WS 2007/2008

Fundamental Algorithms

Dmytro Chibisov, Jens Ernst

Fakultät für Informatik
TU München

http://www14.in.tum.de/lehre/2007WS/fa-cse/

Fall Semester 2007
Chapter 0 Administrative Issues
Chapter 0 Administrative Issues

- Lectures:
 - 2 Hours/Week
 - Times/Place: Tuesday, 11:30-13:00, room MI 00.08.038

- Tutorials:
 - 2 Hours/Week
 - Proposal for Times/Place: Wednesday, 11:00-12:30, room MI 03.11.018

- Office Hours:
 - By Appointment (chibisov@in.tum.de)

- Written examination
Chapter 0 Administrative Issues

- Lectures:
 - 2 Hours/Week
 - Times/Place: Tuesday, 11:30-13:00, room MI 00.08.038

- Tutorials:
 - 2 Hours/Week
 - Proposal for Times/Place: Wednesday, 11:00-12:30, room MI 03.11.018

- Office Hours:
 - By Appointment (chibisov@in.tum.de)

- Written examination
Chapter 0 Administrative Issues

Lectures:
- 2 Hours/Week
- Times/Place: Tuesday, 11:30-13:00, room MI 00.08.038

Tutorials:
- 2 Hours/Week
- Proposal for Times/Place: Wednesday, 11:00-12:30, room MI 03.11.018

Office Hours:
- By Appointment (chibisov@in.tum.de)

Written examination
Chapter 0 Administrative Issues

- Lectures:
 - 2 Hours/Week
 - Times/Place: Tuesday, 11:30-13:00, room MI 00.08.038

- Tutorials:
 - 2 Hours/Week
 - Proposal for Times/Place: Wednesday, 11:00-12:30, room MI 03.11.018

- Office Hours:
 - By Appointment (chibisov@in.tum.de)

- Written examination
1. Goals of this Course

In this course you should learn to formalize and model algorithmic problems in such a way that they become accessible to techniques based on such things as graphs, strings, algebraic objects, etc. We will be studying standard approaches to problems formulated within these models. Each algorithm will be derived and analyzed in terms of their time and space complexity. At the end of this course you should understand the underlying algorithmic methodologies and, ideally, be able to adapt the algorithms shown here to problems related, but not identical, to those shown in this class.
Introduction to algorithmics terminology

- Formalization of algorithmic problems
- Fundamental methodologies of algorithm design
- Algorithms for standard problems
- Basic methods of algorithm analysis
- Primitive and higher data structures
- Tutorials covering all this
Introduction to algorithmics terminology

Formalization of algorithmic problems

- Fundamental methodologies of algorithm design
- Algorithms for standard problems
- Basic methods of algorithm analysis
- Primitive and higher data structures
- Tutorials covering all this
- Introduction to algorithmics terminology
- Formalization of algorithmic problems
- Fundamental methodologies of algorithm design
 - Algorithms for standard problems
 - Basic methods of algorithm analysis
 - Primitive and higher data structures
 - Tutorials covering all this
Introduction to algorithmics terminology
- Formalization of algorithmic problems
- Fundamental methodologies of algorithm design
- Algorithms for standard problems
 - Basic methods of algorithm analysis
 - Primitive and higher data structures
 - Tutorials covering all this
Introduction to algorithmics terminology
Formalization of algorithmic problems
Fundamental methodologies of algorithm design
Algorithms for standard problems
Basic methods of algorithm analysis
Primitive and higher data structures
Tutorials covering all this
• Introduction to algorithmics terminolgy
• Formalization of algorithmic problems
• Fundamental methodologies of algorithm design
• Algorithms for standard problems
• Basic methods of algorithm analysis
• Primitive and higher data structures

• Tutorials covering all this
● Introduction to algorithmics terminology
● Formalization of algorithmic problems
● Fundamental methodologies of algorithm design
● Algorithms for standard problems
● Basic methods of algorithm analysis
● Primitive and higher data structures
● Tutorials covering all this
2. Contents

- Introduction, Basics, Notation
- Deriving Algorithms by Induction
- Sorting and Searching
- Data Structures
- Algorithms on Graphs
- Algorithms on Texts
- Algebraic and Numerical Problems
2. Contents

