
1 Decorators

2 Descriptors

3 Static Variables

4 Anonymous Classes

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 13, 2009 1 / 19

Decorator Pattern

In object-oriented programming, the
decorator pattern is a design pattern that
allows new/additional behaviour to be
added to an existing class dynamically.

In Python one cannot say that to be the
same with the Decorator; even though one
can achieve the same functionality with
decorators in python.

So, what are decorators IN Python?

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 13, 2009 2 / 19

Functions taking Functions

Functions can have pointers to other
functions as parameters.

A function which can take another function
as its parameter and can achieve
something there by could be mainly
classified as a decorator.
See example.

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 13, 2009 3 / 19

1 >>> def ourdecorator2 (foo) :
2 . . . def newfoo () :
3 . . . p r i n t "We are to call" , foo . name
4 . . . re tu rn foo ()
5 . . . re tu rn newfoo
6 . . .
7 >>>

8 >>> foo = ourdecorator2 (foo1)
9 >>>

10 >>> foo ()
11 We are to ca l l foo1
12 Hel lo World
13 >>>

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 13, 2009 3 / 19

1 >>>

2 >>> def ourdecorator (foo) :
3 . . . p r i n t "We are to call" , foo . name
4 . . . re tu rn foo ()
5 . . .
6 >>> def foo1 () :
7 . . . p r i n t "Hello World"
8 . . .
9 >>>

10 >>> foo = ourdecorator (foo1)
11 We are to ca l l foo1
12 Hel lo World
13 >>>

14 >>>

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 13, 2009 4 / 19

Similar to Macros

Decorators are similar to MACROS in other
programming languages

They are usually used to make a wrapper
around functions

And of course, classes too.

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 13, 2009 4 / 19

Usage, then Creation

Function decorators are placed above the
function with the key-character ’@’

@thedecorator
def foo():
....

The interpreter compiles foo and calls the
decorator with that as argument.

The result of that replaces the code for foo

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 13, 2009 5 / 19

How to implement decorator

Could be Functions or Classes.

The condition is that whatever the
decorator returns, that should be callable.

An object is callable, if the method call
is implemented.

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 13, 2009 6 / 19

1 class theDecorator (object) :
2 def i n i t (s e l f , f) :
3 p r i n t "inside theDecorator.__init__()"
4 f ()
5 def c a l l (s e l f) :
6 p r i n t "inside theDecorator.__call__()"
7

8

9 @theDecorator
10 def foobar () :
11 p r i n t "inside foobar()"
12

13 p r i n t "Finished decorating foobar()"
14

15 foobar ()

1 >>> import decorators . py
2 in s ide theDecorator . i n i t ()
Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 13, 2009 6 / 19

3 in s ide foobar ()
4 F in i shed decorating foobar ()
5 in s ide theDecorator . c a l l ()

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 13, 2009 7 / 19

Observation

From the output, it is clear that the init is
called when the decorator is used.

So, usually, the call to the function is done
only in the call function.

Once a function is decorated, the
behaviour totally changes. The call goes
only to the decorated code. (line number 4
of the output)

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 13, 2009 7 / 19

1 class loggerdeco(object) :
2

3 def i n i t (s e l f , f) :
4 s e l f . f = f
5

6 def c a l l (s e l f) :
7 p r i n t "Entering" , s e l f . f . name
8 s e l f . f ()
9 p r i n t "Exited" , s e l f . f . name

10

11 @loggerdeco
12 def func1 () :
13 p r i n t "inside func1()"
14

15 @loggerdeco
16 def func2 () :
17 p r i n t "inside func2()"

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 13, 2009 7 / 19

1

2 func1 ()
3 func2 ()
4 Enter ing func1
5

6

7 in s ide func1 ()
8 Exited func1
9 Enter ing func2

10 in s ide func2 ()
11 Exited func2

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 13, 2009 8 / 19

Using Functions

The same can be achieved using functions,
instead of classes.

The decorator functions usually enclose the
decorated function in between the
decoration.

This is done inside a subfunction (equivalent
of call and the pointer to the
subfunction is returned.

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 13, 2009 8 / 19

1 def loggerdeco(f) :
2 def new f () :
3 p r i n t "Entering" , f . name
4 f ()
5 p r i n t "Exited" , f . name
6 re tu rn new f
7

8 @loggerdeco
9 def func1 () :

10 p r i n t "inside func1()"
11

12 @loggerdeco
13 def func2 () :
14 p r i n t "inside func2()"

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 13, 2009 8 / 19

1 func1 ()
2 func2 ()
3 p r i n t func1 . name
4

5

6 Enter ing func1
7 in s ide func1 ()
8 Exited func1
9 Enter ing func2

10 in s ide func2 ()
11 Exited func2
12 new f

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 13, 2009 9 / 19

Observation

The name of the functions have been
changed to new f.

