadimitriou: A note on approximate Nash
equilibria, WINE’06, TCS’09

Goldberg Algorithmic Game Theory

How to find approximate solutions with ε < 1
2?

That was too easy...

But... next we will see that an algorithm for ε < 1
2 may need to

find mixed strategies having more than a constant support size.

The support of a probability distribution is the set of events that
get non-zero probability — for a mixed strategy, all the pure
strategies that may get chosen. In the previous algorithm, player
1’s mixed strategy had support ≤ 2 and player 2’s had support 1.

Goldberg Algorithmic Game Theory

How to find approximate solutions with ε < 1
2?

That was too easy...

But... next we will see that an algorithm for ε < 1
2 may need to

find mixed strategies having more than a constant support size.

The support of a probability distribution is the set of events that
get non-zero probability — for a mixed strategy, all the pure
strategies that may get chosen. In the previous algorithm, player
1’s mixed strategy had support ≤ 2 and player 2’s had support 1.

Goldberg Algorithmic Game Theory

more than constant support size for ε < 1
2 :

Consider random zero-sum win-lose games of size n × n:10

1

0.4

0.6

1 1

1
0

1
0

0
1

0
1

1
0

1
0

0
1

1
0

1
0

1
0

0
1

0
1

1
0

0
1

0
1

0
1

1
0

0
1

0
1

0
1

1
0

1
0

0
1

1
0

0
1

1
0

0
1

1
0

1
0

0
1

1
0

0
1

0
1

1
0

0
1

0
1

1 With high probability, for
any pure strategy by
player 1, player 2 can
“win”

2 Indeed, as n increases,
this is true if player 1 may
mix 2 of his strategies

10Feder, Nazerzadeh and Saberi: Approximating Nash Equilibria using
Small-Support Strategies, ACM-EC’07

Goldberg Algorithmic Game Theory

more than constant support size for ε < 1
2 :

Consider random zero-sum win-lose games of size n × n:10

1

0.4

0.6

1

1

1
0

1
0

0
1

0
1

1
0

1
0

0
1

1
0

1
0

1
0

0
1

0
1

1
0

0
1

0
1

0
1

1
0

0
1

0
1

0
1

1
0

1
0

0
1

1
0

0
1

1
0

0
1

1
0

1
0

0
1

1
0

0
1

0
1

1
0

0
1

0
1

1 With high probability, for
any pure strategy by
player 1, player 2 can
“win”

2 Indeed, as n increases,
this is true if player 1 may
mix 2 of his strategies

10Feder, Nazerzadeh and Saberi: Approximating Nash Equilibria using
Small-Support Strategies, ACM-EC’07

Goldberg Algorithmic Game Theory

more than constant support size for ε < 1
2 :

Consider random zero-sum win-lose games of size n × n:10

1

0.4

0.6

1

1

1
0

1
0

0
1

0
1

1
0

1
0

0
1

1
0

1
0

1
0

0
1

0
1

1
0

0
1

0
1

0
1

1
0

0
1

0
1

0
1

1
0

1
0

0
1

1
0

0
1

1
0

0
1

1
0

1
0

0
1

1
0

0
1

0
1

1
0

0
1

0
1

1 With high probability, for
any pure strategy by
player 1, player 2 can
“win”

2 Indeed, as n increases,
this is true if player 1 may
mix 2 of his strategies

10Feder, Nazerzadeh and Saberi: Approximating Nash Equilibria using
Small-Support Strategies, ACM-EC’07

Goldberg Algorithmic Game Theory

more than constant support size for ε < 1
2 :

1/n

1/n

1/n

1/n

1/n

1/n

1
0

1
0

0
1

0
1

1
0

1
0

0
1

1
0

1
0

1
0

0
1

0
1

1
0

0
1

0
1

0
1

1
0

0
1

0
1

0
1

1
0

1
0

0
1

1
0

0
1

1
0

0
1

1
0

1
0

0
1

1
0

0
1

0
1

1
0

0
1

0
1

1 But, for large n, player 1
can guarantee a payoff of
about 1/2 by randomizing
over his strategies (w.h.p.,
as n increases)

2 Given any constant
support size κ, there is n
large enough such that
the other player can win
against any mixed
strategy that uses κ pure
strategies. So,
small-support strategies
are 1/2 worse than the
fully-mixed strategy.

Goldberg Algorithmic Game Theory

How big a support do you need?

