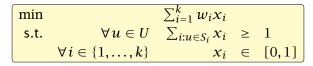
We first solve the LP-relaxation and then we round the fractional values so that we obtain an integral solution.

Set Cover relaxation:

Let f_u be the number of sets that the element u is contained in (the frequency of u). Let $f = \max_u \{f_u\}$ be the maximum frequency.

We first solve the LP-relaxation and then we round the fractional values so that we obtain an integral solution.

Set Cover relaxation:



Let f_u be the number of sets that the element u is contained in (the frequency of u). Let $f = \max_u \{f_u\}$ be the maximum frequency.

We first solve the LP-relaxation and then we round the fractional values so that we obtain an integral solution.

Set Cover relaxation:

$$\begin{array}{|c|c|c|c|c|}\hline \min & & \sum_{i=1}^{k} w_i x_i \\ \text{s.t.} & \forall u \in U & \sum_{i:u \in S_i} x_i \geq 1 \\ & \forall i \in \{1, \dots, k\} & x_i \in [0, 1] \end{array}$$

Let f_u be the number of sets that the element u is contained in (the frequency of u). Let $f = \max_u \{f_u\}$ be the maximum frequency.

Rounding Algorithm:

Set all x_i -values with $x_i \ge \frac{1}{f}$ to 1. Set all other x_i -values to 0.

Lemma 2

The rounding algorithm gives an f-approximation.

Proof: Every $u \in U$ is covered.

- We know that $\sum_{i \neq i \in S_i} x_i \ge 1$.
- The sum contains at most $f_{w} \leq f$ elements.
- . Therefore one of the sets that contain u must have $x_{\rm f} \geq 1/f_{\odot}$
- This set will be selected. Hence, at is covered.

Lemma 2

The rounding algorithm gives an f-approximation.

Proof: Every $u \in U$ is covered.

The sum contains at most $f_{M} \leq f_{*}$ elements. Therefore one of the sets that contain u must have $x_{0} \geq 3/f_{*}$. This set will be selected. Hence, u is covered.

Lemma 2

The rounding algorithm gives an f-approximation.

Proof: Every $u \in U$ is covered.

- We know that $\sum_{i:u\in S_i} x_i \ge 1$.
- The sum contains at most $f_u \leq f$ elements.
- Therefore one of the sets that contain u must have $x_i \ge 1/f$.
- ▶ This set will be selected. Hence, *u* is covered.

Lemma 2

The rounding algorithm gives an f-approximation.

Proof: Every $u \in U$ is covered.

- We know that $\sum_{i:u\in S_i} x_i \ge 1$.
- The sum contains at most $f_u \leq f$ elements.
- Therefore one of the sets that contain u must have $x_i \ge 1/f$.
- ▶ This set will be selected. Hence, *u* is covered.

Lemma 2

The rounding algorithm gives an f-approximation.

Proof: Every $u \in U$ is covered.

- We know that $\sum_{i:u\in S_i} x_i \ge 1$.
- The sum contains at most $f_u \leq f$ elements.
- Therefore one of the sets that contain u must have $x_i \ge 1/f$.

▶ This set will be selected. Hence, *u* is covered.

Lemma 2

The rounding algorithm gives an f-approximation.

Proof: Every $u \in U$ is covered.

- We know that $\sum_{i:u\in S_i} x_i \ge 1$.
- The sum contains at most $f_u \leq f$ elements.
- Therefore one of the sets that contain u must have $x_i \ge 1/f$.
- ► This set will be selected. Hence, *u* is covered.

$$\sum_{i\in I} w_i$$

$$\sum_{i\in I} w_i \leq \sum_{i=1}^k w_i (f\cdot x_i)$$

$$\sum_{i \in I} w_i \le \sum_{i=1}^k w_i (f \cdot x_i)$$
$$= f \cdot \operatorname{cost}(x)$$

$$\sum_{i \in I} w_i \leq \sum_{i=1}^k w_i (f \cdot x_i)$$
$$= f \cdot \operatorname{cost}(x)$$
$$\leq f \cdot \operatorname{OPT} .$$

Relaxation for Set Cover

Primal:

 $\begin{array}{c|c} \min & \sum_{i \in I} w_i x_i \\ \text{s.t. } \forall u & \sum_{i: u \in S_i} x_i \ge 1 \\ & x_i \ge 0 \end{array}$

Dual:

13.2 Rounding the Dual

▲ 個 ▶ ▲ 圖 ▶ ▲ 圖 ▶ 283/521

Relaxation for Set Cover

Primal:

 $\begin{array}{c|c} \min & \sum_{i \in I} w_i x_i \\ \text{s.t. } \forall u & \sum_{i: u \in S_i} x_i \ge 1 \\ & x_i \ge 0 \end{array}$

Dual:

Relaxation for Set Cover

Primal:

 $\begin{array}{|c|c|c|} \min & \sum_{i \in I} w_i x_i \\ \text{s.t. } \forall u & \sum_{i: u \in S_i} x_i \ge 1 \\ & x_i \ge 0 \end{array}$

Dual:

$$\begin{array}{c|c}
\max & \sum_{u \in U} \mathcal{Y}_{u} \\
\text{s.t. } \forall i & \sum_{u:u \in S_{i}} \mathcal{Y}_{u} \leq w_{i} \\
\mathcal{Y}_{u} \geq 0
\end{array}$$

Rounding Algorithm:

Let I denote the index set of sets for which the dual constraint is tight. This means for all $i \in I$

$$\sum_{u:u\in S_i} y_u = w_i$$

Lemma 3 The resulting index set is an *f*-approximation.

Proof: Every $u \in U$ is covered.

- Suppose there is a u that is not covered.
- This means $\sum_{u \in u \in S_1} \gamma_u < w_l$ for all sets S_l that contain u .
- But then y₂ could be increased in the dual solution without violating any constraint. This is a contradiction to the fact that the dual solution is optimal.

Lemma 3 *The resulting index set is an f-approximation.*

Proof: Every $u \in U$ is covered.

This means $\sum_{k>k< k} \gamma_k < w_l$ for all sets S_l that contain $u_l = S_l$ that contain $u_l = S_l$ then γ_k could be increased in the dual solution without violating any constraint. This is a contradiction to the fact that the dual solution is optimal.

Lemma 3

The resulting index set is an f-approximation.

Proof:

Every $u \in U$ is covered.

- Suppose there is a *u* that is not covered.
- This means $\sum_{u:u \in S_i} y_u < w_i$ for all sets S_i that contain u.
- But then y_u could be increased in the dual solution without violating any constraint. This is a contradiction to the fact that the dual solution is optimal.

Lemma 3

The resulting index set is an f-approximation.

Proof:

Every $u \in U$ is covered.

- Suppose there is a *u* that is not covered.
- This means $\sum_{u:u\in S_i} y_u < w_i$ for all sets S_i that contain u.
- But then y_u could be increased in the dual solution without violating any constraint. This is a contradiction to the fact that the dual solution is optimal.

Lemma 3

The resulting index set is an f-approximation.

Proof:

Every $u \in U$ is covered.

- Suppose there is a *u* that is not covered.
- This means $\sum_{u:u\in S_i} y_u < w_i$ for all sets S_i that contain u.
- But then y_u could be increased in the dual solution without violating any constraint. This is a contradiction to the fact that the dual solution is optimal.

Proof:

▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 ▶
286/521

Proof:

$$\sum_{i\in I} w_i = \sum_{i\in I} \sum_{u:u\in S_i} y_u$$

Proof:

$$\sum_{i \in I} w_i = \sum_{i \in I} \sum_{u: u \in S_i} y_u$$
$$= \sum_u |\{i \in I : u \in S_i\}| \cdot y_u$$

Proof:

$$\sum_{i \in I} w_i = \sum_{i \in I} \sum_{u: u \in S_i} y_u$$
$$= \sum_u |\{i \in I : u \in S_i\}| \cdot y_u$$
$$\leq \sum_u f_u y_u$$

Proof:

$$\sum_{i \in I} w_i = \sum_{i \in I} \sum_{u: u \in S_i} y_u$$
$$= \sum_u |\{i \in I : u \in S_i\}| \cdot y_u$$
$$\leq \sum_u f_u y_u$$
$$\leq f \sum_u y_u$$

▲ @ ▶ ▲ 臣 ▶ ▲ 臣 ▶ 286/521

Proof:

$$\sum_{i \in I} w_i = \sum_{i \in I} \sum_{u: u \in S_i} y_u$$
$$= \sum_u |\{i \in I : u \in S_i\}| \cdot y_u$$
$$\leq \sum_u f_u y_u$$
$$\leq f \sum_u y_u$$
$$\leq f \operatorname{cost}(x^*)$$

▲ @ ► ▲ E ► ▲ E ► 286/521

Proof:

$$\sum_{i \in I} w_i = \sum_{i \in I} \sum_{u: u \in S_i} y_u$$
$$= \sum_u |\{i \in I : u \in S_i\}| \cdot y_u$$
$$\leq \sum_u f_u y_u$$
$$\leq f \sum_u y_u$$
$$\leq f \operatorname{cost}(x^*)$$
$$\leq f \cdot \operatorname{OPT}$$

▲ @ ▶ ▲ 클 ▶ ▲ 클 ▶ 286/521

 $I\subseteq I'$.