- Introduction, Basics, Notation
- Deriving Algorithms by Induction
- Sorting and Searching
- Data Structures
- Algorithms on Graphs
- Algorithms on Texts
- Algebraic and Numerical Problems
2. Contents

- Introduction, Basics, Notation
- Deriving Algorithms by Induction
 - Sorting and Searching
 - Data Structures
 - Algorithms on Graphs
 - Algorithms on Texts
 - Algebraic and Numerical Problems
2. Contents

- Introduction, Basics, Notation
- Deriving Algorithms by Induction
- Sorting and Searching
 - Data Structures
 - Algorithms on Graphs
 - Algorithms on Texts
 - Algebraic and Numerical Problems
2. Contents

- Introduction, Basics, Notation
- Deriving Algorithms by Induction
- Sorting and Searching
- Data Structures
 - Algorithms on Graphs
 - Algorithms on Texts
 - Algebraic and Numerical Problems
2. Contents

- Introduction, Basics, Notation
- Deriving Algorithms by Induction
- Sorting and Searching
- Data Structures
- Algorithms on Graphs
- Algorithms on Texts
- Algebraic and Numerical Problems
2. Contents

- Introduction, Basics, Notation
- Deriving Algorithms by Induction
- Sorting and Searching
- Data Structures
- Algorithms on Graphs
- Algorithms on Texts
- Algebraic and Numerical Problems
2. Contents

- Introduction, Basics, Notation
- Deriving Algorithms by Induction
- Sorting and Searching
- Data Structures
- Algorithms on Graphs
- Algorithms on Texts
- Algebraic and Numerical Problems
3. Literature

Robert Sedgewick
Algorithms in C, Parts 1-4: Fundamentals, Data Structures, Sorting, Searching (3rd Edition).
Addison-Wesley Publishing Company, Reading (MA), 1990

Introduction to Algorithms.

Donald E. Knuth.
Addison-Wesley Publishing Company, Reading (MA), 1973
Chapter I Motivation

1. Introduction

Definition 1
An Algorithm is an unambiguously specified method for obtaining some desired output, given some input. Here we consider algorithms satisfying the following special properties:
Chapter I Motivation

1. Introduction

Definition 1
An Algorithm is an unambiguously specified method for obtaining some desired output, given some input. Here we consider algorithms satisfying the following special properties:

- **sequential**: At any point during the execution, exactly one operation is carried out.
- **deterministic**: At any point during the execution, the subsequent step is uniquely defined.
- **statically finite**: The description of the algorithm requires only a finite amount of space.
- **dynamically finite**: At any point during the execution, only a finite amount of storage is occupied.
- **termination**: The execution is guaranteed to end after a finite number of steps.
Chapter I Motivation

1. Introduction

Definition 1
An Algorithm is an unambiguously specified method for obtaining some desired output, given some input. Here we consider algorithms satisfying the following special properties:

- **sequential**: At any point during the execution, exactly one operation is carried out.
- **deterministic**: At any point during the execution, the subsequent step is uniquely defined.
- **statically finite**: The description of the algorithm requires only a finite amount of space.
- **dynamically finite**: At any point during the execution, only a finite amount of storage is occupied.
- **termination**: The execution is guaranteed to end after a finite number of steps.
Chapter I Motivation

1. Introduction

Definition 1
An Algorithm is an unambiguously specified method for obtaining some desired output, given some input. Here we consider algorithms satisfying the following special properties:

- **sequential**: At any point during the execution, exactly one operation is carried out.
- **deterministic**: At any point during the execution, the subsequent step is uniquely defined.
- **statically finite**: The description of the algorithm requires only a finite amount of space.
- **dynamically finite**: At any point during the execution, only a finite amount of storage is occupied.
- **termination**: The execution is guaranteed to end after a finite number of steps.
Chapter I Motivation

1. Introduction

Definition 1
An Algorithm is an unambiguously specified method for obtaining some desired output, given some input. Here we consider algorithms satisfying the following special properties:

- **sequential**: At any point during the execution, exactly one operation is carried out.
- **deterministic**: At any point during the execution, the subsequent step is uniquely defined.
- **statically finite**: The description of the algorithm requires only a finite amount of space.
- **dynamically finite**: At any point during the execution, only a finite amount of storage is occupied.
- **termination**: The execution is guaranteed to end after a finite number of steps.
Chapter I Motivation

