Prove the Correctness of a Compiler

- The number of bugs in compilers is very small compared to those in other programs.
- But you have Thompson attacks.
- Also we want to verify program sources, but run machine code.

Last Week

- specified which programs we can write (syntax)
- (partly) specified what a program means (semantics)

Syntax (1)

datatype aexp =
N nat
| X loc
Op1 "nat \Rightarrow nat" aexp
Op2 "nat \Rightarrow nat \Rightarrow nat" aexp aexp
datatype bexp =
TRUE
FALSE
ROp "nat \Rightarrow nat \Rightarrow bool" aexp aexp
NOT bexp
AND bexp bexp
OR bexp bexp

Syntax (2)

datatype cmd = SKIP
| ASSIGN loc aexp ("_::=_"60) SEQ cmd cmd ("_i_" $[60,60] 10)$
COND bexp cmd cmd ("IF _ THEN _ ELSE _" 60)
| WHILE bexp cmd ("WHILE _DO _" 60)

- What does the factorial program look like?
- What is SKIP useful for?

Semantics of Aexps

$\overline{(N n, m) \longrightarrow a n} \overline{(X i, m) \longrightarrow a m i}$

$$
\frac{(e, m) \longrightarrow a n}{(O p 1 f e, m) \longrightarrow a f n}
$$

$$
\frac{(e 0, m) \longrightarrow a n 0 \quad(e 1, m) \longrightarrow a n 1}{(O p 2 f e 0 e 1, m) \longrightarrow a f n 0 n 1}
$$

- What is the semantics of bexps?

Semantics of Bexps

$$
\begin{gathered}
\begin{array}{c}
(e 1, m) \longrightarrow a n 1 \quad(e 2, m) \longrightarrow a n 2 \\
(R O p f e 1 e 2, m) \longrightarrow b f n 1 n 2 \\
\frac{(e, m) \longrightarrow b b}{(N O T ~ e, m) \longrightarrow b \neg b} \\
\frac{(e 1, m) \longrightarrow b b 1 \quad(e 2, m) \longrightarrow b b 2}{(A N D e 1 ~ e 2, m) \longrightarrow b b 1 \wedge b 2} \\
\frac{(e 1, m) \longrightarrow b b 1 \quad(e 2, m) \longrightarrow b b 2}{(O R e 1 ~ e 2, m) \longrightarrow b b 1 \vee b 2}
\end{array}
\end{gathered}
$$

$\overline{(S K I P, m) \longrightarrow c m} \quad \frac{(a, m) \longrightarrow a n}{(x::=a, m) \longrightarrow c m(x:=n)}$

$$
\frac{(c 0, m) \longrightarrow c m^{\prime} \quad\left(c 1, m^{\prime}\right) \longrightarrow c m^{\prime \prime}}{(c 0 ; c 1, m) \longrightarrow c m^{\prime \prime}}
$$

$(e, m) \longrightarrow b$ True $\quad(c 0, m) \longrightarrow c m^{\prime}$
(IF e THEN cO ELSE $c 1, m) \longrightarrow c m^{\prime}$
$(e, m) \longrightarrow b$ False $(c 1, m) \longrightarrow c m^{\prime}$
(IF e THEN cO ELSE $c 1, m$) $\longrightarrow c^{\prime} m^{\prime}$
$(e, m) \longrightarrow b$ False
(WHILE e DO $c, m) \longrightarrow c m$
$(e, m) \longrightarrow b$ True
$(c, m) \longrightarrow c m^{\prime} \quad$ (WHILE e DO $\left.c, m^{\prime}\right) \longrightarrow c m^{\prime \prime}$
(WHILE e DO $c, m) \longrightarrow \mathrm{cm}^{\prime \prime}$

Equivalence

- Two commands are equivalent
$c \approx c^{\prime} \equiv \forall m m^{\prime} .(c, m) \longrightarrow c m^{\prime}=\left(c^{\prime}, m\right) \longrightarrow c m^{\prime}$

