12 Overlay Networks for Heterogeneous Peers

So far, we have only shown how to construct overlay networks for uniform peers. However, the world
Is non-uniform. Suppose, for example that we have peers of non-uniform bandwidth. If we then use
a network based on hashing, like Chord, in order interconnect the peers, it is very likely that high-
bandwidth peers will be isolated from other high-bandwidth peers, making them ineffective. Thus, a
different design is needed. On possibility is to simply split the peers into many logical peers of uniform
bandwidth, but then high-bandwidth peers may have many logical peers in the network, making it
more vulnerable and making it more complex for peers to join and leave. Another solution could be to
organize the peers in a multi-tier network. That is, peers are organized into groups of approximately
the same bandwidth, and each group is organized into some hash-based overlay network presente
before. But it is not clear how to interconnect the networks of the various groups because the group
sizes can differ quite significantly from each other.

The solution presented here follows a different direction. Instead of using many logical peers or a
multi-tier network to incorporate peers of non-uniform bandwidth, every peer is just associated with
a single node, and a simple heap property is used to organize the peers in the system: every parer
of a peer must have a bandwidth that is at least as large as the bandwidth of that peer. Thus, local,
relative rules are used to organize peers instead of the rather global nature of the rules using logical
peers or multi-tier networks (since an agreement on the minimum bandwidth and bandwidth-to-tier
assignments is necessary there).

The overlay network behind our approach is calRadjoda[1l]. We start with the static version
of the overlay network before we define its dynamic version. Afterwards, we explain how to use the
overlay network for routing, data management, and multicasting.

12.1 The static Pagoda network

Our overlay network is basically a combination of a complete binary tree and a family of leveled
graphs that are similar to the well-known Omega network [2], together with some short-cut edges to
keep the diameter low. It is calldéhgoda We first define a perfect, static form of it before describing
dynamic constructions.

Definition 12.1 Letd € INy. Thed-dimensional deBruijnDB(d), is an undirected graph with node
setV = [2]¢ and an edge seE = {{z,y} | =,y € [2]¢ and there arep,q € {0,1} so thatz =
(bl7 b27 ey bd—lap> andy = (Q7 b17 b?a <. 7bd—l)}-

Definition 12.2 Letd € INy. Thed-dimensional deBruijn exchange netwpXN (d), is an undi-
rected graph with node sét = [d + 1] x [2]¢ and an edge set:

E = {{(U,2), +1Ly}ljeld-1],
z,y € 2] {z,y} € E(DB(d)) or z = y}

Figure 1 presents the 3-dimensional deBruip& (3). DB(d) has2? nodes and a maximum degree
of 4.

001 011

000 010 101 111

100 110

Figure 1: The structure adPB(3)

Figure 2: The structure aPG(2).

Definition 12.3 Letd € IN,. Thed-dimensional Pagod&G(d), is an undirected graph that consists
of d + 1 deBruijn exchange network®XN (0), ..., DXN(d), where each nod@, z) € [i + 1] x [2]°
of DXN (i) is connected to the nod¢s, z0) and (0,z1) in DXN (i + 1) and to all nodeg0,y) in
DXN (i + 1) that have an edge t@, z0) or (1, z1).

In addition to this, for everyandj € {0,...,i}, every nod€j, =) in DXN (i) has short-cut edges
to nodes(j, x0), (j, «1), (j + 1,20), and(j + 1,x1) in DXN (i + 1).

Ignoring the short-cut edges, the Pagoda is a leveled network with the root being at level 0. Levels
are consecutively numbered from O(@fzo i) — 1. Given a node at level, the nodes it is connected
to in level ¢ — 1 are called itgparents and the nodes it is connected to in level 1 are called its

children
The Pagoda network consists of the following types of edges:

e column edgesonnectingj, z) to (j + 1, z) in a DXN,
e tree edgesonnecting(i, z) in DXN (i) to (0, z0) and(0, z1) in DXN (i + 1),

e short-cut edgesonnecting(j, z) in DXN (i) to (j, 20), (4,z1), (j + 1,20), and(j + 1,z1) in
DXN (i + 1), and

¢ deBruijn edgesepresenting all remaining edges.

Each type is important for our protocols to work. Column edges and tree edges allow to keep our
protocols simple and efficient, deBruijn edges allow to perform efficient routing (and deterministic
level balancing in the dynamic Pagoda), and short-cut edges keep the diameter and congestion low.

Basic properties

Figure 2 shows the 2-dimensional Pagdeta(2). PG(d) hasy % (i +1)2 ~ (d+ 1)2%*! nodes and
maximum degree 20. Furthermore, the following fact is easy to see:

Lemma 12.4 PG(d) hasO(d?) levels and a diameter @b(d).

