WS 2007/2008

Fundamental Algorithms

Dmytro Chibisov, Jens Ernst

Fakultät für Informatik
TU München

http://www14.in.tum.de/lehre/2007WS/fa-cse/

Fall Semester 2007
1. Depth First Search

1.1 Application of Depth First Search: topological sorting
Finished last week!

1.2 Application of Depth First Search: determining biconnected components

Definition 1
Let $G = (V, E)$ be a connected undirected graph. A vertex a is said to be an *articulation point* of G if there exist vertices v and w, and every path between v and w contains the vertex a.

Stated another way, a is an articulation point of G if removing a splits G into two or more parts.

Definition 2
The graph $G = (V, E)$ is called biconnected if for every distinct triple of vertices v, w, and a there exist a path between v and w not containing a.
Example 3
Consider $G = (V, E)$ such that

$$V = (v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8, v_9)$$

and

$$E = (\{v_1, v_2\}, \{v_1, v_3\}, \{v_2, v_3\}, \{v_2, v_5\}, \{v_4, v_5\}, \{v_4, v_6\}, \{v_6, v_9\}, \{v_6, v_8\}, \{v_6, v_7\}, \{v_7, v_8\}, \{v_8, v_9\})$$

Articulation nodes: v_2, v_4, v_6. Biconnected components:

$E_1 = (\{v_4, v_6\}), V_1 = (v_4, v_6); V_2 = (v_1, v_2, v_3)$,

$E_2 = (\{v_1, v_2\}, \{v_1, v_3\}, \{v_2, v_3\}); V_3 = (v_2, v_4, v_5)$,

$E_3 = (\{v_2, v_4\}, \{v_2, v_5\}, \{v_4, v_5\}); V_4 = (v_6, v_7, v_8, v_9)$,

$E_4 = (\{v_6, v_7\}, \{v_6, v_8\}, \{v_6, v_9\}, \{v_9, v_8\}, \{v_7, v_8\})$.
Example 4
Consider the electric power net supplying a city. The failure at the articulation point of the net leads to power blackout of some parts of the city. To locate the crash - find the articulated vertices of the power net graph. To design the safe power supply - check the biconnectivity of the power net graph.
Theorem 5
If \{u, v\} is a back edge, then in the DFS forest \(u\) is an ancestor of \(v\) or vice versa.

Proof.
Easy. Homework.
Theorem 6

Vertex a is an articulation point of G if and only if either

(1) *a is the root and a has more than one son, or*

(2) *a is not the root, and for some son s of a there is no back edge between any descendant of s (including s itself) and an ancestor of a*

Proof

- First, show that a root is an articulation point iff a has more than one son.
 - Easy. Homework.

- (2) is true ⇒ a (not the root) is an articulation point

 Let f be a father of a. According to Theorem 1 any back edge from a descendant v of s goes to the ancestor of v. By (2) the back edge can not go to the ancestor of a. Thus, every path from s to f contains a implying that a is an articulation point.
Proof (Cont.)

- a (not the root) is an articulation point \Rightarrow (2) is true

- Let x, y be distinct vertices other than a. x or y (or both) is a descendant of a (otherwise the path between x and y avoiding a would exist, and a would not be an articulation point). Two cases are possible (try to present them graphically!):
 1. Without loss of generality let x be a descendant of a and y not. If in contradiction to (2) a back edge goes to the descendant of a, then this edge allows the way from x to y avoiding a. Contradiction to the hypothesis that a is an articulation point.
 2. Let x and y be descendants of a. Let x be a descendant of s (perhaps $x = s$). Surely, y is not the descendant of s (otherwise the path avoiding a would exist). Let \tilde{s} be the son of a such that y is the descendant of \tilde{s}. The existence of a back edge from some descendant of \tilde{s} would allow the path avoiding a. Contradiction to the hypothesis that a is an articulation point.

