
1 main

2 Pickle

3 Threads

4 Socket Programming and Pickling

5 List Tools

6 Pipes

7 Graph Isomorphism

8 Problems

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 6, 2009 1 / 16

main

Python has a built-in variable name when a
file is run.
When a file is directly run, the value is this
variable would be main when it is inside that
file.
This can be sometimes very useful.

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 6, 2009 2 / 16

1

2 [sadanand@lxmayr10 ∗ tmp] cat boo. py
3

4 def foo (f r) :
5 p r i n t "Hello World from " + f r
6

7 i f name == "__main__" :
8 foo ("__main__")
9

10 foo ("__outside__")
11

12 p r i n t name
13

14 [sadanand@lxmayr10 ∗ tmp] python boo. py
15 Hel lo World from main
16 Hel lo World from ou t s i de
17 main
18 [sadanand@lxmayr10 # tmp] python

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 6, 2009 2 / 16

19 Python 2 .6 .1 (r261 :67515 , Jan 20 2009 , 08:31:22)
20 [GCC 4.2 .1 (SUSE L inux)] on l inux2
21 Type "help" , "copyright" , "credits" or "license"
22 >>>

23 >>> import boo
24 Hel lo World from ou t s i de
25 boo
26 >>>

27 >>> boo. foo ("Prompt")
28 Hel lo World from Prompt
29 >>>

30 >>>

31 [sadanand@lxmayr10 ∗ tmp]

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 6, 2009 3 / 16

The main function

One can use this functionality to write “main”
functions to be called from the if condition.

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 6, 2009 3 / 16

Pickle

Module in python

Serialisation and de-serialisation of python
objects

Serialisation : converting to a byte stream.

The reverse to get the object back.

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 6, 2009 4 / 16

Pickling

Marshalling 1

Serialisation

Flattening

Pickling / Unpickling

1Nothing to do with the object Marshal
Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 6, 2009 5 / 16

cPickle and Marshal

cPickle is the very same module
implemented in C

cPickle, yes, it is fast: about 1000 times.

Pickle keeps track of serialisation and there
is no repeated serialisation (unlike marshal)

Shelve (for dictionaries)

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 6, 2009 6 / 16

How to Pickle?

pickle.dump(obj, file)

pickle.load(file)

pickle.dumps(obj)

pickle.loads(str)

A write permission to the file is required for the
dump to work. Also, the file should have read
and readline functions implemented for the
load to be functional.

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 6, 2009 7 / 16

What All?
None, True, and False
integers, long integers, floating point
numbers, complex numbers
normal and Unicode strings
Collections with only picklable objects
functions defined at the top level of a
module
built-in functions defined at the top level of
a module
classes that are defined at the top level of a
module
instances of such classes whose dict or

setstate () is picklable
Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 6, 2009 8 / 16

1 >>> import pickle
2 >>> class Foo :
3 . . . a t t r = ’a class attr’
4 . . .
5 >>> p i ck l e s t r i n g = pickle .dumps(Foo)
6 >>>

7 >>> x = Foo ()
8 >>> pick les t r ing2 = pickle .dumps(x)
9 >>>

10 >>> p i ck l e s t r i n g
11 ’c__main__\nFoo\np0\n.’
12 >>> pick les t r ing2
13 ’(i__main__\nFoo\np0\n(dp1\nb.’
14 >>>

15 >>> y = pickle . loads (p ick les t r ing2)
16 >>>

17 >>> i s in s tance (y , Foo)
18 True

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 6, 2009 8 / 16

19 >>> i s in s tance (x , Foo)
20 True
21 >>>

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 6, 2009 9 / 16

Threads and Processes

Threads exist as subsets of a process (not
independent)

Multiple threads within a process share state
as well as memory and other resources

Threads share their address space

No IPC needed.