This can be changed by reassigning
new f. name = f. name

There are many cool uses of decorators. You
can see more examples at
http://wiki.python.org/moin/PythonDecorator

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 13, 2009 9 / 19

1 class memoized(object) :
2 def i n i t (s e l f , func) :
3 s e l f . func = func
4 s e l f .cache = {}
5 def c a l l (s e l f , ∗args) :
6 t r y :
7 re tu rn s e l f .cache[args]
8 except KeyError :
9 s e l f .cache[args] = value = s e l f . func (∗args)

10 re tu rn value
11 except TypeError :
12 re tu rn s e l f . func (∗args)
13 def r e p r (s e l f) :
14 re tu rn s e l f . func . doc
15

16 @memoized
17 def f ibonacci (n) :
18 "Return the nth fibonacci number."

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 13, 2009 9 / 19

19 i f n in (0 , 1) :
20 re tu rn n
21 re tu rn f ibonacci (n−1) + fibonacci (n−2)
22

23 f o r i in xrange (1 , 100 , 9) :
24 p r i n t f ibonacci (i)

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 13, 2009 9 / 19

1 [sadanand@lxmayr10 @ ˜] time python memorized. py
2 1
3 55
4 4181
5 317811
6 24157817
7 1836311903
8 139583862445
9 10610209857723

10 806515533049393
11 61305790721611591
12 4660046610375530309
13

14 real 0m0.014 s
15 user 0m0.008 s
16 sys 0m0.000 s
17 [sadanand@lxmayr10 @ ˜]

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 13, 2009 10 / 19

Descriptors

Any object which defines the methods
get (), set (), or delete ().

Normally, using a.b to get, set or delete an
attribute looks up the object named b in
the class dictionary for a, but if b is a
descriptor, the respective descriptor
method gets called.

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 13, 2009 10 / 19

1 class ourDescriptor (object) :
2

3 def i n i t (s e l f , i n i t v a l =None, name=’var’) :
4 s e l f . val = i n i t v a l
5 s e l f .name = name
6

7 def g e t (s e l f , obj , objtype) :
8 p r i n t ’Retrieving’ , s e l f .name
9 re tu rn s e l f . val

10

11 def s e t (s e l f , obj , val) :
12 p r i n t ’Updating’ , s e l f .name
13 s e l f . val = val

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 13, 2009 10 / 19

1 >>> class MyClass (object) :
2 x = ourDescriptor (10 , ’var "x"’)
3 y = 5
4

5 >>> m = MyClass ()
6 >>> m. x
7 Retr iev ing var "x"
8 10
9 >>> m. x = 20

10 Updating var "x"
11 >>> m. x
12 Retr iev ing var "x"
13 20
14 >>> m. y
15 5

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 13, 2009 11 / 19

property([fget[, fset[, fdel[,
doc]]]])

fget is a function for getting the attribute value,

fset is a function for setting

fdel a function for deling, the attribute.

doc is the doc string

Property can also be used as a decorator.
@property, @x.setter, @deleter for the
get/set/del function for the attribute
x

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 13, 2009 11 / 19

1 class C(object) :
2 def i n i t (s e l f) :
3 s e l f . x = None
4 def getx (s e l f) :
5 re tu rn s e l f . x
6 def setx (s e l f , value) :
7 s e l f . x = value
8 def delx (s e l f) :
9 del s e l f . x

10 x = property (getx , setx , delx , "I’m ’x’")

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 13, 2009 12 / 19

Static Variables and Methods

A static variable in a class has always the
same value, independent of the instances.

Static variables are class variables, they
belong to the class than to the instances

They are accessed by the name of the
Class, rather than the instance.

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 13, 2009 12 / 19

1 class myStatic :
2 instances = 0
3 def i n i t (s e l f) :
4 myStatic . instances += 1
5

6 def howmany(s e l f) :
7 re tu rn myStatic . instances
8

9 x = myStatic ()
10 p r i n t x .howmany()
11 y = myStatic ()
12 p r i n t y .howmany()
13 p r i n t x .howmany()
14 −−−−−−−−−−
15 p r i n t 1 , 2 , 2

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 13, 2009 13 / 19

Static Methods

They have the same return value
independent of the class instance

They too belong to the class as much as the
variables

They don’t have the self parameter

For the same reason, they cannot access
any of the self.* objects.