PG(d) also has a good expansion. Recall that the node expansion is defined asny . <|v|/2
|IN(U)|/|U| whereN (U) is the neighbor set df .

Lemma 12.5 PG(d) has an expansion ¢¥(1/d).

Proof. Using standard techniques, it is not difficult to show that every permutation routing problem
in the Pagoda can be routed with congestitie). Suppose now that the node expansion(igd). In

this case there must be a $ewith | N (U)| = o(|U|/d) and|U| < n/2. Then consider the permutation

7 that requires to send all packets in node&/ito U = V' \ U. In this case, the expected congestion
must bew(d), contradicting our bound above. Thus, the expansiéi(igd). O

12.2 The dynamic Pagoda network for uniform nodes

Our basic approach for the dynamic Pagoda network is to keep the nodes interconnected in a network
that represents a subnetwork of the static Pagoda network of infinite dimension. In this section, we
assume that all nodes have a bandwidth of 1. At any time, the dynamic Pagoda network has to fulfill
the following invariant:

Invariant 12.6
(a) For any node in the dynamic Pagoda, all of its parent positions are occupied.

(b) For any pair of nodes andw in the dynamic Pagoda; andw are connected in the dynamic
Pagoda if and only iy andw are connected in the static Pagoda.

We start with some facts about the dynamic Pagoda network. A node is dellietentif it has
a missing child along a column or tree edge (i.e. we do not consider missing children reachable via
deBruijn edges).

Lemma 12.7 If Invariant 12.6 is true, then in the dynamic Pagoda witmodes, the difference be-
tween the largest level and the smallest level with deficient nodes is atagast

Proof. Letv be any node of largest level in the Pagoda. Notice that such a node must be deficient.
Suppose that is at position(j, x) in someDXN (d). The fact that every node must have all of its
parent positions occupied and the way €N is constructed ensure thatis connected to at least

27 nodes at positionf), y) in DXN (d), wherey is either the result of a right shift of by at most;
positions or a left shift ofr by at most; positions, padded with arbitrary 0-1 combinations. Thus, if

j = d, then all positions in row 0 oDXN (d) must be occupied. If < d, then one can easily check

that all positions in rowj in DXN (d — 1) must be occupied. Hence, the difference between the largest
level and the smallest level with a deficient node is at modiaking this into account, one can show
thatd < logn, which yields the lemma. O

This lemma has some immediate consequences when combining it with results about the static
Pagoda:

Lemma 12.8 If Invariant 12.6 is true, then the dynamic Pagoda witthodes is a constant degree
network and hag)(log® n) levels, a diameter ab(logn), and an expansion &(1/ log n).

Next we define local control algorithms that allow nodes to join and leave the system, denoted by
the operationdoIN andLEAVE, while preserving Invariant 12.6 at any time (under the condition that
nodes depart gracefully).

Join and Leave operations

The basic strategy of the join protocol is to make sure that every new node is inserted at a place that
fulfills Invariant 12.6. Suppose that nodevants to join the system. This is done in two stages.

Stage 1 Suppose that node at position(j, =) in DXN (), is initiating JOIN(u) to insertu into the
network. Ifv has a short-cut edge to a node at positigr:0) in DXN (i + 1), then it forwards the
request to that node. Let this new nodeshdf v does not exist then we refer to nodasv’.

We are now at some nod#g at position(;’, =) in DXN(¢'). If v" has a short-cut edge to a node at
position(j’, 2’1) in DXN (i’ + 1) (here the column with suffix 1 is used to ensure an even spreading of
JOIN requests), then it forwards the request to that node. Let this node be theé.néis repeat this
until no newy’ exists. Call this last node”.

We are now at some nodé, at position(j”, z”) in DXN (). If v is not deficient then” forwards
the request to the node at positigif + 1,2") in DXN (i") if j” <", and else it forwards the request
to the node at positiofD, 2”1) in DXN (i + 1). This is the new”. This is repeated until no new
exists. Call this last node. At this point stage 1 ends and we proceed with stage 2 on this node.

Stage 2 |Initially, the JOIN request must be at some deficient naddf w = (i, y) in someDXN (d)
with 0 < i < d, thenw requests information about the column child (i.e. the child reachable via the
column edge) from all parents af. If all parents report an existing child; can integrate: as its
column child without violating Invariant 12.6(a). Otherwiseforwards theJoIN request for, to any
parentw’ reporting a missing column child, i.e. it is deficient.