Context switching is typically faster

CAN SHARE GLOBAL VARIABLES

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 6, 2009 9 / 16

1 import threading
2 class MyThread (threading . Thread) :
3 def run (s e l f) :
4 p r i n t ’Insert some thread stuff here.’
5 p r i n t ’It\’ll be executed...yeah....’
6 p r i n t ’There\’s not much to it.’
7

8 MyThread () . s t a r t ()
9 −−

10

11 I n s e r t some thread s t u f f here .
12 I t ’ll be executed...yeah....
13 There’s not much to i t .

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 6, 2009 9 / 16

1 theVar = 1
2 class MyThread2 (threading . Thread) :
3 def run (s e l f) :
4 global theVar
5 p r i n t ’This is thread ’ + s t r (theVar)
6 p r i n t ’Hello and good bye.’
7 theVar = theVar + 1
8 f o r x in xrange (4) :
9 MyThread2 () . s t a r t ()

10 −−
11 T h i s i s thread 1 speaking .
12 Hel lo and good bye .
13 T h i s i s thread 2 speaking .
14 Hel lo and good bye .
15 T h i s i s thread 3 speaking .
16 Hel lo and good bye .
17 T h i s i s thread 4 speaking .
18 Hel lo and good bye .

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 6, 2009 10 / 16

Locks and Threads

Multiple threads can communicate using a
global variable

But when two threads access the same
variable at the same time?

There are locks available

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 6, 2009 10 / 16

1 import threading
2 import time
3 from random import randint
4 class MyThread2 (threading . Thread) :
5 lock = threading . Lock ()
6 tcnt = 0
7

8 def i n i t (s e l f , gname) :
9 threading . Thread . i n i t (s e l f)

10 s e l f .name = gname
11

12 def run (s e l f) :
13 time . sleep (randint (1 , 5))
14 p r i n t ’This is thread ’ + s t r (s e l f .name)
15 + ’ speaking. (call order)’
16 MyThread2 . lock . acquire ()
17 MyThread2 . tcnt += 1
18 MyThread2 . lock . release ()

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 6, 2009 10 / 16

19 p r i n t ’Hello and good bye from thread
20 reached’ , MyThread2 . tcnt
21

22 f o r x in xrange (4) :
23 MyThread2 (x) . s t a r t ()

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 6, 2009 10 / 16

1 T h i s i s thread 1 speaking . (ca l l order)
2 Hel lo and good bye from thread reached 1
3 T h i s i s thread 0 speaking . (ca l l order)
4 Hel lo and good bye from thread reached 2
5 T h i s i s thread 3 speaking . (ca l l order)
6 Hel lo and good bye from thread reached 3
7 T h i s i s thread 2 speaking . (ca l l order)
8 Hel lo and good bye from thread reached 4

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 6, 2009 11 / 16

Sockets

In python, objects can be send from sockets to
sockets with the help of the Pickle Module.
The code snippet in the next slide explains this.

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 6, 2009 11 / 16

1 Cl ient Side :
2

3 pick ledStuf f = pickle .dumps (PickleableObject)
4 s e l f . channel . send (p ick ledStuf f)
5

6

7 Server Side :
8 x = pickle . loads (c l i e n t . recv (1024))

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 6, 2009 12 / 16

Speed-up Lists

array : Homogenious entries. Limited
space than 16 bytes for every item

deque : More efficient in cases of append
and left deletion/pop

bisect : Keep it sorted. And do it while
insertion.

heapq : Maintain a heap

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 6, 2009 12 / 16

1 >>> from array import array
2 >>> a = array (’H’ , [4000 , 10 , 700 , 22222])
3 >>> sum(a)
4 26932
5 >>> a[1 : 3]
6 array (’H’ , [10 , 700])
7

8

9 >>> from col lect ions import deque
10 >>> d = deque(["task1" , "task2" , "task3"])
11 >>> d.append("task4")
12 >>> p r i n t "Handling" , d . popleft ()
13 Handling task1

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 6, 2009 12 / 16

1 >>> import bisect
2 >>> scores = [(100 , ’perl’) , (200 , ’tcl’) , (400 ,
3 >>> bisect . i n s o r t (scores , (300 , ’ruby’))
4 >>> scores
5 [(100 , ’perl’) , (200 , ’tcl’) , (300 , ’ruby’) , (400
6

7

8 >>> from heapq import heapify , heappop, heappush
9 >>> data = [1 , 3 , 5 , 7 , 9 , 2 , 4 , 6 , 8 , 0]

10 >>> heapify (data) # rearrange
11 >>> heappush(data , −5) # add a new
12 >>> [heappop(data) f o r i in range (3)] # fetch th
13 [−5 , 0 , 1]

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 6, 2009 13 / 16

Processes and Pipes

When the client and server are running in
the same system, we can use pipes.

