Technische Universität München Fakultät für Informatik Lehrstuhl für Effiziente Algorithmen Prof. Dr. Christian Scheideler Jonas Pfoh

Effiziente Algorithmen und Datenstrukturen I

Aufgabe 1

The following is a table of amortized run-time bounds for Radix Heap Operations:

Operation	Run-Time
insert	$O(\log C)$
min	O(1)
deleteMin	O(1)
delete	O(1)
decreaseKey	O(1)

Prove these amortized run-time bounds. (*Hint:* Let one time step be the movement of a single element (i.e. t = # of elements moved). In this case the potential is then represented as the sum of the bin postions + 1 for all elements (i.e. $\Phi = \sum_{i=-1}^{K} |B[i]| \cdot (i+1)$))

Aufgabe 2

Consider the following Splay Tree:

Carry out the operations in the following order and show, after each operation, what the Splay Tree looks like(always carry out each operation on the result of the previous operation):

- 1. insert(7)
- 2. delete(5)
- 3. $\operatorname{search}(13)$

Aufgabe 3

Consider the following Treap (the weights are the values to the right of each element):

Carry out the operations in the following order and show, after each operation, what the Treap looks like(always carry out each operation on the result of the previous operation):

- 1. insert(8, weight=1)
- 2. delete(10)

Aufgabe 4

Lemma 3.7: Let $K = \{k_1, ..., k_n\}$ be a sorted set for which each element k_i has a unique weight $w(k_i)$. In the Treap T corresponding to K, k_j is an ancestor of k_i iff:

 $w(k_j) = \min\{w(k) | k \in K_{ij}\}$

where $K_{ij} = \{k_i, ..., k_j\}.$

Prove this lemma.