If © = 0, thenw requests information from its parents about each tree child that is a parent of its
column child. If all relevant tree children exist,can integrate: as its column child, and otherwise
forwards theJoIN request to any paremt’ reporting a missing tree child.

4

Finally, if = d, thenw picks any of its missing tree childranand requests information from
w’'s parents about each column child that is a parent df all relevant column children existy can
integrateu at the position oby, and otherwisev forwards theJoIN request to any parent’ reporting
a missing column child.

This is continued until: can be integrated.

Suppose that a nodewants to leave the Pagoda. This is also done in two stages. Stage 1 is the
same as stage 1 for tldeIN protocol.

Stage 2 Initially, the LEAVE request must be at some deficient naedeIf w has a child, thenw
forwards the request to any one of its children. This is continued wrdibes not have any children.
Once this is the case; exchanges its position with so thatu can leave the network.

The JoIN andLEAVE protocols above achieve the following result.

Theorem 12.9 Any isolatedJOIN or LEAVE operation can be executed ®(logn) time and with
constant topological update work.

Proof. Consider anyJOIN request starting at some node From the construction, it can be seen
that the request is transferred through at mbshort-cut edges until the request reaches a node
DXN(d — 1) (the second largef2XN in the system). From a node XN (d — 1), at mostO(log n)
column or tree edges have to be traversed to reach a deficientnod®XN (d) or DXN(d — 1).
From nodew on, every time the request is transferred to a deficient node, the level of theuhode
receiving the request decreases by one. Hence, it follows from Lemma 12.7 tlattheequest can
be transferred along at madsi n deficient nodes. Thus, an isolatddiN request can be executed in
O(d) = O(logn) time.

Also everyL EAVE request is sent along at masshort-cut edges an@(d) column or tree edges
until it reaches a deficient node Fromuw, it takes at mostog n further nodes to reach a node without
children, at which thé_EAVE request can be finished. Hence, also any isolatesl/E request can be
executed irO(d) = O(logn) time.

The bound on the update work (i.e. the number of edge changes) is obvious. O

12.3 Routing

Suppose that we want to route unicast messages in the Pagoda network. Consider any such unica:
packetp with sources = (j,x) in DXN (i) and destination = (j', z) in DXN(¢'). First, p picks a
random pair of real valueg;, r) € [0, 1) (a precision oflogn bits for each is sufficient). Them,is

sent in three stages:

1. Spreading stage:First, sendp from s along column edges and a tree edgéite- 1, z/2) in
DXN (i — 1). Then, sengh upwards to the nod@, y) in DXN (i — 1) with y being the closest
prefix of r. From there, forwarg to the node(k, y/2) in DXN (i — 2) with k/(i — 2) being
closest ta-.

2. Shuttle stage: Forwardp along short-cut edges across node'sy’) with £’ being closest te
andy’ being the closest prefix efuntil a node(k’,y/) in DXN (i/ — 2) is reached.

5

3. Combining stage: Perform stage 1 in reverse direction (witheplaced by) to forwardp to ¢.

Notice that as long asandt are non-deficient nodes, this strategy is successful ede nodes join
and leave the system, because the position of every node that is an non-deficient node will be fixed
in the Pagoda. Also, whenever a node leaves, the node replacing it can inherit its packets so that nc
packet gets lost. More general strategies for ensuring reliable communication even while nodes are
moving, using the concept of virtual homes, can be found in Section 12.8.

With these facts in mind, one can easily design a protocol based on the random rank protocol (see,
e.gd., [3]) to show the following result:

Theorem 12.10If every node wants to send at most one packet, the packets have random destinations,
and every node being the destination of a packet does not mogglfasn) steps, the routing strategy
above can route the packets@nlogn) time, with high probability.

12.4 Data management

Finally, we show how to dynamically manage data in Pagoda. We use a simple trick to distribute
data evenly among the nodes of the Pagoda so that it is searchable. Suppose that we have a (pseud
yrandom hash function mapping each data item to some real ectore [0, 1)%. The current place
of a data item is always the lowest possible positiof) x) in the Pagoda whereis the closest prefix
of r and;j/|x| is closest ta- among allj’/|z| with 0 < j” < |z| (|| denotes the length af, and thus
the dimension of th®XN owning (j, x)).

This strategy implies that iDXN (d) represents the largest exchange network that has occupied
positions in the Pagoda, then all data items will be stored at nod&XiN (d — 2), DXN(d — 1),
or DXN(d). Since every node will at most have to store@fl/(d - 2%)) fraction of the data and
d- 2% =0©(n), we get:

Theorem 12.11 The data management strategy ensures that every node is only responsible for an
expected)(1/n) fraction of the data at any time, and this bound even holds with high probability if
there are at least log n data items in the system.

