WS 2007/2008

Fundamental Algorithms

Dmytro Chibisov, Jens Ernst

Fakultät für Informatik
TU München

http://www14.in.tum.de/lehre/2007WS/fa-cse/

Fall Semester 2007
1. Graph Algorithms

Definition 1
Let $G = (V, E)$ be an undirected graph. Select two nodes v, w, and two edges e, \tilde{e}.

- v, w are called adjacent iff $\{v, w\} \in E$
- v, e are called incident iff $v \in E$
- e, \tilde{e} are called adjacent iff $|e \cap \tilde{e}| \geq 1$
- e of the form $\{v, v\} = \{v\}$ is called loop
Lemma 2

Any undirected graph without loops contains at most \(\binom{n}{2} = \frac{n(n-1)}{2} \) edges, \(|V| = n \). Any undirected graph with loops contains at most \(\binom{n+1}{2} = \frac{n(n+1)}{2} \) edges, \(|V| = n \).

Proof.

Easy. Homework. Hint: Use \(\binom{n+1}{2} = \binom{n}{2} + n \) \(\square \)
Lemma 2
Any undirected graph without loops contains at most \(\binom{n}{2} = \frac{n(n-1)}{2} \) edges, \(|V| = n\). Any undirected graph with loops contains at most \(\binom{n+1}{2} = \frac{n(n+1)}{2} \) edges, \(|V| = n\).

Proof.
Easy. Homework. Hint: Use \(\binom{n+1}{2} = \binom{n}{2} + n \) \qed
Lemma 2
Any undirected graph without loops contains at most
\[\binom{n}{2} = \frac{n(n-1)}{2} \] edges, \(|V| = n \). Any undirected graph with loops contains at most
\[\binom{n+1}{2} = \frac{n(n+1)}{2} \] edges, \(|V| = n \).

Proof.
Easy. Homework. Hint: Use \(\binom{n+1}{2} = \binom{n}{2} + n \) \(\square \)
Definition 3
Let $G = (V, E)$ be an undirected graph. Select $v \in V$. Define the neighborhood of v to be $N(v) = \{w \in V : \{v, w\} \in E\}$.

- $\deg(v) = |N(v)|$
- $\delta(G) = \min\{\deg(v) : v \in V\}$
- $\Delta(G) = \max\{\deg(v) : v \in V\}$
Lemma 4

For any undirected $G = (V, E)$ the following is satisfied:

$$\sum_{v \in V} \deg(v) = 2 \cdot |E|$$

Proof.

$\sum_{v \in V} \deg(v)$ counts every edge twice. \qed
Lemma 4
For any undirected $G = (V, E)$ the following is satisfied:

$$\sum_{v \in V} \deg(v) = 2 \cdot |E|$$

Proof.
$\sum_{v \in V} \deg(v)$ counts every edge twice. \square
Definition 5
Let $G = (V, E)$ be an undirected graph. Select $v \in V$. Define the neighborhood of v to be $N(v) = \{w \in V : \{v, w\} \in E\}$.

- $\deg(v) = |N(v)|$
- $\delta(G) = \min\{\deg(v) : v \in V\}$
- $\Delta(G) = \max\{\deg(v) : v \in V\}$
2. Representation of graphs

2.1 Adjacency matrix

Definition 6

An adjacency matrix for $G = (V, E)$, $V = |n|$ is a $(n \times n)$-matrix $A = (a_{i,j})$, $n \geq i, j \geq n$ such that

- Case 1: G is undirected

 $a_{i,j} = \begin{cases}
 1, & \{i, j\} \in E \\
 0, & \{i, j\} \notin E
 \end{cases}$

- Case 2: G undirected

 $a_{i,j} = \begin{cases}
 1, & (i, j) \in E \\
 0, & (i, j) \notin E
 \end{cases}$
• Required space for adjacency matrix for $|V| = n$ is $\Theta(n^2)$.
• The adjacency matrix for an undirected graph is symmetric.
• The adjacency matrix for a directed graph is symmetric iff for every directed edge the antiparallel edge exists.
• The adjacency matrix for a directed graph has diagonal elements $\neq 0$ if there are loops.
2.2 Adjacency lists

Definition 7
An *adjacency list* is an array consisting of $|V|$ lists, which store the adjacent vertices for every $v \in V$.

- The order in which the adjacent vertices are stored can be chosen arbitrary
- For directed graphs two adjacency lists are introduced: for ancestors and for successors
3. Searching in Graphs

3.1 Depth-First-Search

3.1.1 Recursive Version

- For every vertex $v \in V$ let us define its DFS-number to be the number of the step at which v is visited (initialized with 0)
- Let $v_0 \in V$ be an arbitrary start vertex
- Let $counter$ be a global variable initialized with 1.