1. Introduction

Definition 1
An Algorithm is an unambiguously specified method for obtaining some desired output, given some input. Here we consider algorithms satisfying the following special properties:

- **sequential**: At any point during the execution, exactly one operation is carried out.
- **deterministic**: At any point during the execution, the subsequent step is uniquely defined.
- **statically finite**: The description of the algorithm requires only a finite amount of space.
- **dynamically finite**: At any point during the execution, only a finite amount of storage is occupied.
- **termination**: The execution is guaranteed to end after a finite number of steps.
Example 2

Examples of real-life problems requiring elaborate, efficient algorithms:

- Data organization and efficient lookup in a web search engine
- Data management in a large customer database
- Weather forecast by simulation of fluid flows
- Assembly of the human genome from hundreds of thousands of sequenced fragments
- Computation of a VLSI layout
- Compression of an audio or video file
- Encryption and decryption of secret information for transmission over the internet
- etc.
Example 2
Examples of real-life problems requiring elaborate, efficient algorithms:

- Data organization and efficient lookup in a web search engine
- Data management in a large customer database
- Weather forecast by simulation of fluid flows
- Assembly of the human genome from hundreds of thousands of sequenced fragments
- Computation of a VLSI layout
- Compression of an audio or video file
- Encryption and decryption of secret information for transmission over the internet
- etc.
Example 2

Examples of real-life problems requiring elaborate, efficient algorithms:

- Data organization and efficient lookup in a web search engine
- Data management in a large customer database
- Weather forecast by simulation of fluid flows
- Assembly of the human genome from hundreds of thousands of sequenced fragments
- Computation of a VLSI layout
- Compression of an audio or video file
- Encryption and decryption of secret information for transmission over the internet
- etc.
Example 2

Examples of real-life problems requiring elaborate, efficient algorithms:

- Data organization and efficient lookup in a web search engine
- Data management in a large customer database
- Weather forecast by simulation of fluid flows
- Assembly of the human genome from hundreds of thousands of sequenced fragments
- Computation of a VLSI layout
- Compression of an audio or video file
- Encryption and decryption of secret information for transmission over the internet
- etc.
Example 2
Examples of real-life problems requiring elaborate, efficient algorithms:

- Data organization and efficient lookup in a web search engine
- Data management in a large customer database
- Weather forecast by simulation of fluid flows
- Assembly of the human genome from hundreds of thousands of sequenced fragments
- Computation of a VLSI layout
- Compression of an audio or video file
- Encryption and decryption of secret information for transmission over the internet
- etc.
Example 2
Examples of real-life problems requiring elaborate, efficient algorithms:

- Data organization and efficient lookup in a web search engine
- Data management in a large customer database
- Weather forecast by simulation of fluid flows
- Assembly of the human genome from hundreds of thousands of sequenced fragments
- Computation of a VLSI layout
- Compression of an audio or video file
- Encryption and decryption of secret information for transmission over the internet
- etc.
Example 2

Examples of real-life problems requiring elaborate, efficient algorithms:

- Data organization and efficient lookup in a web search engine
- Data management in a large customer database
- Weather forecast by simulation of fluid flows
- Assembly of the human genome from hundreds of thousands of sequenced fragments
- Computation of a VLSI layout
- Compression of an audio or video file
- Encryption and decryption of secret information for transmission over the internet
- etc.
Example 2

Examples of real-life problems requiring elaborate, efficient algorithms:

- Data organization and efficient lookup in a web search engine
- Data management in a large customer database
- Weather forecast by simulation of fluid flows
- Assembly of the human genome from hundreds of thousands of sequenced fragments
- Computation of a VLSI layout
- Compression of an audio or video file
- Encryption and decryption of secret information for transmission over the internet

etc.
Example 2
Examples of real-life problems requiring elaborate, efficient algorithms:

- Data organization and efficient lookup in a web search engine
- Data management in a large customer database
- Weather forecast by simulation of fluid flows
- Assembly of the human genome from hundreds of thousands of sequenced fragments
- Computation of a VLSI layout
- Compression of an audio or video file
- Encryption and decryption of secret information for transmission over the internet
- etc.
2. Algorithms and Efficiency

