
Name: Christian Urban

I am using theorem provers:

My goal is to reduce the number of bugs in
programs.

Munich, 23 April 2009 – p. 1/13



Imagine You Are a
Perfect Programmer

Munich, 23 April 2009 – p. 2/13

What can make your program still not behave as
you intended?

perfect
program



Imagine You Are a
Perfect Programmer

Munich, 23 April 2009 – p. 2/13

cosmic
rays ;o)

What can make your program still not behave as
you intended?

perfect
program



Why Bothering with Compilers?
Ken Thompson hid a Trojan horse in a compiler
without leaving any traces in the source code.

Ken Thompson
Turing Award, 1983

Assume you ship binary and
sources of a compiler.

1) Make the compiler aware when it
compiles itself.

2) Add the Trojan horse.
3) Compile.
4) Delete Trojan horse from sources.
5) Go on holiday for the rest of your

life. ;o)

Munich, 23 April 2009 – p. 3/13



Why Bothering with Compilers?
Ken Thompson hid a Trojan horse in a compiler
without leaving any traces in the source code.

Ken Thompson
Turing Award, 1983

Assume you ship binary and
sources of a compiler.

1) Make the compiler aware when it
compiles itself.

2) Add the Trojan horse.
3) Compile.
4) Delete Trojan horse from sources.
5) Go on holiday for the rest of your

life. ;o)
Munich, 23 April 2009 – p. 3/13



Why Bothering with PLs?
“I call it my billion-dollar mistake. It was the invention of
the null reference in 1965. At that time, I was designing the
first comprehensive type system for references in an object
oriented language. My goal was to ensure that all use of
references should be absolutely safe, with checking
performed automatically by the compiler. But I couldn’t
resist the temptation to put in a null reference, simply
because it was so easy to implement. This has led to
innumerable errors, vulnerabilities, and system crashes,
which have probably caused a billion dollars of pain and
damage in the last forty years. . . ” Tony Hoare recently in a talk

Tony Hoare
Turing Award, 1980

(Quicksort)
Munich, 23 April 2009 – p. 4/13



Why Bothering with PLs?

Q: Why bother doing proofs about programming lan-
guages? They are almost always boring if the
definitions are right.

A: The definitions are almost always wrong.
“Anonymous” cited in B. Pierce’s book on

Types and Programming Languages

Munich, 23 April 2009 – p. 5/13



What Do We Have to Do?

Munich, 23 April 2009 – p. 6/13

source code binary code

?



What We Have to Do?
specify precisely which programs we can write
(syntax)
specify precisely what a program means
(semantics)

specify precisely how the compiler translates a
program to machine code
specify precisely what machine code is and how it
is executed

finally check (prove) that the result of the
machine code run is what we expect

everything in 2h!

Munich, 23 April 2009 – p. 7/13



What We Have to Do?
specify precisely which programs we can write
(syntax)
specify precisely what a program means
(semantics)

specify precisely how the compiler translates a
program to machine code
specify precisely what machine code is and how it
is executed

finally check (prove) that the result of the
machine code run is what we expect
everything in 2h!

Munich, 23 April 2009 – p. 7/13



Simplifying Assumptions
our language will access the infinitely big memory
every memory location contains an arbitrary big
natural number

therefore a memory snapshot (a state) is a
function from locations to natural numbers

types
state = "loc⇒ nat"

for example: s 42 = 666

, s’ 42 = 0

Munich, 23 April 2009 – p. 8/13



Simplifying Assumptions
our language will access the infinitely big memory
every memory location contains an arbitrary big
natural number

therefore a memory snapshot (a state) is a
function from locations to natural numbers

types
state = "loc⇒ nat"

for example: s 42 = 666, s’ 42 = 0

Munich, 23 April 2009 – p. 8/13



Our Language
Each program is a sequence of commands:

datatype cmd =
SKIP
| ASSIGN loc aexp ("_ ::= _ " 60)
| SEQ cmd cmd ("_; _" [60, 60] 10)
| COND bexp cmd cmd ("IF _ THEN _ ELSE _" 60)
|WHILE bexp cmd ("WHILE _ DO _" 60)

where aexp and bexp are arithmetic and boolean
expressions (in a moment).

for example
WHILE true DO (42 ::= 1; SKIP)

Munich, 23 April 2009 – p. 9/13



Arithmetic Expressions
Arithmetic expressions:

datatype
aexp = N nat
| Op1 "nat⇒ nat" aexp
| Op2 "nat⇒ nat⇒ nat" aexp aexp

For example:
N 2, Op1 Suc (N 3), Op2 Plus (N 5) (N 6)

What is the meaning of an arithmetic
expressions?

Munich, 23 April 2009 – p. 10/13



Arithmetic Expressions
Arithmetic expressions:

datatype
aexp = N nat
| Op1 "nat⇒ nat" aexp
| Op2 "nat⇒ nat⇒ nat" aexp aexp

For example:
N 2, Op1 Suc (N 3), Op2 Plus (N 5) (N 6)

What is the meaning of an arithmetic
expressions?

Munich, 23 April 2009 – p. 10/13



Arithmetic Expressions
Arithmetic expressions:

datatype
aexp = N nat
| Op1 "nat⇒ nat" aexp
| Op2 "nat⇒ nat⇒ nat" aexp aexp

For example:
N 2, Op1 Suc (N 3), Op2 Plus (N 5) (N 6)

What is the meaning of an arithmetic
expressions?

Munich, 23 April 2009 – p. 10/13



Meaning of an Arithmetic Expression

datatype
aexp = N nat
| Op1 "nat⇒ nat" aexp
| Op2 "nat⇒ nat⇒ nat" aexp aexp

N n−→a n

e−→a n
Op1 f e−→a f n

e0 −→a n0 e1 −→a n1

Op2 f e0 e1 −→a f n0 n1

Munich, 23 April 2009 – p. 11/13



Meaning of an Arithmetic Expression

datatype
aexp = N nat
| Op1 "nat⇒ nat" aexp
| Op2 "nat⇒ nat⇒ nat" aexp aexp

N n−→a n

e−→a n
Op1 f e−→a f n

e0 −→a n0 e1 −→a n1

Op2 f e0 e1 −→a f n0 n1

Munich, 23 April 2009 – p. 11/13



Memory Access
Arithmetic expressions:

datatype
aexp = N nat
| X loc
| Op1 "nat⇒ nat" aexp
| Op2 "nat⇒ nat⇒ nat" aexp aexp

(N n,s)−→a n (X i,s)−→a s i

(e,s)−→a n
(Op1 f e,s)−→a f n

(e0,s)−→a n0 (e1,s)−→a n1

(Op2 f e0 e1,s)−→a f n0 n1
Munich, 23 April 2009 – p. 12/13



How Far We Got
specify precisely which programs we can write
(syntax)
specify precisely what a program means
(semantics)

specify precisely how the compiler translates a
program to machine code
specify precisely what machine code is and how it
is executed

finally check (prove) that the result of the
machine code run is what we expect

Munich, 23 April 2009 – p. 13/13