Notice that none of the DHT-based systems can achieve the bounds above in their basic form —
they only achieve a bound 6i(log n/n). Combining the data management strategy with our routing
strategy above, requests to arbitrary, different data items with one request per node can be served ir
O(logn) time, w.h.p. The results in Section 12.6 imply that this also holds for cases in which some
nodes want to access the same data item, i.e. we have a multicast problem, if requests can be combine:

12.5 The dynamic Pagoda network for non-uniform nodes

Next we show that the Pagoda network can also be used for arbitrary non-uniform node bandwidths.
In this case, we want to maintain the following heap property to allow efficient multicasting.

Invariant 12.12 For any nodev in the Pagoda,
(a) all of its parent positions are occupied, and

(b) the bandwidth ob is at most the bandwidth of any of its parents.

6

Similar to the uniform case, we require these invariants to be fulfiledie nodes join and leave
the system. Because of item (b), we cannot just do a single exchange operation to integrate or remove
a node but we have to be more careful. First, we describeldime and LEAVE operations for the
isolated case, and then we consider the concurrent case.

Join and Leave operations

For any nodeu in the Pagodamax-child(:) refers to the child of maximum bandwidth angin-
parent(:) refers to the parent with minimum bandwidth.

Suppose that node is executingJoIN(u) to insert a new node with bandwidthb(u) into the
network. This is done in three stages. Stages 1 and 2 are identical to the uniform case. So it remains
to describe stage 3 which is similar to inserting a node in a binary heap.

Stage 3 Once theJoIN request foru has reached a deficient node with an empty column or tree
child position in whichu can be integrated without violating Invariant 12.12¢a)s integrated there
with active bandwidthu(«) equal to the minimum of(«) and the bandwidth of its min-parent. The
active bandwidth is the bandwidth it is allowed to use without violating Invariant 12.12(b). Then,
repeatedly comparégu) with a(u). If a(u) < b(u), it replaces its position with the position of its
min-parent and afterwards updatgs:) to min{b(u), b(min-parent())}. Onceu reaches a position
with a(u) = b(u), theJOIN protocol terminates. The process of movingpwards is calleghuffle-up

Suppose that a nodewants to leave the Pagoda. Then it first sets its active bandwidthujo
Afterwards,u repeatedly replaces its position with its max-child and updates its active bandwidth to
a(u) = b(max-child@)) until it reaches a position with no child. At this pointjs excluded from the
system so that Invariant 12.12 is maintained. The process of mavdgyvnwards is calleghuffle-
down

Bandwidth changes

If the bandwidth of some node increases, we use the shuffle-up procedure, and if the bandwidth of
some node; decreases, we use the shuffle-down procedure to repair the invariant.
Isolated update requests have the following performance.

Theorem 12.13 Any isolated join operation, leave operation, or bandwidth change of a node needs
O(log? n) time and work to repair the invariant.

Proof. First, consider the insertion of some nadeThe process of moving the requesuafownwards
only needsO(logn) time. According to Lemma 12.8, is integrated at some levél= O(log®n).
Hence, the shuffle-up process only requitd$og” n) messages and edge changes because each ex-
change of positions betweerand some parentto repair Invariant 12.12 movesone level upwards
and requires updating only a constant number of edges. Every shuffle operation maintains the invariant
for all nodes involved in it. Hence, the total time and worki€og?® n).

Similar arguments can be used for node departures and bandwidth changes. O

The concurrent JOIN protocol

The only difference between the isolated and concurdemi protocol is that we are more careful
about exchanging positions. If a nodevants to replace its position with some parenhenu checks
whetherv is a node that has not finished #ISIN operation or bandwidth increase operation yet (i.e.
a(v) < b(v)). If so, u does nothing. Otherwise,replaces its position with.

The concurrent LEAVE protocol

Also the concurrenit EAVE protocol is similar to the isolateldEAVE protocol, with the only difference
that if some node: in the process of leaving the network wants to replace its position with some child
v, u first checks whether is a node that has not finished lt€AVE operation or bandwidth decrease
yet (i.e.a(v) > b(v)). If so,u does nothing. Otherwise,replaces its position with.

Bandwidth increase or decrease is handled similarly. The next lemma shows that the concurrent
operations always terminate with a work that is at most the sum of the work for isolated update opera-
tions.

Lemma 12.14 For any set ofc concurrent insertions, deletions, and bandwidth changes of nodes, the
work and time required to repair Invariant 12.12G%k log® n).

Proof. The work bound is obvious. Thus, it remains to prove the time bound.