The efficiency of an algorithm is mostly measured in terms of the **running time** and the usage of **(storage) space** during its execution. Both are typically specified as functions of the input size (in bits). Mostly, the running time is specified as the *number of operations* executed (e.g. additions, comparisons).
Example 3

Suppose that a given machine takes $1\mu s$ per operation. Let us consider different algorithms of varying time complexity for the same problem. We show the running time $T(n)$ (in seconds, hours, etc.) for different input sizes n and for different algorithms whose time complexities are

- $t(n) = 1000n$ (A1)
- $t(n) = 1000n\log n$ (A2)
- $t(n) = n^2$ (A3)
- $t(n) = 10n^3$ (A4)
- $t(n) = 2n$ (A5).
Example 3
Suppose that a given machine takes $1 \mu s$ per operation. Let us consider different algorithms of varying time complexity for the same problem. We show the running time $T(n)$ (in seconds, hours, etc.) for different input sizes n and for different algorithms whose time complexities are

- $t(n) = 1000n$ (A1)
- $t(n) = 1000n \log n$ (A2)
- $t(n) = n^2$ (A3)
- $t(n) = 10n^3$ (A4)
- $t(n) = 2^n$ (A5).
Example 3
Suppose that a given machine takes $1\mu s$ per operation. Let us consider different algorithms of varying time complexity for the same problem. We show the running time $T(n)$ (in seconds, hours, etc.) for different input sizes n and for different algorithms whose time complexities are

- $t(n) = 1000n$ (A1)
- $t(n) = 1000n \log n$ (A2)
- $t(n) = n^2$ (A3)
- $t(n) = 10n^3$ (A4)
- $t(n) = 2^n$ (A5).
Example 3

Suppose that a given machine takes $1\mu s$ per operation. Let us consider different algorithms of varying time complexity for the same problem. We show the runnning time $T(n)$ (in seconds, hours, etc.) for different input sizes n and for different algorithms whose time complexities are

- $t(n) = 1000n$ (A1)
- $t(n) = 1000n \log n$ (A2)
- $t(n) = n^2$ (A3)
- $t(n) = 10n^3$ (A4)
- $t(n) = 2^n$ (A5).
Example 3

Suppose that a given machine takes 1\(\mu s\) per operation. Let us consider different algorithms of varying time complexity for the same problem. We show the \textit{running time} \(T(n)\) (in seconds, hours, etc.) for different \textit{input sizes} \(n\) and for different algorithms whose time complexities are

- \(t(n) = 1000n\) (A1)
- \(t(n) = 1000n \log n\) (A2)
- \(t(n) = n^2\) (A3)
- \(t(n) = 10n^3\) (A4)
- \(t(n) = 2^n\) (A5).
Example 3
Suppose that a given machine takes $1\mu s$ per operation. Let us consider different algorithms of varying time complexity for the same problem. We show the *running time* $T(n)$ (in seconds, hours, etc.) for different *input sizes* n and for different algorithms whose time complexities are

\begin{itemize}
 \item $t(n) = 1000n$ (A1)
 \item $t(n) = 1000n \log n$ (A2)
 \item $t(n) = n^2$ (A3)
 \item $t(n) = 10n^3$ (A4)
 \item $t(n) = 2^n$ (A5).
\end{itemize}
<table>
<thead>
<tr>
<th></th>
<th>20</th>
<th>50</th>
<th>100</th>
<th>200</th>
<th>500</th>
<th>1000</th>
<th>10000</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>0.02s</td>
<td>0.05s</td>
<td>0.1s</td>
<td>0.2s</td>
<td>0.5s</td>
<td>1s</td>
<td>10s</td>
</tr>
<tr>
<td>A2</td>
<td>0.09s</td>
<td>0.3s</td>
<td>0.6s</td>
<td>1.5s</td>
<td>4.5s</td>
<td>10s</td>
<td>2min</td>
</tr>
<tr>
<td>A3</td>
<td>0.04s</td>
<td>0.25s</td>
<td>1s</td>
<td>4s</td>
<td>25s</td>
<td>2min</td>
<td>2.8h</td>
</tr>
<tr>
<td>A4</td>
<td>0.02s</td>
<td>1s</td>
<td>10s</td>
<td>1min</td>
<td>21min</td>
<td>2.7h</td>
<td>116d</td>
</tr>
<tr>
<td>A5</td>
<td>1s</td>
<td>35yrs</td>
<td>3×10^4 cent.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Here is a plot of the running times (in μs) as a function of the input size. Algorithms more efficient for some n cost more for other n.