- \sim Suppose that we take S_i in the first algorithm. Let $i \in I_i$ \sim This means $x_i \approx \frac{1}{2}$.
- Because of Complementary Stackness Conditions the corresponding constraint in the dual must be tight.
- Hence, the second algorithm will also choose $S_{i^{-1}}$

 $I\subseteq I'$.

- Suppose that we take S_i in the first algorithm. I.e., $i \in I$.
- This means $x_i \ge \frac{1}{7}$.
- Because of Complementary Slackness Conditions the corresponding constraint in the dual must be tight.
- Hence, the second algorithm will also choose *S*_{*i*}.

 $I\subseteq I'$.

- Suppose that we take S_i in the first algorithm. I.e., $i \in I$.
- This means $x_i \ge \frac{1}{f}$.
- Because of Complementary Slackness Conditions the corresponding constraint in the dual must be tight.
- Hence, the second algorithm will also choose *S*_{*i*}.

 $I\subseteq I'$.

- Suppose that we take S_i in the first algorithm. I.e., $i \in I$.
- This means $x_i \ge \frac{1}{f}$.
- Because of Complementary Slackness Conditions the corresponding constraint in the dual must be tight.
- ▶ Hence, the second algorithm will also choose *S*_{*i*}.

 $I\subseteq I'$.

- Suppose that we take S_i in the first algorithm. I.e., $i \in I$.
- This means $x_i \ge \frac{1}{f}$.
- Because of Complementary Slackness Conditions the corresponding constraint in the dual must be tight.
- ► Hence, the second algorithm will also choose *S*_{*i*}.

The previous two rounding algorithms have the disadvantage that it is necessary to solve the LP. The following method also gives an f-approximation without solving the LP.

For estimating the cost of the solution we only required two properties.

The solution is dual feasible and, hence,

$$\sum_{n} \gamma_{hc} \leq \operatorname{cost}(\mathbf{x}^{*}) \leq 0.011$$

where zc^* is an optimum solution to the primal LP.:

The set *I* contains only sets for which the dual inequality is tight.

Of course, we also need that I is a cover.

▲ @ ▶ ▲ 클 ▶ ▲ 클 ▶ 288/521

The previous two rounding algorithms have the disadvantage that it is necessary to solve the LP. The following method also gives an f-approximation without solving the LP.

For estimating the cost of the solution we only required two properties.

Of course, we also need that *I* is a cover.

The previous two rounding algorithms have the disadvantage that it is necessary to solve the LP. The following method also gives an f-approximation without solving the LP.

For estimating the cost of the solution we only required two properties.

1. The solution is dual feasible and, hence,

$$\sum_{u} y_{u} \le \operatorname{cost}(x^{*}) \le \operatorname{OPT}$$

where x^* is an optimum solution to the primal LP.

2. The set *I* contains only sets for which the dual inequality is tight.

Of course, we also need that *I* is a cover.

▲ @ ▶ ▲ ■ ▶ ▲ ■ ▶
288/521

The previous two rounding algorithms have the disadvantage that it is necessary to solve the LP. The following method also gives an f-approximation without solving the LP.

For estimating the cost of the solution we only required two properties.

1. The solution is dual feasible and, hence,

$$\sum_{u} y_{u} \le \operatorname{cost}(x^{*}) \le \operatorname{OPT}$$

where x^* is an optimum solution to the primal LP.

2. The set *I* contains only sets for which the dual inequality is tight.

Of course, we also need that *I* is a cover.

The previous two rounding algorithms have the disadvantage that it is necessary to solve the LP. The following method also gives an f-approximation without solving the LP.

For estimating the cost of the solution we only required two properties.

