Lemma 2 (Chernoff Bounds)

Let X_{1}, \ldots, X_{n} be n independent 0-1 random variables, not necessarily identically distributed. Then for $X=\sum_{i=1}^{n} X_{i}$ and $\mu=E[X], L \leq \mu \leq U$, and $\delta>0$

$$
\operatorname{Pr}[X \geq(1+\delta) U]<\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{U}
$$

and

$$
\operatorname{Pr}[X \leq(1-\delta) L]<\left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^{L}
$$

Proof of Chernoff Bounds

Markovs Inequality:

Let X be random variable taking non-negative values.
Then

$$
\operatorname{Pr}[X \geq a] \leq \mathrm{E}[X] / a
$$

Trivial!

Lemma 3
For $0 \leq \delta \leq 1$ we have that

$$
\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{U} \leq e^{-U \delta^{2} / 3}
$$

and

$$
\left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^{L} \leq e^{-L \delta^{2} / 2}
$$

Proof of Chernoff Bounds

Hence:

$$
\operatorname{Pr}[X \geq(1+\delta) U] \leq \frac{\mathrm{E}[X]}{(1+\delta) U} \approx \frac{1}{1+\delta}
$$

That's awfully weak :(

Proof of Chernoff Bounds

Set $p_{i}=\operatorname{Pr}\left[X_{i}=1\right]$. Assume $p_{i}>0$ for all i.
Cool Trick:

$$
\operatorname{Pr}[X \geq(1+\delta) U]=\operatorname{Pr}\left[e^{t X} \geq e^{t(1+\delta) U}\right]
$$

Now, we apply Markov:

$$
\operatorname{Pr}\left[e^{t X} \geq e^{t(1+\delta) U}\right] \leq \frac{\mathrm{E}\left[e^{t X}\right]}{e^{t(1+\delta) U}}
$$

This may be a lot better (!?)

Proof of Chernoff Bounds

$$
\begin{gathered}
\mathrm{E}\left[e^{t X}\right]=\mathrm{E}\left[e^{t \sum_{i} X_{i}}\right]=\mathrm{E}\left[\prod_{i} e^{t X_{i}}\right]=\prod_{i} \mathrm{E}\left[e^{t X_{i}}\right] \\
\mathrm{E}\left[e^{t X_{i}}\right]=\left(1-p_{i}\right)+p_{i} e^{t}=1+p_{i}\left(e^{t}-1\right) \leq e^{p_{i}\left(e^{t}-1\right)} \\
\prod_{i} \mathrm{E}\left[e^{t X_{i}}\right] \leq \prod_{i} e^{p_{i}\left(e^{t}-1\right)}=e^{\sum p_{i}\left(e^{t}-1\right)}=e^{\left(e^{t}-1\right) U}
\end{gathered}
$$

Lemma 4
For $0 \leq \delta \leq 1$ we have that

$$
\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{U} \leq e^{-U \delta^{2} / 3}
$$

and

$$
\left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^{L} \leq e^{-L \delta^{2} / 2}
$$

Show:

$$
\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{U} \leq e^{-U \delta^{2} / 3}
$$

Take logarithms:

$$
U(\delta-(1+\delta) \ln (1+\delta)) \leq-U \delta^{2} / 3
$$

True for $\delta=0$. Divide by U and take derivatives:

$$
-\ln (1+\delta) \leq-2 \delta / 3
$$

Reason:

As long as derivative of left side is smaller than derivative of right side the inequality holds.

For $\delta \geq 1$ we show

$$
\left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{U} \leq e^{-U \delta / 3}
$$

Take logarithms:

$$
U(\delta-(1+\delta) \ln (1+\delta)) \leq-U \delta / 3
$$

True for $\delta=0$. Divide by U and take derivatives:

$$
-\ln (1+\delta) \leq-1 / 3 \Longleftrightarrow \ln (1+\delta) \geq 1 / 3 \quad \text { (true) }
$$

Reason:

As long as derivative of left side is smaller than derivative of right side the inequality holds.

$$
f(\delta):=-\ln (1+\delta)+2 \delta / 3 \leq 0
$$

A convex function ($f^{\prime \prime}(\delta) \geq 0$) on an interval takes maximum at the boundaries.