![Plot of running times](image-url)
But in general these examples show us that, for sufficiently large input sizes, the **complexity** of an algorithm determines whether or not a given algorithm is usable in practice:
But in general these examples show us that, for sufficiently large input sizes, the complexity of an algorithm determines whether or not a given algorithm is usable in practice.

Some argue as follows:
"There is no need for efficient algorithms — If some computation is too slow, I’ll buy a faster machine."

Well, all that results from a faster machine is a different constant factor in the running time. This, however, is typically dwarfed by the effect of slightly increasing n if the time complexity is high. Let us examine this phenomenon:
But in general these examples show us that, for sufficiently large input sizes, the complexity of an algorithm determines whether or not a given algorithm is usable in practice.

Some argue as follows:
"There is no need for efficient algorithms — If some computation is too slow, I’ll buy a faster machine."

Well, all that results from a faster machine is a different constant factor in the running time. This, however, is typically dwarfed by the effect of slightly increasing n if the time complexity is high. Let us examine this phenomenon:
But in general these examples show us that, for sufficiently large input sizes, the complexity of an algorithm determines whether or not a given algorithm is usable in practice.

Some argue as follows:
"There is no need for efficient algorithms — If some computation is too slow, I'll buy a faster machine."

Well, all that results from a faster machine is a different constant factor in the running time. This, however, is typically dwarfed by the effect of slightly increasing n if the time complexity is high. Let us examine this phenomenon:
3. Maximum Feasible Input Size

Suppose we are using a machine that executes f operations per second (in the example: $f = 10^6$). The algorithm requires $t(n)$ operations on inputs of size n (where $t(n)$ strictly grows in n). The measured running time then is

$$T(n) = \frac{t(n)}{f} \text{ [in seconds]}$$

If we need the computation to be finished within s seconds, the input size is limited to

$$n \leq t^{-1}(s \cdot f).$$
3. Maximum Feasible Input Size

Suppose we are using a machine that executes \(f \) operations per second (in the example: \(f = 10^6 \)). The algorithm requires \(t(n) \) operations on inputs of size \(n \), where \(t(n) \) strictly grows in \(n \). The measured running time then is

\[
T(n) = \frac{t(n)}{f} \text{ [in seconds]}
\]

If we need the computation to be finished within \(s \) seconds, the input size is limited to

\[
n \leq t^{-1}(s \cdot f).
\]
3. Maximum Feasible Input Size

Suppose we are using a machine that executes f operations per second (in the example: $f = 10^6$). The algorithm requires $t(n)$ operations on inputs of size n (where $t(n)$ strictly grows in n). The measured running time then is

$$T(n) = \frac{t(n)}{f} \text{ [in seconds]}$$

If we need the computation to be finished within s seconds, the input size is limited to

$$n \leq t^{-1}(s \cdot f).$$
3. Maximum Feasible Input Size

Suppose we are using a machine that executes f operations per second (in the example: $f = 10^6$). The algorithm requires $t(n)$ operations on inputs of size n (where $t(n)$ strictly grows in n). The measured running time then is

$$T(n) = \frac{t(n)}{f} \text{ [in seconds]}$$

If we need the computation to be finished within s seconds, the input size is limited to

$$n \leq t^{-1}(s \cdot f).$$
Example 4
Suppose the algorithm’s time complexity is \(t(n) = n^2 \), and suppose the maximum permissible running time is \(s \). Increasing the machine’s speed \(f \) by a factor of 2 (1000) allows us to increase the input size \(n \) by only a factor of 1.414 (31.62).

Example 5
Suppose the algorithm’s time complexity is \(t(n) = 2^n \), and suppose the maximum permissible running time is \(s \). Increasing the machine’s speed \(f \) by a factor of 2 (1000) allows us to increase the input size \(n \) only by the additive constant 1 (\([\log 1000] = 9\)).

