WS 2007/2008

Fundamental Algorithms

Dmytro Chibisov, Jens Ernst

Fakultät für Informatik
TU München

http://www14.in.tum.de/lehre/2007WS/fa-cse/

Fall Semester 2007
1. Depth First Search

1.1 Application of DFS: Topological Sorting

Definition 1
Given a directed acyclic graph (dag) \(G = (V, E) \), a topological sort of \(G \) is a linear ordering of all its vertices such that if \(G \) contains an edge \((u, v)\), then \(u \) appears before \(v \) in the ordering.

Computation problem: assign the unique number \(f(v) \in \{1, \ldots, |V|\} \) to every \(v \in V \), such that for every \((u, v) \in E\) \(f(u) < f(v) \).

Example 2

\[
V = \{\text{shirt, belt, tie, jacket, watch, pants, underwear, shoes, socks}\}
\]

\[
E = \{(\text{shirt, tie}), (\text{shirt, belt}), (\text{tie, jacket}), (\text{belt, jacket}), (\text{pants, shoes}), (\text{pants, belt}), (\text{socks, shoes}), (\text{underwear, pants})\}
\]
Topological Sorting:
void TopSort(vertex v) {
 initialize the empty stack; // global variable
 foreach (v ∈ V) do v.dfsnum := 0; od
 while ∃v₀ ∈ V : v₀.dfsnum = 0 do modified-DFS(v₀) od
 od }

Modified DFS:
void modified-DFS(vertex v) {
 v.dfsnum := counter++;
 foreach (w|(v, w) ∈ E) do
 if (w.dfsnum = 0) then modified-DFS(w); fi
 od
 push(v) }

Topological Sorting:
void TopSort(vertex v){
 initialize the empty stack; // global variable
 foreach (v ∈ V) do v.dfsnum := 0; od
 while ∃v₀ ∈ V : v₀.dfsnum = 0 do modified-DFS(v₀) od
 od }

Modified DFS:
void modified-DFS(vertex v){
 v.dfsnum := counter++;
 foreach (w|(v, w) ∈ E) do
 if (w.dfsnum=0) then modified-DFS(w); fi
 od
 push(v) }

1.2 Classification of edges:

DFS performs the partition of edges into four classes:

- **Tree edges** – edge \((u, v)\) is a tree edge if \(v\) was first discovered by exploring edge \((u, v)\) \((v dfsnum = 0)\).

- **Back edges** – edge \((u, v)\) connecting a vertex \(u\) to an ancestor \(v\) in a depth-first tree \((v dfsnum < u dfsnum, and DFS(v) is not finished)\).

- **Forward edges** – non-tree edges \((u, v)\) connecting a vertex \(u\) to a descendant \(v\) in a depth-first tree \((v dfsnum > u dfsnum)\).

- **Cross edges** – are all other edges \((u dfsnum > v dfsnum, and DFS(v) is finished)\).
Lemma 3

In a depth first search of an undirected graph G, every edge of G is either a tree edge, or a back edge.

Proof.
Let $\{u, v\}$ be an arbitrary edge of G, and suppose without loss of generality that $u.dfsnum < v.dfsnum$. Then, v must be finished before we finish u, since v is on u’s adjacency list. If the edge $\{u, v\}$ is explored first in the direction from u to v, then $\{u, v\}$ becomes a tree edge. If $\{u, v\}$ is explored first in the direction from v to u, then $\{u, v\}$ is a back edge.

\qed