$$
f^{\prime}(\delta)=-\frac{1}{1+\delta}+2 / 3 \quad f^{\prime \prime}(\delta)=\frac{1}{(1+\delta)^{2}}
$$

$$
f(0)=0 \text { and } f(1)=-\ln (2)+2 / 3<0
$$

Show:

$$
\left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^{L} \leq e^{-L \delta^{2} / 2}
$$

Take logarithms:

$$
L(-\delta-(1-\delta) \ln (1-\delta)) \leq-L \delta^{2} / 2
$$

True for $\delta=0$. Divide by L and take derivatives:

$$
\ln (1-\delta) \leq-\delta
$$

Reason:

As long as derivative of left side is smaller than derivative of right side the inequality holds.

$$
\ln (1-\delta) \leq-\delta
$$

True for $\delta=0$. Take derivatives:

$$
-\frac{1}{1-\delta} \leq-1
$$

This holds for $0 \leq \delta<1$.

Integer Multicommodity Flows

- Given $s_{i}-t_{i}$ pairs in a graph.
- Connect each pair by a path such that not too many path use any given edge.

$$
\begin{array}{rlrl}
\min & W \\
\text { s.t. } & \forall i \quad \sum_{p \in \mathcal{P}_{i}} x_{p} & =1 \\
& & \sum_{p: e \in p} x_{p} & \leq W \\
x_{p} & \in\{0,1\}
\end{array}
$$

Integer Multicommodity Flows

Randomized Rounding:

For each i choose one path from the set \mathcal{P}_{i} at random according to the probability distribution given by the Linear Programming solution.

Theorem 5
If $W^{*} \geq c \ln n$ for some constant c, then with probability at least
$n^{-c / 3}$ the total number of paths using any edge is at most
$W^{*}+\sqrt{c W^{*} \ln n}$.

Theorem 6
With probability at least $n^{-c / 3}$ the total number of paths using any edge is at most $W^{*}+c \ln n$.

Integer Multicommodity Flows

Let X_{e}^{i} be a random variable that indicates whether the path for $s_{i}-t_{i}$ uses edge e.

Then the number of paths using edge e is $Y_{e}=\sum_{i} X_{e}^{i}$.

$$
E\left[Y_{e}\right]=\sum_{i} \sum_{p \in \mathcal{P}_{i}: e \in p} x_{p}^{*}=\sum_{p: e \in P} x_{p}^{*} \leq W^{*}
$$

18 MAXSAT

Problem definition:

- n Boolean variables
- m clauses C_{1}, \ldots, C_{m}. For example

$$
C_{7}=x_{3} \vee \bar{x}_{5} \vee \bar{x}_{9}
$$

- Non-negative weight w_{j} for each clause C_{j}.
- Find an assignment of true/false to the variables sucht that the total weight of clauses that are satisfied is maximum.

Integer Multicommodity Flows

Choose $\delta=\sqrt{(c \ln n) / W^{*}}$.

Then

$$
\operatorname{Pr}\left[Y_{e} \geq(1+\delta) W^{*}\right]<e^{-W^{*} \delta^{2} / 3}=\frac{1}{n^{c / 3}}
$$

18 MAXSAT

Terminology:

- A variable x_{i} and its negation \bar{x}_{i} are called literals.
- Hence, each clause consists of a set of literals (i.e., no duplications: $x_{i} \vee x_{i} \vee \bar{x}_{j}$ is not a clause).
- We assume a clause does not contain x_{i} and \bar{x}_{i} for any i.
- x_{i} is called a positive literal while the negation \bar{x}_{i} is called a negative literal.
- For a given clause C_{j} the number of its literals is called its length or size and denoted with ℓ_{j}.
- Clauses of length one are called unit clauses.

MAXSAT: Flipping Coins

Set each x_{i} independently to true with probability $\frac{1}{2}$ (and, hence, to false with probability $\frac{1}{2}$, as well).