O(log(n)) is also an upper bound (for any constant ε) 11

How to prove the above –
Define an “empirical NE” as: draw N samples from Nash
equilibrium x and y ; replace x , y with resulting empirical
distributions x̄ and ȳ .

11Althofer 1994: On sparse approximations to randomized strategies and
convex combinations Linear algebra and its applecations 1994; Lipton,
Markakis, & Mehta: Playing Large Games using Simple Strategies. (extension
from 2-player case to k-player case)

Goldberg Algorithmic Game Theory

How big a support do you need?

O(log(n)) is also an upper bound (for any constant ε) 11

How to prove the above –
Define an “empirical NE” as: draw N samples from Nash
equilibrium x and y ; replace x , y with resulting empirical
distributions x̄ and ȳ .

11Althofer 1994: On sparse approximations to randomized strategies and
convex combinations Linear algebra and its applecations 1994; Lipton,
Markakis, & Mehta: Playing Large Games using Simple Strategies. (extension
from 2-player case to k-player case)

Goldberg Algorithmic Game Theory

How big a support do you need (continued)

Suppose player 2 replaces y with empirical distribution ȳ based on
N = O(log(n/ε2)) samples.
With high probability, each of player 1’s pure strategies gets about
the same payoff as before.

eTi Rȳ = eTi Ry + O(ε)

ȳ has support O(log(n/ε2)), so if we do the same thing with x we
get the desired result.
We are using standard results about empirical values converging to
true ones (use e.g. Hoeffding’s inequality)
n random variables in [0, 1]; let S be their sum;

Pr(|S − E [S]| ≥ nt) ≤ 2e2nt2

Goldberg Algorithmic Game Theory

Support enumeration

Note that it follows that for any ε we can find ε-NE in time
O(nlog(n)).
(Pointed out in Lipton et al; another context where support
enumeration “works” is on randomly-generated games12)
Contrast this with NP-hard problems, where no sub-exponential
algorithms are known. This is evidence that probably the problem
of finding ε-NE is in P.

12Bárány, Vempala, & Vetta: Nash Equilibria in Random Games. FOCS ’05
Goldberg Algorithmic Game Theory

k > 2 players

Very little is known for k > 2.

Constant support-size: we can achieve ε = 1− 1
k (equals 1/2

for k = 2) but cannot do better.13

this gets very weak as k increases!

For 2 players, LP-based algorithms do better than 1/2, but
some new approach would be needed for k > 2.

13Hémon, Rougement & Santha: Approximate Nash Equilibria for
Multi-player Games. SAGT ’08, and independently, Briest, G, & Röglin:
Approximate Equilibria in Games with Few Players. arXiv ’08

Goldberg Algorithmic Game Theory

2 players; improvements over ε = 1/2

How to achieve ε ≈ 0.382: 14

Recall (in DMP algorithm) player 1’s initial strategy may be poor,
but it doesn’t help to pick a better pure strategy
Instead, pick a mixed one as follows

Original game is (R,C); solve zero-sum game (R − C ,C − R); let
x0 and y0 be player 1 and 2’s strategies in the solution
Let α be a parameter of the algorithm; if x0 and y0 are an α-NE
use them, else continue...

14Bosse, Byrka, & Markakis: New Algorithms for Approximate Nash
Equilibria in Bimatrix Games. WINE ’07; TCS 2010

Goldberg Algorithmic Game Theory

2 players; improvements over ε = 1/2

How to achieve ε ≈ 0.382: 14

Recall (in DMP algorithm) player 1’s initial strategy may be poor,
but it doesn’t help to pick a better pure strategy
Instead, pick a mixed one as follows
Original game is (R,C); solve zero-sum game (R − C ,C − R); let
x0 and y0 be player 1 and 2’s strategies in the solution

Let α be a parameter of the algorithm; if x0 and y0 are an α-NE
use them, else continue...

14Bosse, Byrka, & Markakis: New Algorithms for Approximate Nash
Equilibria in Bimatrix Games. WINE ’07; TCS 2010

Goldberg Algorithmic Game Theory

2 players; improvements over ε = 1/2

How to achieve ε ≈ 0.382: 14

Recall (in DMP algorithm) player 1’s initial strategy may be poor,
but it doesn’t help to pick a better pure strategy
Instead, pick a mixed one as follows
Original game is (R,C); solve zero-sum game (R − C ,C − R); let
x0 and y0 be player 1 and 2’s strategies in the solution
Let α be a parameter of the algorithm; if x0 and y0 are an α-NE
use them, else continue...