Exercise 1
Suppose the algorithm’s time complexity is \(t(n) = 2^{\log(n)} \), and suppose the maximum permissible running time is \(s \). What increasing of the input size \(n \) would be caused by increasing of the machine’s speed \(f \) by a factor of 2 (1000)?
Example 4
Suppose the algorithm’s time complexity is $t(n) = n^2$, and suppose the maximum permissible running time is s. Increasing the machine’s speed f by a factor of 2 (1000) allows us to increase the input size n by only a factor of 1.414 (31.62).

Example 5
Suppose the algorithm’s time complexity is $t(n) = 2^n$, and suppose the maximum permissible running time is s. Increasing the machine’s speed f by a factor of 2 (1000) allows us to increase the input size n only by the additive constant 1 ($\lfloor \log 1000 \rfloor = 9$).

Exercise 1
Suppose the algorithm’s time complexity is $t(n) = 2^{\log(n)}$, and suppose the maximum permissible running time is s. What increasing of the input size n would be caused by increasing of the machine’s speed f by a factor of 2 (1000)?
Chapter II Introduction, Basics and Notation

1. Introductory Example: The Fibonacci Numbers

Problem: How fast does a population of rabbits grow?
Suppose:
Chapter II Introduction, Basics and Notation

1. Introductory Example: The Fibonacci Numbers

Problem: How fast does a population of rabbits grow?
Suppose:

- At the beginning of the first month, 1 pair of rabbits exists
- After being born, a rabbit begins breeding at the age of 1 month
- Each pair of rabbits produces one new pair (1 female, 1 male) per month
- Rabbits live infinitely long
- We disregard the genetic effects of inbreeding
Chapter II Introduction, Basics and Notation

1. Introductory Example: The Fibonacci Numbers

Problem: How fast does a population of rabbits grow?
Suppose:
- At the beginning of the first month, 1 pair of rabbits exists
- After being born, a rabbit begins breeding at the age of 1 month
- Each pair of rabbits produces one new pair (1 female, 1 male) per month
- Rabbits live infinitely long
- We disregard the genetic effects of inbreeding
Chapter II Introduction, Basics and Notation

1. Introductory Example: The Fibonacci Numbers

Problem: How fast does a population of rabbits grow?

Suppose:

- At the beginning of the first month, 1 pair of rabbits exists
- After being born, a rabbit begins breeding at the age of 1 month
- Each pair of rabbits produces one new pair (1 female, 1 male) per month
- Rabbits live infinitely long
- We disregard the genetic effects of inbreeding
Chapter II Introduction, Basics and Notation

1. Introductory Example: The Fibonacci Numbers

Problem: How fast does a population of rabbits grow?
Suppose:

- At the beginning of the first month, 1 pair of rabbits exists
- After being born, a rabbit begins breeding at the age of 1 month
- Each pair of rabbits produces one new pair (1 female, 1 male) per month
- Rabbits live infinitely long

 We disregard the genetic effects of inbreeding
Chapter II Introduction, Basics and Notation

1. Introductory Example: The Fibonacci Numbers

Problem: How fast does a population of rabbits grow?

Suppose:

- At the beginning of the first month, 1 pair of rabbits exists
- After being born, a rabbit begins breeding at the age of 1 month
- Each pair of rabbits produces one new pair (1 female, 1 male) per month
- Rabbits live infinitely long
- We disregard the genetic effects of inbreeding
We can see from the above specification that:

- In the n-th month there exist the rabbits that already existed in the $(n - 1)$-th month, and
- those who existed in the $(n - 2)$-th month were old enough to breed. Hence the latter have produced offspring.

So the number f_n of rabbits existing in the n-th month can be described by the following recurrence relation:

$$
\begin{align*}
 f_1 &= 1 \\
 f_2 &= 1 \\
 f_n &= f_{n-1} + f_{n-2} \text{ for } n \geq 3
\end{align*}
$$

Definition 6
For $n \geq 1$, the numbers f_n defined above are known as **Fibonacci Numbers**.
1.1 1st Algorithm for Computing Fibonacci Numbers

This algorithm is a straightforward implementation of the above
(where we denote $f(n) := f_n$):

Algorithm:

```c
unsigned f(unsigned n){
    if (n <= 2) then return 1
    else return f(n - 1) + f(n - 2)
fi
}
```