They can be used as files

os.popen(cmd, [mode, [bufsize]]) :
Returns a pipe which is an stdout for cmd,
from where the output can be read

os.popen2(cmd, [mode, [bufsize]]):
Similar, but an stdin too.

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 6, 2009 13 / 16

1 from f u t u r e import with statement
2 from context l ib import clos ing
3 import os
4 def l s (d i r) :
5 with clos ing (os .popen("ls %s" % d i r)) as pipe
6 f o r l i n e in pipe :
7 y ie ld l i n e
8

9

10 f o r filename in l s ("/tmp") :
11 p r i n t filename

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 6, 2009 13 / 16

Graph Isomorphism

To check whether two given graphs G and H
are isomorphs, when we know the mapping f
from G to H (w.l.g), All we need to do is confirm
that the mapping is a bijection.
i.e, check for every node g ∈ G that, h = f (g) ∈ H
is unique.
Also, one has to confirm that the set of edges
too satisfy this property. i.e, eiG ∈ EG has a
unique eiH ∈ EH.

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 6, 2009 14 / 16

1 def isomorph (s e l f , other , foo) :
2 gnodes = s e l f . nodes . keys ()
3 hnodes = other . nodes . keys ()
4 i f len (nodes) != len (hnodes) : re tu rn False
5 f i l t e r e d = f i l t e r (lambda v : foo (v) not in set
6 i f f i l t e r e d : re tu rn False
7

8 HEDGES = set ([edge f o r edge in other . edges ()]
9 f o r (u , v) in s e l f . edges () :

10 hedge = (foo (u) , foo (v))
11 i f hedge not in hedges :
12 re tu rn False
13 hedges . remove(hedge)
14

15 re tu rn False i f hedges else True

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 6, 2009 15 / 16

Switch Case .. or Almost the Same

Python doesn’t provide switch case

In many cases we can still make use of
python constructs to bypass
if..elif..elif..

The key is function pointers

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 6, 2009 15 / 16

1 def key 1 pressed () :
2 p r i n t ’Key 1 Pressed’
3

4 def key 2 pressed () :
5 p r i n t ’Key 2 Pressed’
6

7 def key 3 pressed () :
8 p r i n t ’Key 3 Pressed’
9

10 def unknown press () :
11 p r i n t ’Unknown Key Pressed’
12

13

14 def dealkey t radit ional (keycode) :
15 i f keycode == 1:
16 key 1 pressed ()
17 e l i f keycode == 2:
18 key 2 pressed ()

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 6, 2009 15 / 16

19 e l i f keycode == 3:
20 key 3 pressed ()
21 else :
22 unknown key pressed ()
23

24 def dealkey unusual (kc) :
25 funct ions = {1: key 1 pressed ,
26 2: key 2 pressed ,
27 3: key 3 pressed}
28 funct ions . get (kc , unknown press) ()
29

30 dealkey unusual (3) −−− P r i n t s Key 3 Pressed
31 dealkey t radit ional (4) −−− P r i n t s Unknown Key Pre

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 6, 2009 16 / 16

Problems

Server Client - Sockets, Threading, Sending
data with Pickle Client sends some
datatype, Server sends back the length of
the object

Server Client - Pipes

Finish the search engine: Use AND OR
-/MINUS operators to do the search.

Sandeep Sadanandan (TU, Munich) Python For Fine Programmers July 6, 2009 16 / 16

	Outline
	__main__
	Pickle
	Threads
	Socket Programming and Pickling
	List Tools
	Pipes
	Graph Isomorphism
	Problems