Equivalence

- Two commands are equivalent

$$
c \approx c^{\prime} \equiv \forall m m^{\prime} .(c, m) \longrightarrow c m^{\prime}=\left(c^{\prime}, m\right) \longrightarrow c m^{\prime}
$$

- SKIP; SKIP \approx SKIP

Instructions

- We have a memory, a stack and a single register. datatype instr =

JMPF "nat"
JMPB "nat"
FETCH "loc"
STORE "loc"
PUSH "nat"
POP
SET "nat"
OPU "nat \Rightarrow nat"
OPB "nat \Rightarrow nat \Rightarrow nat" pop two from stack and apply f

Booleans

- We encode booleans as 0 and 1 .
fun
WRAP::"bool \Rightarrow nat"
where
"WRAP True $=1 "$
\mid "WRAP False $=0 "$
fun
MNot::"nat \Rightarrow nat"
where
"MNot $0=1$ "
| "MNot (Suc 0) = 0"

Compiler for Aexps

fun

compa

where

"compa (N n) = [PUSH n]"
| "compa (XI) = [FETCHI]"
"compa (Op1 fe) = (compa e) @ [OPU f]"
"compa (Op2 f e1 e2) =
(compa e1) @ (compa e2) @ [OPB f]"

Compiler for Bexps

fun

compb

where

"compb (TRUE) = [PUSH 1]"
| "compb (FALSE) = [PUSH O]"
| "compb (ROp f e1 e2) = (compa e1) @ (compa e2)
@ [OPB ($\lambda \times \mathrm{y}$. WRAP $(f \times y))]{ }^{\prime \prime}$
| "compb (NOT e) = (compb e) @ [OPU MNot]"
"compb (AND e1 e2) =
(compb e1) @ (compb e2) @ [OPB MAnd]"
| "compb (OR e1 e2) = (compb e1) @ (compb e2) @ [OPB MOr]"
fun
compc :: "cmd \Rightarrow instr list"
where
"compc SKIP = []"
"compc ($x::=a$) = (compa a) @ [STORE x]"
"compc (c1;c2) = compc c1 @ compc c2"
| "compc (IF b THEN c1 ELSE c2) =
(compb b) @ [POP] @
[JMPF (length(compc c1) + 1)] @ compc c1 @ [SET 0, JMPF (length(compc c2))] @ compc c2"
| "compc (WHILE b DO c) = (compb b) @ [POP] @
[JMPF (length (compc c) + 1)] @ compc c @ [JMPB (length $($ compc c)+length $($ compb b)+2)]"

Compiler Lemma for Aexps

- We have to know how machine programs are executed.
types instrs = "instr list"
types stack = "nat list"
inductive
step ("'(_,_,') $\longrightarrow m^{\prime}($ _,_,')") where
"(PUSH n\#p, s,m) $\longrightarrow m(p, n \# s, m)$ " "(FETCH I\#p, s,m) $\longrightarrow m(p, m \mid \# s, m)$ "
"(OPU f\#p, n\#s, m) $\longrightarrow m(p, f n \# s, m)$ "
"(OPB f\#p, n1\#n2\#s, m) $\longrightarrow m(p, f n 2 n 1 \# s, m) "$

Many Transitions

- We have to build the transitive closure.

Many Transitions

- We have to build the transitive closure.

$$
\begin{gathered}
(p, s, m) \longrightarrow m^{\star}(p, s, m) \\
\frac{(p 1, s 1, m) \longrightarrow m^{*}(p 2, s 2, m)}{(p 1, s 1, m) \longrightarrow m^{\star}(p 2, s 2, m)} \\
(p 1, s 1, m) \longrightarrow m^{\star}(p 2, s 2, m) \\
(p 2, s 2, m) \longrightarrow m^{\star}(p 3, s 3, m) \\
(p 1, s 1, m) \longrightarrow m^{\star}(p 3, s 3, m)
\end{gathered}
$$

Compiler Lemma for Aexps

- If $(e, m) \longrightarrow a n$, then
(compa e,[],m) $\longrightarrow m^{\star}([],[n], m)$