Define random variable X_{j} with

$$
X_{j}= \begin{cases}1 & \text { if } C_{j} \text { satisfied } \\ 0 & \text { otw }\end{cases}
$$

Then the total weight W of satisfied clauses is given by

$$
W=\sum_{j} w_{j} X_{j}
$$

$\begin{aligned} E[W] & =\sum_{j} w_{j} E\left[X_{j}\right] \\ & =\sum_{j} w_{j} \operatorname{Pr}\left[C_{j} \text { is satisified }\right] \\ & =\sum_{j} w_{j}\left(1-\left(\frac{1}{2}\right)^{\ell_{j}}\right) \\ & \geq \frac{1}{2} \sum_{j} w_{j} \\ & \geq \frac{1}{2} \mathrm{OPT} \end{aligned}$	
18 MAXSAT	388

MAXSAT: LP formulation

- Let for a clause C_{j}, P_{j} be the set of positive literals and N_{j} the set of negative literals.

$$
C_{j}=\bigvee_{j \in P_{j}} x_{i} \vee \bigvee_{j \in N_{j}} \bar{x}_{i}
$$

| \max | | $\sum_{j} w_{j} z_{j}$ | |
| :---: | :---: | :---: | :--- | :--- |
| s.t. | $\forall j$ | $\sum_{i \in P_{j}} y_{i}+\sum_{i \in N_{j}}\left(1-y_{i}\right)$ | $\geq z_{j}$ |
| | $\forall i$ | y_{i} | $\in\{0,1\}$ |
| | $\forall j$ | z_{j} | ≤ 1 |

MAXSAT: Randomized Rounding

Set each x_{i} independently to true with probability y_{i} (and, hence, to false with probability $\left(1-y_{i}\right)$).

Definition 8

A function f on an interval I is concave if for any two points s
and r from I and any $\lambda \in[0,1]$ we have

$$
f(\lambda s+(1-\lambda) r) \geq \lambda f(s)+(1-\lambda) f(r)
$$

Lemma 9

Let f be a concave function on the interval $[0,1]$, with $f(0)=a$
and $f(1)=a+b$. Then

$$
\begin{aligned}
f(\lambda) & =f((1-\lambda) 0+\lambda 1) \\
& \geq(1-\lambda) f(0)+\lambda f(1) \\
& =a+\lambda b
\end{aligned}
$$

for $\lambda \in[0,1]$.

Lemma 7 (Geometric Mean \leq Arithmetic Mean)
For any nonnegative a_{1}, \ldots, a_{k}

$$
\left(\prod_{i=1}^{k} a_{i}\right)^{1 / k} \leq \frac{1}{k} \sum_{i=1}^{k} a_{i}
$$

The function $f(z)=1-\left(1-\frac{z}{\ell}\right)^{\ell}$ is concave. Hence,

$$
\begin{aligned}
\operatorname{Pr}\left[C_{j} \text { satisfied }\right] & \geq 1-\left(1-\frac{z_{j}}{\ell_{j}}\right)^{\ell_{j}} \\
& \geq\left[1-\left(1-\frac{1}{\ell_{j}}\right)^{\ell_{j}}\right] \cdot z_{j}
\end{aligned}
$$

$f^{\prime \prime}(z)=-\frac{\ell-1}{\ell}\left[1-\frac{z}{\ell}\right]^{\ell-2} \leq 0$ for $z \in[0,1]$. Therefore, f is concave.

MAXSAT: The better of two

Theorem 10
Choosing the better of the two solutions given by randomized rounding and coin flipping yields a $\frac{3}{4}$-approximation.

$$
\begin{aligned}
E[W] & =\sum_{j} w_{j} \operatorname{Pr}\left[C_{j} \text { is satisfied }\right] \\
& \geq \sum_{j} w_{j} z_{j}\left[1-\left(1-\frac{1}{\ell_{j}}\right)^{\ell_{j}}\right] \\
& \geq\left(1-\frac{1}{e}\right) \text { OPT } .
\end{aligned}
$$

Let W_{1} be the value of randomized rounding and W_{2} the value obtained by coin flipping.