Algorithm:

```c
void DFS(vertex v){
    v.dfsnum := counter++;
    foreach (w|(v, w) \in E (\{v, w\} \in E)) do
        if (w.dfsnum=0) then DFS(w);
    od
}
```
3. Searching in Graphs

3.1 Depth-First-Search

3.1.1 Recursive Version

- For every vertex $v \in V$ let us define its $\textit{DFS-number}$ to be the number of the step at which v is visited (initialized with 0)
- Let $v_0 \in V$ be an arbitrary start vertex
- Let $\textit{counter}$ be a global variable initialized with 1.

Algorithm:

```cpp
void DFS(vertex v){
    v.dfsnum := counter++;
    foreach (w|(v, w) \in E \{ \{v, w\} \in E\}) do
        if (w.dfsnum=0) then DFS(w);
    od }```


3. Searching in Graphs

3.1 Depth-First-Search

3.1.1 Recursive Version

- For every vertex \( v \in V \) let us define its \textit{DFS-number} to be the number of the step at which \( v \) is visited (initialized with 0)
- Let \( v_0 \in V \) be an arbitrary start vertex
- Let \textit{counter} be a global variable initialized with 1.

Algorithm:

```c
void DFS(vertex v){
 v.dfsnum := counter++;
 foreach (w|(v, w) \in E \{v, w\} \in E) do
 if (w.dfsnum=0) then DFS(w);
 od }
```
3. Searching in Graphs

3.1 Depth-First-Search

3.1.1 Recursive Version

- For every vertex $v \in V$ let us define its \textit{DFS-number} to be the number of the step at which $v$ is visited (initialized with 0)
- Let $v_0 \in V$ be an arbitrary start vertex
- Let \textit{counter} be a global variable initialized with 1.

**Algorithm:**

```plaintext
void DFS(vertex v){
 v.dfsnum := counter++;
 foreach (w | (v, w) ∈ E (\{v, w\} ∈ E)) do
 if (w.dfsnum=0) then DFS(w);
 od
}
```
The call
   counter:=1;
   DFS(v_0);
leads to visiting all vertices, which are reachable from $v_0$. Thus:

**Algorithm:**

```java
void DepthFirstSearch(graph G){
 counter:=1;
 foreach (v ∈ V) do v.dfsnum := 0 od
 while ∃v_0 ∈ V : v_0.dfsnum = 0 do DFS(v_0) od }
```

Complexity: $O(n + m)$ (every vertex is visited plus every edge is visited (≤ 2 times))
3.1.2 Iterative version

Consider the data structure called stack. The following operations have to be supported:

- **void push(int)** – insert the element into the stack
- **in pop()** – delete the element into the stack

Properties:

- LIFO (Last Input First Output)
- The elements are inserted in the same order **push** is called
- The element deleted from the stack using **pop** is the one most recently inserted
DepthFirstSearch:

```cpp
void DepthFirstSearch(vertex v) {
 initialize the empty stack; // global variable
 foreach (v ∈ V) do v.dfsnum := 0; od
 while ∃v₀ ∈ V : v₀.dfsnum = 0 do DFS(v₀) od
 od }
```

DFS:

```cpp
void DFS(vertex v) {
 push(v);
 while (stack not empty) do
 v := pop();
 if (v.dfsnum = 0) then
 v.dfsnum := counter++;
 foreach (w | (v, w) ∈ E (\{v, w\} ∈ E)) do
 push(w);
 od
 fi
 od
 }
```
DepthFirstSearch:

void DepthFirstSearch(vertex v) {
    initialize the empty stack; // global variable
    foreach (v ∈ V) do v.df snum := 0; od
    while ∃v₀ ∈ V : v₀.df snum = 0 do DFS(v₀) od
}

DFS:

void DFS(vertex v) {
    push(v);
    while (stack not empty) do
        v := pop();
        if (v.df snum = 0) then
            v.df snum := counter++;
            foreach (w | (v, w) ∈ E ({v, w} ∈ E)) do
                push(w);
            od
        fi
    od }

3.2 Classification of edges:
DFS performs the partition of edges into four classes:

- **Tree edges** – edge \((u, v)\) is a tree edge if \(v\) was first discovered by exploring edge \((u, v)\).
- **Back edges** – edge \((u, v)\) connecting a vertex \(u\) to an ancestor \(v\) in a depth-first tree.
- **Forward edges** – nontree edges \((u, v)\) connecting a vertex \(u\) to a descendant \(v\) in a depth-first tree.
- **Cross edges** – are all other edges.