Considerk concurrent update requests. From the analysis in the uniform case we know that
O(klogn) work is necessary for nodes @bIN requests to be integrated into the system. Each time
step progress is made here until@liN requests are integrated.

Afterwards, we mark all nodes with 1 that have not completed thaix or bandwidth increase
operation yet, all nodes with -1 that have not completed theave or bandwidth decrease operation
yet, and all other nodes with 0. Suppose that there is at least one node marked as 1. THmn let
any of these nodes of minimum level. Since the leveb ofiust be at least 1 (as the root cannot be a
1-node), it can replace its position with its min-parent, thereby making progress. On the other hand,
suppose that there is at least one node marked as -1. Therbletany of these nodes of maximum
level. If ' does not have any children, thehcan leave, and otherwise it can replace its position with
its max-child, thereby making progress in any case.

Hence, we make progress in every step. Since the total work of the shuffle-up, shuffle-down, and
departure operations is bounded ®@yk log” n), the time spent for executing these operations is also
bounded byO(k log® n). O

12.6 Multicasting

Finally, we study how well the non-uniform Pagoda supports arbitrary concurrent multicasting.

Competitiveness

In this section we show that the Pagoda networKig\opr + log n)-competitive with respect to
congestion in the best possible network of degkeg+ when the multicast problem is posed as a flow
problem. We are given a set of client-server-demand triples cattedms (7%, s, D), WhereT}, is

a set of client nodes served by a server ngdand D, is a demand vector which specifies the flow

8

demanded of, by each client node. We start by constructing a flow system for one sepyemd
one clientt € 7,. We name this flow systenf; ;. We assume tha, is a node inDXN (i) andt is a
node inDXN (j).

1. Spreading stage:This stage spreads flow originatingsatin DXN (i) evenly among the nodes
in DXN (i — 2). This is done in three steps.

a. Move the flow froms;, along column edges to the top nodeliX N (7).

b. Move the flow upwards to the bottom node/MX N (: — 1) along the tree edge connecting
the two DXN’s. From there, cut the flow intd*~! flow pieces of uniform size and send
piece: upwards to nod€0, i) along the unique path of deBruijn edges representing right
shifts.

c. Move all flow from the top nodes iWXN (i — 1) to the bottom nodes iDXN (i — 2) along
tree edges. Every bottom nodelinY/N (i — 2) sends flow along its column edges so that
each node in the column gets the same fraction of flow. That is, at the end every node in
DXN (i — 2) has al/((i — 1)272) fraction of the flow ofs;.

2. Shuttle stage:Short-cut edges are used to send the flows forwaddXd/ (; — 2) (which may
be upwards or downwards in the Pagoda) so that the flows remain evenly distributed among the
nodes in each exchange network visited frOfN (i — 2) to DXN (j — 2).

3. Combining stage: This stage is symmetric to stage 1, i.e. we reverse stage 1 to accumulate all
flow in ¢.

This results in a flow systeny; ;, for a sources;, and a destinatioh € 7}, Let f; ,(e) be the flow
through any edge in this flow system. The procedure is repeated for each clientl,. We now
construct a flow systenyy, for the streankt. We lay the flow systemg, ; one on top of the other. The
flow through an edge in systefij is the maximum flow through the same edge in efch That is, let
fx(e) be the flow through any edgein flow systemf,. Then f;(e) = max;cr, fi+(e). Note that we
select the maximum flow because if there are two flows of the same stream going through an edge ther
we simply keep the one with the higher bandwidth (the lower bandwidth stream may be reconstructed
from the higher one). We use flow systefinto route multicast flow for stream. We show that this
strategy yields a low congestion.

Theorem 12.15The Pagoda network on nodes of non-uniform bandwidth that satisfies Invari-
ant 12.12 has a competitive ratio 6f(Agpr + logn) for any multicast flow problem compared to
the congestion in an optimal network for this problem whose degree is boundeghy

Proof. Let OPT be a network that routes the given flow system with minimum possible congestion
Copr, i.€. that minimizes the maximum amount of flow through a node. W.1.0.g. we assume that every
demand is at most the bandwidth of the source and destination.

Select any node in pagoda. Let it be in exchange netwd N (i). We show that the congestion
at this node due to the flow system resulting from our routing strategy above is no mote(thgn) -
Copr due to stage$ and3 andO(Appr) - Copr due to stag@. We show these bounds in parts. We
first bound the congestion atdue to stage, c¢;(u). The flows through: due to stage are the sum of
the flows that originate itDXN (i), DXN (i + 1) and DXN (i + 2). Let the congestion due to each of

9

these be:,(u), c1p(u) andey.(u) respectively. Clearlys; (u) = c1,(u) + c1p(u) + ¢1.(u). We bound

each of these three separately:

Stage la:Nodeu receives flow from nodes that are below it (in the same column) in exchange network
DXN (i). We call this setS. The flow is}", max,cs{dx(v)}. Note that the max term is used since
flows belonging to the same stream are combined, resulting in a flow of Iargest demand among these.
Therefore, the congestion atis ci,(u) = Wlu)zk MaXes{di(v)} < Ypeg S % bv) < |S] - Copr.