The recurrence relation leads to a simple recursive algorithm: a
function that repeatedly calls itself. Let us take a look at the
complexity of this algorithm.
1.1 1st Algorithm for Computing Fibonacci Numbers
This algorithm is a straightforward implementation of the above (where we denote $f(n) := f_n$):

Algorithm:

```c
unsigned f(unsigned n){
    if (n ≤ 2) then return 1
    else return f(n − 1) + f(n − 2)
    fi
}
```

The recurrence relation leads to a simple recursive algorithm: a function that repeatedly calls itself. Let us take a look at the complexity of this algorithm.
1.1 1st Algorithm for Computing Fibonacci Numbers

This algorithm is a straightforward implementation of the above (where we denote $f(n) := f_n$):

Algorithm:

```c
unsigned f(unsigned n) {
    if (n <= 2) then return 1
    else return f(n - 1) + f(n - 2)
    fi
}
```

The recurrence relation leads to a simple recursive algorithm: a function that repeatedly calls itself. Let us take a look at the complexity of this algorithm.
We measure the complexity in terms of the number $t_{rek}(n)$ of arithmetic operations to be performed as a function of the value of n (rather than the size $\lceil \log n \rceil$ of input n). Given an algorithm like this, the complexity can easily be written down in a recursive way, symmetrically to the algorithm itself. It holds that

$$
\begin{align*}
t_{rek}(1) &= 0 \\
t_{rek}(2) &= 0 \\
t_{rek}(n) &= 3 + t_{rek}(n-1) + t_{rek}(n-2) \\
& \quad \text{for } n \geq 3.
\end{align*}
$$

The problem with this formulation is that we need to obtain an explicit representation of $t_{rek}(n)$ in a separate step.
We measure the complexity in terms of the number $t_{rek}(n)$ of arithmetic operations to be performed as a function of the value of n (rather than the size $\lceil \log n \rceil$ of input n). Given an algorithm like this, the complexity can easily be written down in a recursive way, symmetrically to the algorithm itself. It holds that

- $t_{rek}(1) = 0$
- $t_{rek}(2) = 0$
- $t_{rek}(n) = 3 + t_{rek}(n - 1) + t_{rek}(n - 2)$ for $n \geq 3$.

The problem with this formulation is that we need to obtain an explicit representation of $t_{rek}(n)$ in a separate step.
We measure the complexity in terms of the number $t_{rek}(n)$ of arithmetic operations to be performed as a function of the value of n (rather than the size $\lceil \log n \rceil$ of input n). Given an algorithm like this, the complexity can easily be written down in a recursive way, symmetrically to the algorithm itself. It holds that

- $t_{rek}(1) = 0$
- $t_{rek}(2) = 0$
- $t_{rek}(n) = 3 + t_{rek}(n - 1) + t_{rek}(n - 2)$ for $n \geq 3$.

The problem with this formulation is that we need to obtain an explicit representation of $t_{rek}(n)$ in a separate step.
We measure the complexity in terms of the number $t_{rek}(n)$ of arithmetic operations to be performed as a function of the value of n (rather than the size $\lceil \log n \rceil$ of input n). Given an algorithm like this, the complexity can easily be written down in a recursive way, symmetrically to the algorithm itself. It holds that

- $t_{rek}(1) = 0$
- $t_{rek}(2) = 0$
- $t_{rek}(n) = 3 + t_{rek}(n - 1) + t_{rek}(n - 2)$ for $n \geq 3$.

The problem with this formulation is that we need to obtain an explicit representation of $t_{rek}(n)$ in a separate step.
Lemma 1

It holds that \(t_{rek}(n) = 3 \cdot f_n - 3 \) for \(n \geq 1 \).

Proof.

The base case:

Assume the statement holds for \(n - 2, n - 1 \):

Using

\[f_n = f_{n-1} + f_{n-2} \]

we obtain:
Lemma 1
It holds that \(t_{rek}(n) = 3 \cdot f_n - 3 \) for \(n \geq 1 \).

Proof.
The base case:

- \(t_{rek}(1) = 0 \),
- \(t_{rek}(2) = 0 \).