14Bosse, Byrka, & Markakis: New Algorithms for Approximate Nash
Equilibria in Bimatrix Games. WINE ’07; TCS 2010

Goldberg Algorithmic Game Theory

2 players; improvements over ε = 1/2

Let j be player 2’s best response to x0; player 2 uses pure strategy
j .

We can assume player 2’s regret is at least player 1’s.
Let k be player 1’s pure best response to j ; player 1 uses a mixture
of x0 and k .
Mixture coefficient of k is (1− r)/(2− r) where r is player 1’s
regret in the solution to the zero-sum game.
Optimal choice of α is (3−

√
5)/2 = 0.382...

Goldberg Algorithmic Game Theory

2 players; improvements over ε = 1/2

Let j be player 2’s best response to x0; player 2 uses pure strategy
j .
We can assume player 2’s regret is at least player 1’s.
Let k be player 1’s pure best response to j ; player 1 uses a mixture
of x0 and k .
Mixture coefficient of k is (1− r)/(2− r) where r is player 1’s
regret in the solution to the zero-sum game.
Optimal choice of α is (3−

√
5)/2 = 0.382...

Goldberg Algorithmic Game Theory

2 players; improvements over ε = 1/2

Proof Idea:
When player 2 changes his mind (from using y0) he is to some
extent helping player 1; y0 arose from a game where player 2 tries
to hurt player 1 as well as helping himself.

In the paper, they tweak the algorithm to reduce the ε-value down
to 0.364.

Goldberg Algorithmic Game Theory

Communication complexity

Uncoupled setting15 of search for equilibrium: each player knows
his own payoff matrix. Play proceeds in rounds (steps, periods,
days). A player observes opponents’ behaviour.

Communication complexity: question of how many steps are
needed, where players don’t need to follow a rational learning
procedure.
n players, 2 action per player;16 each player’s payoff function has
size 2n: For exact NE, 2n rounds are needed.

Obstacle is informational, not computational.

15Hart, S., Mas-Colell, A., 2003. Uncoupled dynamics do not lead to Nash
equilibrium. Amer. Econ. Rev.

16Hart, S., Mansour, Y., 2010. How long to equilibrium? The communication
complexity of uncoupled equilibrium procedures. Games Econ. Behav.

Goldberg Algorithmic Game Theory

Communication complexity

2 players, n action per player: Search for pure NE, n2 rounds are
needed.17 For exact mixed NE, Ω(n2) rounds; polylog
communication enough for ε-NE with ε ≈ 0.43818

Fun open problem: if 2 players cannot communicate, for what ε
can ε-NE be found? (known to lie in [0.51, 0.75])

17Conitzer & Sandholm, 2004: Communication complexity as a lower bound
for learning in games. 21st ICML

18G & Pastink (2014): On the communication complexity of approximate
Nash equilibria. GEB

Goldberg Algorithmic Game Theory

Query complexity

Algorithm gets black-box access to a game’s payoff function:
“payoff query” model19 — algorithm can specify pure-strategy
profile, get told resulting payoffs
Motivation:

n-player games have exponential-size payoff functions;
black-box access evades problem of exponential-size input data

Amenable to lower bounds and upper bounds

models “costly introspection” of players

19Introduced in: Fearnley, Gairing, G and Savani (2013): Learning Equilibria
of Games via Payoff Queries. 14th ACM-EC. Hart and N. Nisan (2013): The
Query Complexity of Correlated Equilibria. 6th SAGT; Babichenko and Barman
(2013): Query complexity of correlated equilibrium. ArXiv.

Goldberg Algorithmic Game Theory

Query complexity

Some results:

For bimatrix games, QC is n2 for find exact NE.

...to find ε-NE, O(n) for ε ≥ 1
2

n-player games: exponential for deterministic algorithms to
find anything useful; or for any algorithm to find exact
equilibrium (Hart/Nisan)

Query-efficient algorithms to find approx correlated
equilibrium (Hart/Nisan; G/Roth)

. . .

Goldberg Algorithmic Game Theory

Conclusion

Mainly focused on a particular sub-topic of AGT. Algorithmic
Game Theory (2007) has 754 pages; and much has been done
since!

Thanks for listening!

Goldberg Algorithmic Game Theory

