Efficient Algorithms and Datastructures II

Aufgabe 1 (10 Punkte)

Let $G=(V, E)$ be a given graph and $c_{e} \geq 0$ be the cost of edge e. Let $\left\{\left(s_{1}, t_{1}\right), \ldots,\left(s_{k}, t_{k}\right)\right\}$ be a set of specified pairs of vertices. In the minimum multicut problem, we wish to find a minimum cost set of edges F such that $\forall i, s_{i}$ and t_{i} are in different components of $G^{\prime}=(V, E \backslash F)$.
(a) Write an Integer Linear Program (ILP) for solving this problem, where you have a variable for each edge and a constraint for each path from s_{i} to t_{i}, for all i.
(b) Relax this ILP to a Linear Program, say (P).
(c) Show how to solve (P) efficiently.

Aufgabe 2 (10 Punkte)

Given a directed graph $G=(V, E)$, a special vertex r and a positive $\operatorname{cost} c_{i j}$ for each edge $(i, j) \in E$, the minimum-cost arborescence problem is to find a subgraph of minimum cost that contains directed paths from r to all other vertices.
(a) Observe that the following ILP solves the minimum-cost arborescence problem:

$$
\begin{array}{lll}
\operatorname{minimize} & \sum_{(i, j) \in E} c_{i j} x_{i j} & \\
\text { subject to } & \sum_{i \in S, j \notin S,(i, j) \in E} x_{i j} \geq 1 & \forall S \subseteq V, S \ni r \\
x_{i j} & \in\{0,1\} & \forall(i, j) \in E
\end{array}
$$

(b) Show how to efficiently solve the LP obained by relaxing the above ILP.

Aufgabe 3 (10 Punkte)

Let $G=(V, E)$ be a given graph. Consider the following ILP:

$$
\begin{array}{lcll}
\operatorname{maximize} & \sum_{i} x_{i} & & \\
\text { subject to } & x_{i}+x_{j} & \leq 1 & \forall(i, j) \in E \\
& \sum_{i \in C} x_{i} & \leq \frac{|C|-1}{2} \quad \forall \text { odd cycles } C \\
& x_{i} & \in\{0,1\} \quad \forall i \in V
\end{array}
$$

(a) Explain in your own words, which problem the above ILP solves.
(b) Relax this ILP to an LP so that $0 \leq x_{i} \leq 1, \forall i \in V$ and show how to solve this LP efficiently.