Assume the statement holds for \(n - 2 \), \(n - 1 \):

Using

\[f_n = f_{n-1} + f_{n-2} \]
we obtain:
Lemma 1

It holds that \(t_{rek}(n) = 3 \cdot f_n - 3 \) for \(n \geq 1 \).

Proof.

The base case:

- \(t_{rek}(1) = 0 \),
- \(t_{rek}(2) = 0 \).

Assume the statement holds for \(n - 2, n - 1 \):

Using

- \(f_n = f_{n-1} + f_{n-2} \)

we obtain:
Lemma 1
It holds that $t_{rek}(n) = 3 \cdot f_n - 3$ for $n \geq 1$.

Proof.
The base case:

- $t_{rek}(1) = 0$,
- $t_{rek}(2) = 0$.

Assume the statement holds for $n - 2$, $n - 1$:

Using

- $f_n = f_{n-1} + f_{n-2}$

we obtain:
Lemma 1
It holds that \(t_{rek}(n) = 3 \cdot f_n - 3 \) for \(n \geq 1 \).

Proof.
The base case:
- \(t_{rek}(1) = 0 \),
- \(t_{rek}(2) = 0 \).

Assume the statement holds for \(n - 2, n - 1 \):
- \(t_{rek}(n - 2) = 3 \cdot f_{n-2} - 3 \),
- \(t_{rek}(n - 1) = 3 \cdot f_{n-1} - 3 \).

Using

\[f_n = f_{n-1} + f_{n-2} \]
we obtain:
Lemma 1

It holds that \(t_{rek}(n) = 3 \cdot f_n - 3 \) for \(n \geq 1 \).

Proof.

The base case:

- \(t_{rek}(1) = 0 \),
- \(t_{rek}(2) = 0 \).

Assume the statement holds for \(n - 2, n - 1 \):

- \(t_{rek}(n - 2) = 3 \cdot f_{n-2} - 3 \),
- \(t_{rek}(n - 1) = 3 \cdot f_{n-1} - 3 \).

Using \(f_n = f_{n-1} + f_{n-2} \) we obtain:
Lemma 1
It holds that $t_{rek}(n) = 3 \cdot f_n - 3$ for $n \geq 1$.

Proof.
The base case:
- $t_{rek}(1) = 0$,
- $t_{rek}(2) = 0$.

Assume the statement holds for $n - 2, n - 1$:
- $t_{rek}(n - 2) = 3 \cdot f_{n-2} - 3$,
- $t_{rek}(n - 1) = 3 \cdot f_{n-1} - 3$.

Using
- $f_n = f_{n-1} + f_{n-2}$

we obtain:
Lemma 1
It holds that $t_{rek}(n) = 3 \cdot f_n - 3$ for $n \geq 1$.

Proof.
The base case:

- $t_{rek}(1) = 0$,
- $t_{rek}(2) = 0$.

Assume the statement holds for $n - 2, n - 1$:

- $t_{rek}(n - 2) = 3 \cdot f_{n-2} - 3$,
- $t_{rek}(n - 1) = 3 \cdot f_{n-1} - 3$.

Using

- $t_{rek}(n) = 3 + t_{rek}(n - 1) + t_{rek}(n - 2)$ for $n \geq 3$,
- $f_n = f_{n-1} + f_{n-2}$

we obtain:

$$t_{rek}(n) = 3 + 3 \cdot f_{n-2} - 3 + 3 \cdot f_{n-1} - 3 = 3 \cdot f_n - 3$$
Lemma 1

It holds that $t_{rek}(n) = 3 \cdot f_n - 3$ for $n \geq 1$.

Proof.

The base case:

- $t_{rek}(1) = 0$,
- $t_{rek}(2) = 0$.

Assume the statement holds for $n - 2$, $n - 1$:

- $t_{rek}(n - 2) = 3 \cdot f_{n-2} - 3$,
- $t_{rek}(n - 1) = 3 \cdot f_{n-1} - 3$.

Using

- $t_{rek}(n) = 3 + t_{rek}(n - 1) + t_{rek}(n - 2)$ for $n \geq 3$,
- $f_n = f_{n-1} + f_{n-2}$

we obtain:

- $t_{rek}(n) = 3 + 3 \cdot f_{n-2} - 3 + 3 \cdot f_{n-1} - 3 = 3 \cdot f_n - 3$