$$
\begin{aligned}
& E[\max \left.\left\{W_{1}, W_{2}\right\}\right] \\
& \geq E\left[\frac{1}{2} W_{1}+\frac{1}{2} W_{2}\right] \\
& \geq \frac{1}{2} \sum_{j} w_{j} z_{j}\left[1-\left(1-\frac{1}{\ell_{j}}\right)^{\ell_{j}}\right]+\frac{1}{2} \sum_{j} w_{j}\left(1-\left(\frac{1}{2}\right)^{\ell_{j}}\right) \\
& \geq \sum_{j} w_{j} z_{j}[\underbrace{\frac{1}{2}\left(1-\left(1-\frac{1}{\ell_{j}}\right)^{\ell_{j}}\right)+\frac{1}{2}\left(1-\left(\frac{1}{2}\right)^{\ell_{j}}\right)}_{\geq \frac{3}{4} \text { for all integers }}] \\
& \quad \geq \frac{3}{4} \mathrm{OPT}
\end{aligned}
$$

18 MAXSAT
© Harald Räcke \qquad

Theorem 11
Rounding the LP-solution with a function f of the above form gives a $\frac{3}{4}$-approximation.

MAXSAT: Nonlinear Randomized Rounding

Let $f:[0,1] \rightarrow[0,1]$ be a function with

$$
1-4^{-x} \leq f(x) \leq 4^{x-1}
$$

MAXSAT: Nonlinear Randomized Rounding

So far we used linear randomized rounding, i.e., the probability that a variable is set to 1 /true was exactly the value of the corresponding variable in the linear program.

We could define a function $f:[0,1] \rightarrow[0,1]$ and set x_{i} to true with probability $f\left(y_{i}\right)$.

$$
\begin{aligned}
\operatorname{Pr}\left[C_{j} \text { not satisfied }\right] & =\prod_{i \in P_{j}}\left(1-f\left(y_{i}\right)\right) \prod_{i \in N_{j}} f\left(y_{i}\right) \\
& \leq \prod_{i \in P_{j}} 4^{-y_{i}} \prod_{i \in N_{j}} 4^{y_{i}-1} \\
& =4^{-\left(\sum_{i \in P_{j}} y_{i}+\sum_{i \in N_{j}}\left(1-y_{i}\right)\right)} \\
& \leq 4^{-z_{j}}
\end{aligned}
$$

Can we do better?

Not if we compare ourselves to the value of an optimum LP-solution.

Definition 12 (Integrality Gap)
The integrality gap for an ILP is the worst-case ratio over all instances of the problem of the value of an optimal IP-solution to the value of an optimal solution to its linear programming relaxation.

Note that the integrality is less than one for maximization problems and larger than one for minimization problems (of course, equality is possible).

Note that an integrality gap only holds for one specific ILP formulation.

The function $g(z)=1-4^{-z}$ is concave on [0,1]. Hence,

$$
\operatorname{Pr}\left[C_{j} \text { satisfied }\right] \geq 1-4^{-z_{j}} \geq \frac{3}{4} z_{j}
$$

Therefore,

$$
E[W]=\sum_{j} w_{j} \operatorname{Pr}\left[C_{j} \text { satisfied }\right] \geq \frac{3}{4} \sum_{j} w_{j} z_{j} \geq \frac{3}{4} \mathrm{OPT}
$$

Lemma 13

Our ILP-formulation for the MAXSAT problem has integrality gap at most $\frac{3}{4}$.

$$
\begin{array}{ccrl}
\hline \max & & \sum_{j} w_{j} z_{j} & \\
\text { s.t. } & \forall j & \sum_{i \in P_{j}} y_{i}+\sum_{i \in N_{j}}\left(1-y_{i}\right) & \geq z_{j} \\
& \forall i & y_{i} & \in\{0,1\} \\
& \forall j & z_{j} & \leq 1 \\
\hline
\end{array}
$$

Consider: $\left(x_{1} \vee x_{2}\right) \wedge\left(\bar{x}_{1} \vee x_{2}\right) \wedge\left(x_{1} \vee \bar{x}_{2}\right) \wedge\left(\bar{x}_{1} \vee \bar{x}_{2}\right)$

- any solution can satisfy at most 3 clauses
- we can set $y_{1}=y_{2}=1 / 2$ in the LP; this allows to set $z_{1}=z_{2}=z_{3}=z_{4}=1$
- hence, the LP has value 4 .