The keyword is a decorator named
@staticmethod

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 13, 2009 13 / 19

1 class myStatic :
2 instances = 0
3

4 def i n i t (s e l f) :
5 myStatic . instances += 1
6

7 @staticmethod
8 def howmany() :
9 re tu rn myStatic . instances

10

11

12 x = myStatic ()
13 p r i n t myStatic .howmany()
14 y = myStatic ()
15 p r i n t myStatic .howmany()
16 =========================
17 p r i n t s 1 , 2 as expected .

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 13, 2009 14 / 19

Classmethod

@classmethod is perhaps a special thing for
python.

The methods decorated with this gets as the
initial variable a class which is the original
class (not the instance)

That helps the function to act like a normal
method of the class, by accepting all the
attributes and treat them as static as well.

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 13, 2009 14 / 19

1 class myStatic :
2 instances = 0
3 def i n i t (s e l f) :
4 s e l f . addinstance ()
5

6 @classmethod
7 def howmany(c l s) :
8 re tu rn c l s . instances
9 @classmethod

10 def addinstance (c l s) :
11 c l s . instances += 1
12

13 x = myStatic ()
14 p r i n t myStatic .howmany()
15 y = myStatic ()
16 p r i n t myStatic .howmany()
17 ==============================
18 p r i n t s 1 , 2 as expected .

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 13, 2009 14 / 19

1 class myStatic :
2 instances = 0
3

4 def i n i t (s e l f) :
5 s e l f . addinstance ()
6

7 @classmethod
8 def howmany(c l s) :
9 re tu rn c l s . instances

10

11 @classmethod
12 def addinstance (c l s) :
13 c l s . instances += 1
14

15 def nastything (s e l f) :
16 p r i n t "trying to be nasty"
17 s e l f . instances = −1

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 13, 2009 14 / 19

1 x = myStatic ()
2 x . nastything ()
3 p r i n t myStatic .howmany()
4 p r i n t x .howmany()
5 y = myStatic ()
6 x . nastything ()
7 p r i n t myStatic .howmany()
8 ======================
9 t r y ing to be nasty

10 1
11 1
12 t r y ing to be nasty
13 2

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 13, 2009 15 / 19

Single Instance

The static methods can be used to create a
singleton object/pattern

They are classes for which there is only one
instance at any given time.

They could be implemented using
1 The class instance could lie in a static variable
2 The method which gets the instance can be

made static.

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 13, 2009 15 / 19

Anonymous Classes

New classes could be defined inside
functions and returned.

Such are called anonymous classes

Anonymous classes can also be created
using classobj

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 13, 2009 16 / 19

1 def createclass (name) :
2 class myClass :
3 def i n i t (s e l f) :
4 s e l f .name = name
5 def whoareyou(s e l f) :
6 p r i n t s e l f .name
7

8 re tu rn myClass
9

10 Creator = createclass (’iAmCreator’)
11 f i r s t = Creator ()
12 f i r s t . whoareyou()
13 ======================
14 p r i n t s iAmCreator as expected .

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 13, 2009 16 / 19

1 from new import classobj
2 class foo :
3 def i n i t (s e l f) :
4 s e l f . x = ’x’
5

6 foo2 = classobj (’foo2’ , (foo ,) ,
7 {’bar’ : lambda s e l f , x : ’got ’ + s t r (x)})
8

9 p r i n t foo2 () . bar (3)
10 p r i n t foo2 () . x
11 ================
12 p r i n t s got2 , x as expected .

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 13, 2009 17 / 19

Meta Classe

Not in the scope of our course.

Creating tailormade classes / customized
ones.
metaclass

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 13, 2009 17 / 19

Some Philosophy?

If you’d like to know some python philosophy,
then you may import the module this

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 13, 2009 18 / 19

The Zen of Python, by Tim Peters

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren’t special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one– and preferably only one –obvious
way to do it.
Although that way may not be obvious at first unless
you’re Dutch.

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 13, 2009 18 / 19

Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it’s a bad idea.
If the implementation is easy to explain, it may be a good
idea.
Namespaces are one honking great idea – let’s do more
of those!

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 13, 2009 19 / 19

Tab Complete

Getting Tab Complete (like Bash) in python
prompt.

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 13, 2009 19 / 19

1

2 t r y :
3 import readline
4 except ImportEr ror :
5 p r i n t "Unable to load readline module."
6 else :
7 import r lcompleter
8 readline . parse and bind ("tab: complete")

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 13, 2009 19 / 19

	Outline
	Decorators
	Descriptors
	Static Variables
	Anonymous Classes