Compiler Lemma for Aexps

- If $(e, m) \longrightarrow a n$, then
(compa $e,[], m) \longrightarrow m^{\star}([],[n], m)$
- For all s, if $(e, m) \longrightarrow a n$, then
(compa $e, s, m) \longrightarrow m^{*}([], n \# s, m)$

Compiler Lemma for Aexps

- If $(e, m) \longrightarrow a n$, then (compa $e,[], m) \longrightarrow m^{*}([],[n], m)$
- For all s, if $(e, m) \longrightarrow a n$, then

$$
\text { (compa } e, s, m) \longrightarrow m^{\star}([], n \# s, m)
$$

lemma append:

$$
\begin{aligned}
& \text { assumes a: "(p1,s,m) } \longrightarrow m\left(p 2, s^{\prime}, m^{\prime}\right) " \\
& \text { shows "(p1@p3,s,m) } \left.\longrightarrow m \text { (p2@p3, }{ }^{\prime}, m^{\prime}\right) " \\
& \text { using a by (induct) (auto intro: step.intros) }
\end{aligned}
$$

lemma appends:

$$
\begin{aligned}
& \text { assumes a: "(p1,s,m) } \longrightarrow m^{*}\left(p 2, s^{\prime}, m^{\prime}\right) " \\
& \text { shows "(p1@p3,s,m) } \longrightarrow m^{*}\left(p 2 @ p 3, s^{\prime}, m^{\prime}\right) "
\end{aligned}
$$

using a by (induct) (auto intro: steps.intros append)

Compiler Lemma

- If $(e, m) \longrightarrow a n$, then
$\forall s .($ compa $e, s, m) \longrightarrow m^{*}([], n \# s, m)$

Compiler Lemma

- If $(e, m) \longrightarrow a n$, then

$$
\forall s .(\text { compa } e, s, m) \longrightarrow m^{\star}([], n \# s, m)
$$

- If $(e, m) \longrightarrow b b$, then
$\forall s .(c o m p b e, s, m) \longrightarrow m^{*}([], W R A P b \# s, m)$

```
inductive
```



```
where
    "(PUSH n\#p, q, r, s,m) \(\longrightarrow m(p\), PUSH n\#q, r, n\#s, m)"
| "(FETCH I\#p, q, r, s,m) \(\longrightarrow m(p\), FETCH |\#q, r, m|\#s, m)"
\(\mid\) "(OPU f\#p, q, r, n\#s, m) \(\longrightarrow m(p, O P U f \# q, r, f n \# s, m)\) "
| "(OPB f\#p,q,r,n1\#n2\#s,m) \(\longrightarrow m(p, O P B f \# q, r, f n 2 n 1 \# s, m)\) "
| "(POP\#p, q, r, n\#s,m) \(\longrightarrow m(p\), POP\#q, \(n, s, m)\) "
| "(SET \(n \# p, q, r, s, m) \longrightarrow m(p\), SET \(n \# q, n, s, m)\) "
\(\mid\) "(STORE \(x \# p, q, r, n \# s, m) \longrightarrow m(p, S T O R E \mid \# q, r, s, m(x:=n))\) "
| "(JMPF i\#p, q, Suc 0, s, m) \(\longrightarrow m\) (p, JMPF i\#q, Suc 0, s, m)"
| "i
    (JMPF i\#p, q, 0, s, m) \(\longrightarrow m\)
        (drop ip, (rev (take ip))@(JMPF i\#q), 0, s, m)"
| "i \(\leq\) length \(q \Longrightarrow\)
    (JMPB i\#p, q, r,s,m) \(\longrightarrow m\)
        ((rev (take i q))@(JMPF i\#p), drop i q, r, s, m)"
```


Points to Take Home

- If you want to show the correctness of a compiler, you have to specify precisely the language, compiler and machine.
- The proofs in the compiler lemma are mostly inductions.
- They are tedious, but cases are easily forgotten (therefore use a theorem prover).
- Proving the compiler lemma helps to debug the compiler.

