

Fundamental Algorithms

WS 2006/2007

Jens Ernst

Lehrstuhl für Effiziente Algorithmen

Institut für Informatik

General Information:

• Audience: Students of the program “Computational
Science and Engineering” (CSE)

• Lecture: 2 hours/wk

• Practice Session (not mandatory): 2 hours/wk

Fundamental Algorithms (CSE)

General Information (contd):

• Lecturer: Dr. Jens Ernst, Zimmer 03.13.061

 Email: ernstj@in.tum.de

 Tel. 289 – 19426

 Office hours: None (just call)

• Lecture: Tue. 11:15 - 13:00, Room 03.11.018

• Practice Session: What day/time suits you?

Fundamental Algorithms (CSE)

mailto:ernstj@in.tum.de

• Homework assignments: Not mandatory, but
recommended; Not required for admission
to the exams

• Tests: Midterm and Final exams
• Dates will be announced plenty ahead of time

Fundamental Algorithms (CSE)

• Lecture Material:

 1. Introduction, Basics and Notation

2. Developing Algorithms by Induction

3. Searching and Sorting

4. Data Structures and Advanced Searching

5. Graph Algorithms

6. Text Algorithms

7. Algebraic and Numerical Algorithms

8. Data Compression

Fundamental Algorithms (CSE)

•Recommended Literature:

• Thomas Cormen, Charles Leiserson, Ronald Rivest,
Clifford Stein, “Introduction to Algorithms”
MIT Press, Cambridge MA, 2. Edn, 2001

• Robert Sedgewick, “Algorithms”
Pearson Education, München 2002

• S. Dasgupta, C.H. Papadimitriou, U.V. Vazirani
 Available online at
http://www.cse.ucsd.edu/~dasgupta/mcgrawhill/all.pdf

Fundamental Algorithms (CSE)

Note: None of these is “the textbook” for this course. Please take notes in class.

1. Introduction:

Definition (Algorithm): An algorithm is a uniquely defined
procedure to obtain the desired output, given some set of
input data. Here we consider algorithms satisfying the
following properties:

• sequential: At each point in time exactly one
operation is carried out
Remark: Parallel and distributed algorithms are non-sequential

• deterministic: At each point in time, the next
operation to be carried out is uniquely defined

Fundamental Algorithms (CSE)

• Remark 1: Complexity theory, for instance is concerned with
non-deterministic algorithms in which each step can have two
or more subsequent steps.

• Remark 2: Randomized Algorithms can decide between
alternative operations as a result of a random event, e.g. by
flipping a coin.

• statically finite: The description of the algorithm (e.g. in
the form of pseudo source code requires only a
finite amount of space.

Fundamental Algorithms (CSE)

• dynamically finite: At each point in time during the
execution of the algorithm, only a finite amount
amount of storage is used.

• termination: For any input, the execution ends after a
finite number of steps.
Remark: This may not be the case for online algorithms,
that do not know their entire input at the beginning of their
execution.

Fundamental Algorithms (CSE)

Standard Examples of Algorithmic Problems:

• Data organization and efficient data access in a web
search engine

• Data storage and efficient data manipulation in a database

• Assembly of the entire human genome sequence

• Computing a VLSI layout

• Routing of TCP/IP packets in the internet

• Compression of an audio or video file

• Efficient encryption and decryption of a set of secret data
to be transmitted over a non-trustworthy medium

etc...

Fundamental Algorithms (CSE)

Algorithms and Efficiency:

Typically, the efficiency of algorithms is assessed in terms of

running time and storage usage. Both are specified as a

function of input size (given in bits). (Why?)(Why?)

• Running time is mostly measured as the number of operations

carried out during the execution (e.g. number of arithmetic

operations or number of comparisons).

Example: Suppose some machine can carry out one operation

per microsecond. Let us consider several algorithms of

varying efficiency for the same problem: ...

Fundamental Algorithms (CSE)

(contd.)

For various input sizes n, we die give the running time T(n)

(wall clock time in seconds) for different algorithms requiring

t(n)=1000n, 1000n¢ log(n), 100n2 or 2n operations.

2.7 h

2 min

10s

1s

1000

116 d

2.8 h

2 min

10s

10000

21 min1 min10s1s0.02s10 n3

3£104 cent35 y1s2n

25s4s1s0.25s0.04s100 n2

4.5s1.5s0.6s0.3s0.09s1000 n log n

0.5s0.2s0.1s0.05s0.02s1000 n

5002001005020

Fundamental Algorithms (CSE)

As you see, if input size n grows, the practical usability of your

algorithm depends entirely on its complexity.

Unfortunately, this fact is often ignored in the software industry.

“Let's just go and buy a faster machine ...”

Note: The only thing that changes as a result of a faster

machine (e.g. executing two operations per microsecond) is a

constant factor in the running time. But as n grows, it's the

asymptotic complexity that matters.

Fundamental Algorithms (CSE)

t(n)

Fundamental Algorithms (CSE)

t(n)

Fundamental Algorithms (CSE)

What is the maximum tolerable n ?

Suppose, our machine can execute f operations per second
(in the example: f =106). Let the algorithm require
t(n) operations to solve a problem of size n.
Then the wall clock execution time T(n) is

T(n)=t(n)/f [sec].

If the computation needs to have finished after s operations, the
input size is limited to

n· t-1(s¢ f)
(where we assume that t(n) is a strictly growing function).

Fundamental Algorithms (CSE)

Remark: This shows us the effect of increasing the processor
frequency f, as you do by buying a faster machine:

Example: Let the time complexity be t(n)=n2 and let s be the
maximum tolerable time for the computation. Using a machine
twice (1000 times) as fast, the allowable input size n increases
by only a factor of 1.414 (31.62).

In the case of t(n)=2n, n can be allowed to grow by only a
constant of log(2)=1 (by blog(1000)c=9) !

Hence, if your algorithm is too complex, the benefit of a faster
machine diminishes.

Fundamental Algorithms (CSE)

Goals of this course:

• Introduction to formalisms and terminology for algorithm design

• Formalization of algorithmic problems

• Fundamental techniques in algorithm design

• Algorithms for standard problems

• Techniques for analyzing time and space complexity

• Primitive and higher data structures

• Homework assignments and practice sessions

• Hints on implementation and other practical issues

Fundamental Algorithms (CSE)