The setS contains at modbg n nodes. Therefore,,(u) < logn - Copr.

Stage 1b:Nodewu receives flow from the bottom nodesBXN(:). Let f/(-) be the flow sent up by a
bottom node. Thus, each bottom node sends a floyy ©f /» to each top node. Note th#tis purely

the spreading caused by stage 1b.

Let S be the set of bottom nodes with paths crossingnd letD be the set of top nodes with paths
crossingu. We bound S| and|D]| as follows:

Let v be in levelh of DXN(4). There are2’ nodes in each level dXN(:), and each node has an
address of bits. Due to the bit-shift routing of the de Bruijn graphs, the nodes ity satst have the
samei — h first bits asu has last bits. Thus, the firatbits can be anything, ari@| = 2". In a similar
manner, the nodes i must have the same firatbits as the nodes iff, thus|D| = 2¢=". Now, the
number of paths crossingis |S| - |D| = 2°.

The flow from each node € S that reaches is
the amount of flow destined for each node in the top rowafv (i). Since:!
fr)

sl
Since flows belonging to the same multicast group merge into one flow equal to the maximum of

the two it follows that the flow that reachess >°; max,cs ‘;) Assumingu; andwv, are the two tree
children ofv, the congestion at is

1@1D1 \which is the number of nodes in times

Dl = |5|’ this becomes

_ e fi(v)
Clb(”) () ’S‘ Zmax;eka;) 1; ()|S|

cha v1) + c14(v2) < 2logn - Copr
veS

IS!

Stage 1c:Nodew receives flow from the bottom node in its column. Therefore, the congestion at
c1.(u) is at most the congestion at the bottom node in the exchange network. The bottom node receives
flow from its two descendants DXN(i + 1). Note that the two descendants will send up equal flows,
let one of them be. So,c;.(u) < 2¢1.(v) < 4logn - Copr.

We show the bounds for flows due to stayeith the help of Lemma 12.16. We need to lower
bound the congestion that an optimal network can achieve. We do this by showing how an optimal
network with bounded degree has limited bandwidth to send flows.

Lemma 12.16 Let Eqpr be the set of edges in the optimum network. For any pair of Xetsd
Y that are subsets of the set of nodes, I§tX,Y) = >, .y MaXer,ny {di(v)} and B(X,Y) =
Z(u,v)eEopTﬂXxY mln{b(u)a b(U)} ThenCOPT Z D(X7 Y)/B(X’ Y)

Proof. Consider any pair of setX, Y C V. B(X,Y) as defined in the statement measures the
bandwidth between sefs andY. Note that it is not necessary th&tandY form a cut. Similarly,

10

D(X,Y)is the demand that” asks ofY". The ratio of B(X,Y') to D(X,Y) is the average congestion.

The max congestion must be at least the average congestion. Thergfare ggg ad

Stage 2:Let U be the set of nodes in the Pagoda which belong to all exchange networks above and
includingDXN(i + 1). Let Z be all nodes in exchange netwdDiN(: + 2). Let V' be all nodes below
and including exchange netwokXN(i+3). Let the collective flow through exchange netwdXN(:)
be f. Any stream whose source isihU Z and has a destination in U Z must go througbXN().
The expression for the flow if:= >, .07 MaXecvuzdi(v). Due to lemma 12.16 we bountias
follows: f < (|U|Aopr max;eyvuz{bi} +|U U Z|Aopr max;ev{b;} + |Z|Aopr max;ez{b;}) - Copr.
The first term accounts for bandwidth betwdérandl” U Z, the second term for bandwidth be-
tweenV andUUZ, and the third term for bandwidth withiti. Hence,f < 3 |[UUZ|Aoptr max;cyyz{b:}-
Copr < 3 |UU Z|Aogpr by - Copr.
Since the Pagoda spreads tree flow evenly across all nodes in each exchange network, the flow

throughu is at MOSt 5y - Thereforecy(u) < IO The construction of the Pagoda implies

that|U U Z| < 2|Z|, and| DXN (i)| > ZI. Thus,cs(u) < 72 Aopr - Copr-

The congestion at due to stage is identical to the congestion due to stagbecause the two
cases are symmetric. Hene€y) = 2 ¢;(u) + c2(u) < (14logn + 72 Appr) - Copr. The theorem
follows. O O