□
Exercise 1

Homework: Modify the DFS algorithm to check the biconnectivity of a given graph. Hint: use Theorem 6 to check the existence of back edges.
Iterative version of the DFS algorithm: Consider the data structure called stack. The following operations have to be supported:

- **void push(int)** – insert the element into the stack
- **in pop()** – delete the element into the stack

Properties:

- LIFO (Last Input First Output)
- The elements are inserted in the same order `push` is called
- The element deleted from the stack using `pop` is the one most recently inserted
DepthFirstSearch:
void DepthFirstSearch(vertex v){
 initialize the empty stack; // global variable
 foreach (v ∈ V) do v.dfsnum := 0; od
 while ∃v₀ ∈ V : v₀.dfsnum = 0 do DFS(v₀) od
 od }

DFS:
void DFS(vertex v){
 push(v);
 while (stack not empty) do
 v:= pop();
 if (v.dfsnum = 0) then
 v.dfsnum:=counter++;
 foreach (w|(v, w) ∈ E ({v, w} ∈ E)) do
 push(w);
 od
 fi
 od }
DepthFirstSearch:
void DepthFirstSearch(vertex v){
 initialize the empty stack; // global variable
 foreach (v ∈ V) do v.df snum := 0; od
 while ∃v₀ ∈ V : v₀.df snum = 0 do DFS(v₀) od
 od }

DFS:
void DFS(vertex v){
 push(v);
 while (stack not empty) do
 v:= pop();
 if (v.df snum = 0) then
 v.df snum:=counter++;
 foreach (w|(v, w) ∈ E ({v, w} ∈ E)) do
 push(w);
 od
 fi
 od }
2. Breadth first search (BFS)

Consider the data structure called queue. The following operations have to be supported:

- **void enqueue(int)** – insert the element into the stack
- **int dequeue()** – delete the element into the stack

Properties:

- FIFO (First Input First Output)
- The elements are inserted in the same order **enqueue** is called
- The element deleted from the stack using **dequeue** is the first inserted
BreadthFirstSearch:
void BreadthFirstSearch(vertex v){
 initialize the empty stack; // global variable
 foreach (v ∈ V) do v.bfsnum := 0; od
 while ∃v₀ ∈ V : v₀.bfsnum = 0 do DFS(v₀) od
 od }

BFS:
void BFS(vertex v){
 enqueue(v);
 while (stack not empty) do
 v:= dequeue();
 if (v.bfsnum = 0) then
 foreach (w|(v, w) ∈ E (v₀, w) ∈ E) do
 enqueue(w);
 w.bfsnum = v.bfsnum + 1
 od
 fi
 od }
BreadthFirstSearch:
void BreadthFirstSearch(vertex v) {
 initialize the empty stack; // global variable
 foreach (v \in V) do v.bfsnum := 0; od
 while \exists v_0 \in V : v_0.bfsnum = 0 do DFS(v_0) od
 od }

BFS:
void BFS(vertex v) {
 enqueue(v);
 while (stack not empty) do
 v := dequeue();
 if (v.bfsnum = 0) then
 foreach (w | (v, w) \in E \{v, w\} \in E) do
 enqueue(w);
 w.bfsnum = v.bfsnum + 1
 od
 fi
 od }
Recall the classification of edges introduced last week:

- **Tree edges** – edge \((u, v)\) is a tree edge if \(v\) was first discovered by exploring edge \((u, v)\) (\(v.dfsnum = 0\)).

- **Back edges** – edge \((u, v)\) connecting a vertex \(u\) to an ancestor \(v\) in a depth-first tree (\(v.dfsnum < u.dfsnum\), and \(\text{DFS}(v)\) is not finished).

- **Forward edges** – non-tree edges \((u, v)\) connecting a vertex \(u\) to a descendant \(v\) in a depth-first tree (\(v.dfsnum > u.dfsnum\)).

- **Cross edges** – are all other edges (\(u.dfsnum > v.dfsnum\), and \(\text{DFS}(v)\) is finished).
Lemma 7

In a breadth first search of an undirected graph G, every edge of G is either a tree edge, or a cross edge. Furthermore:

- for each tree edge (u, v): $v.bfsnum = u.bfsnum + 1$
- for each cross edge (u, v): $v.bfsnum = u.bfsnum + 1$ or $v.bfsnum = u.bfsnum$
Lemma 8

In a breadth first search of a directed graph G, every edge of G is either a tree edge, or a cross edge, or back edge. Furthermore:

- for each tree edge (u, v): $v.bfsnum = u.bfsnum + 1$
- for each cross edge (u, v): $v.bfsnum \leq u.bfsnum + 1$
- for each back edge (u, v): $0 \leq v.bfsnum < u.bfsnum$