Efficient Algorithms and Datastructures II

Aufgabe 1 (10 Punkte)

In the maximum k-cut problem, we are given an undirected graph $G=(V, E)$, and nonnegative weights $w_{i j} \geq 0, \forall(i, j) \in E$. The goal is to partition the vertex set V into k parts V_{1}, \ldots, V_{k} so as to maximize the weights of all edges whose endpoints are in different parts (i.e., $\max _{(i, j) \in E: i \in V_{a}, j \in V_{b}, a \neq b} w_{i j}$). Give a randomized $\frac{k-1}{k}$ approximation algorithm for the maximum k-cut problem.

Aufgabe 2 (10 Punkte)

Derandomize the above algorithm.

Aufgabe 3 (10 Punkte)

Using randomized rounding and First Fit, give a randomized polynomial-time algorithm for the bin-packing problem that uses $\rho \cdot O P T+k$ bins for some $\rho<2$ and some small constant k.