12.7 Turning multicast flows into trees

In practice, it may be expensive or impossible to divide and recombine streams. Instead, we choose &
pseudo-random hash functiérthat maps every nodein the Pagoda to a pair of real valugsr) €

[0,1)2. Similar to the routing strategy in Section 12.3, we can then adapt the multicast scheme in the
following way for a source and target:

1. Spreading stage:(a) is the same as above, but instead of spreading the flow in (b), we route all
flow to the nodg0, y) in DXN (i — 1) with y being the closest prefix of From there, forward
the flow to the nodék, y/2) in DXN (i — 2) with k£/(i — 2) being closest te.

2. Shuttle stage:Forward the flow along short-cut edges across nokleg’) with &’ being closest
to c andy’ being the closest prefix efuntil a node(%’, ') in DXN (j — 2) is reached.

3. Combining stage: Reverse the spreading stage to send the flotv to

Multicast flows that belong to the same stream are combined so that for every, edgélow for that
stream through is the maximum demand over all flows of targethat are part of that stream.

Using this rule, it is not surprising that the expected congestion of our integral flow scheme is equal
to the congestion of the divisible flow scheme above.

Theorem 12.17 The integral multicast flow scheme has an expected competitive ratioofpr +
logn) compared to an optimal network with degrgpr.

Proof. The theorem can be shown by following the line of arguments in the proof of Theorem 12.15.
Here, we just give an intuition of why the theorem is correct. We start with bounding the expected
congestion for stages 1 and 3.

11

Lemma 12.18 The expected congestion from routing the spreading stage(lisgn)-competitive
against an optimal network of degrée,pr.

Proof. Let d; be the total demand requested by nedecross all streams, and Iet be nodei’s
bandwidth. Consider the congestion on any node in DXXHist. Since flow is sent up along column
edges, the worst congestion occurs at the top nodésXa¥ (i). If d,,.. is the largest demand of any
node in some node's column, therv must route at mosti + 1) - d,,.... demand, under the worst case
assumption that the demands are for different streams and cannot be combined.Haiset least the
bandwidth of every node with demauy,,., this isO(log n)-competitive. This analysis also applies
to routing along column edges in the final stage.

Now consider the congestion on any node in DXN(1) caused by the spreading stage. We know
that the nodes on the bottom of DXN¢{ 1) areO(log n)-competitive, because their congestion is at
most twice the congestion at the nodes at the top of DXNgince each stream is going to a random,
independently selected location in DXIMN{2), each is going to a random node at the top of DXN).

Thus, the expected congestion at the top is balanced and therefo®ésn)-competitive. Further-

more, congestion is caused by streams crossing nodes in the middle of the DXN, but the self-routing
properties of the deBruijn graph (which extend to the DXN) imply that the maximum expected con-
gestion in the middle is between the maximum expected congestion in the bottom and the maximum
expected congestion in the top part and therefore no worse. Hence, also the nodes in the middle of the
graph are)(log n)-competitive in congestion. O

Next we consider stage 2.

Lemma 12.19 The expected congestion from routing flow in the shuttle stagl Asopt + logn)-
competitive against an optimal network of degregpr.

Proof. Consider the boundary between any two DXN networks. The flows crossing this boundary
upwards (resp. downwards) along short-cut edges must have a set of sparzka set of destinations

T with S N'T = (. Hence, there is a cut in the optimal network that all these flows have to cross.
Furthermore, since we are sending exactly one copy of the stream across the cut, we are sending ne
more flow than OPT must send. The same upper bound on the amount of flow across a cut holds as
in the divisible flow case. Since the nodes along which the flows travel are randomly selected, the
expected congestion at any node is a fraction of the total flow proportional to the number of nodes in
the DXN, which implies that the congestion is expected tOApr + log n)-competitive. ad

Combining the two lemmata yields Theorem 12.17. O O

12.8 Multicast streaming

Next, we address the issue of how to use the multicasting capabilities for multimedia streaming where
peers can enter and leave a multicast stream at any time. To ensure reliable streaming, a mechanism
needed to join and leave a multicast stream, to reserve bandwidth in the nodes along that stream, an
to use a local admission control rule for admitting multicast stream requests in a fair and transparent
way.

12

Joining and leaving a multicast stream

Consider the situation that nodan the Pagoda wants to join a multicast streémof sources. Node
u then prepares a control packet containing the demdaredjuested by it and sends the control packet
to s as described in Section 12.7. Along its way, the control packet will try to reserve a bandwidth of
d. If it succeeds, it will continue to reserve bandwidth along its way until it reaches a point in which
for the streant’ a bandwidth of at least is already reserved.

Every node along the multicast stream will only store for each of its incoming edges the client
requesting the stream with the largest demand.

Suppose now that some nodeavants to leave a multicast strea$n Then it first checks whether
it is the client with largest demand férthat traverses itself by checking its incoming edges. If not,
does not need to send any control packet. Otherwistecks whether there is a path of some client
v for S'into u. If so, u prepares a control packet with the largest demand of these clients. Otherwise,
u prepares a control packet with demand 0. This control packet is sent towards thessotfcas in
Section 12.7. Each time the control packet reaches a ndidat is also traversed by other clients to
S (that arrive at different incoming edges), the demand of the control packet is updated to the largest
demand of these clients. This is continued until the control packet reaches a tradersed by some
client for S with demand larger than the original demand.of

Rate reservation

For a rate reservation scheme to be transparent and fair, a policy is needed that gives every peer :
simple, local admission control rule with the property that if a request is admissible according to this
rule, then the rate reservation request should succeed with high probability. We will investigate two
such rules:

Suppose that every nodeepresenting a server in the network offers multimedia streséﬁhsé”), o

with ratesr{”), r{"”), ... so thats; 7"’ < b(v). Then consider the following rules for some client

e Admission rule 1: Admit any multicast request to some servers long a$(v) < b(w) and
the total demand of the requestsiiloes not exceeeb(v)/ log n.

e Admission rule 2: Admit any multicast request to some serueas long a® is not belonging to
any other multicast group and the demand of the request does not exag€d(v), b(w)}/ log n.

Rule 1 will normally be the case in practice because servers of streams usually have a higher bandwidth
than clients, but rule 2 would also allow multicasting if this is not true.

Theorem 12.20 When using admission rule 1 or 2, every request fulfilling this rule can be accommo-
dated in the Pagoda, w.h.p.

Proof. Recall the integral multicast routing strategy in Section 12.7. Consider any multicast problem
that fulfills rule 1 or rule 2. Using the proof of Theorem 12.15, one can easily show that for any.node
in the Pagodag;,(u) = c1p(u) = c1.(u) = O(e) andez(u) = O(€). Hence, the expected total amount

of demand traversing is O(eb(u)). Since any single demand througttan be at mostb(u)/ logn
(demands from or to a nodewill always traverse only nodes with b(w) > b(v)), and the flows

for different servers follow paths chosen independently at random, it follows from the well-known
Chernoff bounds that the total amount of demand traversing also O(e) with high probability.

13

Hence, making the constansmall enough, the admission rules 1 and 2 will work correctly with high
probability. O

Notice that also a combination of rules 1 and 2 is allowed.

12.9 Multicasting in a dynamic setting: virtual homes

Our multicast tree approach above has several problems. First, it requires to know the position of the
server in the Pagoda to join a stream from it, and second, it requires to update the multicast stream eacl
time the server or a client moves. Fortunately, this problem has an easy solution: For evety node
let h(v) € [0, 1)? be choseindependenon its position in the Pagoda. For examgléy) may depend

onv’s IP address. Then can treat the node closest/igv) two DXNs abovev as itspersonal virtual
homethat only has to move if leaves its current DXN.

Suppose that every node continuously informs its virtual home about its current position and that
virtual home responsibilities are exchanged whenever nodes exchange positiong. drthginas to
update its connection to the multicast stream if it leaves its current DXN. However, when using the
short-cut edges, such an update can be done in constant time so that the disruption of sendce to
kept at a minimum. While frequent switches between DXNs could cause frequent update operations,
a lazy virtual home update strategy can be used to easily solve this problem.

A third problem with dynamic conditions is that intermediate nodes may change their requested
bandwidth. We can usactivebandwidth restrictions to ensure that the previous invariant continues to
hold, so that routing is still valid. Since the invariant continues to hold, congestion remains low and
the admission control theorems remain true.

References

[1] A. Bhargava, K. Kothapalli, C. Riley, C. Scheideler, and M. Thober. Pagoda: A dynamic overlay network
for routing, data management, and multicasting.Ptoc. of the 16th ACM Symp. on Parallel Algorithms
and Architectures (SPAApages 170-179, 2004.

[2] D. Lawrie. Access and alignment of data in an array procesHoEE Transactions on Computer€-
24(12):1145-1155, 1975.

[3] C. ScheidelerUniversal Routing Strategies for Interconnection Netwpviedume 1390 of_ecture Notes in
Computer ScienceSpringer, 1998.

14