1. The solution is dual feasible and, hence,

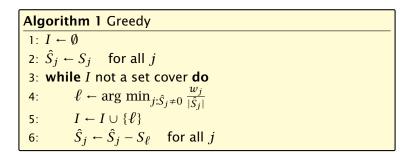
$$\sum_{u} y_{u} \le \operatorname{cost}(x^{*}) \le \operatorname{OPT}$$

where x^* is an optimum solution to the primal LP.

2. The set *I* contains only sets for which the dual inequality is tight.

Of course, we also need that *I* is a cover.

Algorithm 1 PrimalDual
1: $y \leftarrow 0$
2: $I \leftarrow \emptyset$
3: while exists $u \notin \bigcup_{i \in I} S_i$ do
4: increase dual variable y_u until constraint for some
new set S_ℓ becomes tight
5: $I \leftarrow I \cup \{\ell\}$



In every round the Greedy algorithm takes the set that covers remaining elements in the most cost-effective way.

We choose a set such that the ratio between cost and still uncovered elements in the set is minimized.

Lemma 4

Given positive numbers a_1, \ldots, a_k and b_1, \ldots, b_k , and $S \subseteq \{1, \ldots, k\}$ then

$$\min_{i} \frac{a_i}{b_i} \le \frac{\sum_{i \in S} a_i}{\sum_{i \in S} b_i} \le \max_{i} \frac{a_i}{b_i}$$

Let n_{ℓ} denote the number of elements that remain at the beginning of iteration ℓ . $n_1 = n = |U|$ and $n_{s+1} = 0$ if we need s iterations.

In the ℓ -th iteration

1019 <u>Σχεοντ</u>ην<u>γ</u> <u>ΟΡΤ</u> <u>ΟΡΤ</u> <u>ΟΡ</u>Τ 1/31 Σχεοντιδή <u>Σχεοντ</u>ιδή <u>Σ</u>

since an optimal algorithm can cover the remaining n_ℓ elements with cost OPT.

Let \hat{S}_j be a subset that minimizes this ratio. Hence, $w_j/|\hat{S}_j| \leq \frac{\text{OPT}}{n_\ell}$.

Let n_{ℓ} denote the number of elements that remain at the beginning of iteration ℓ . $n_1 = n = |U|$ and $n_{s+1} = 0$ if we need s iterations.

In the ℓ -th iteration

$$\min_{j} \frac{w_{j}}{|\hat{S}_{j}|} \leq \frac{\sum_{j \in \text{OPT}} w_{j}}{\sum_{j \in \text{OPT}} |\hat{S}_{j}|} = \frac{\text{OPT}}{\sum_{j \in \text{OPT}} |\hat{S}_{j}|} \leq \frac{\text{OPT}}{n_{\ell}}$$

since an optimal algorithm can cover the remaining n_ℓ elements with cost OPT.

Let \hat{S}_j be a subset that minimizes this ratio. Hence, $w_j/|\hat{S}_j| \leq \frac{\text{OPT}}{n_\ell}$.

Let n_{ℓ} denote the number of elements that remain at the beginning of iteration ℓ . $n_1 = n = |U|$ and $n_{s+1} = 0$ if we need s iterations.

In the ℓ -th iteration

$$\min_{j} \frac{w_{j}}{|\hat{S}_{j}|} \leq \frac{\sum_{j \in \text{OPT}} w_{j}}{\sum_{j \in \text{OPT}} |\hat{S}_{j}|} = \frac{\text{OPT}}{\sum_{j \in \text{OPT}} |\hat{S}_{j}|} \leq \frac{\text{OPT}}{n_{\ell}}$$

since an optimal algorithm can cover the remaining n_ℓ elements with cost OPT.

Let \hat{S}_j be a subset that minimizes this ratio. Hence, $w_j/|\hat{S}_j| \leq \frac{\text{OPT}}{n_\ell}$.

Let n_{ℓ} denote the number of elements that remain at the beginning of iteration ℓ . $n_1 = n = |U|$ and $n_{s+1} = 0$ if we need s iterations.

In the ℓ -th iteration

$$\min_{j} \frac{w_{j}}{|\hat{S}_{j}|} \le \frac{\sum_{j \in \text{OPT}} w_{j}}{\sum_{j \in \text{OPT}} |\hat{S}_{j}|} = \frac{\text{OPT}}{\sum_{j \in \text{OPT}} |\hat{S}_{j}|} \le \frac{\text{OPT}}{m_{\ell}}$$

since an optimal algorithm can cover the remaining n_ℓ elements with cost OPT.

Let \hat{S}_j be a subset that minimizes this ratio. Hence, $w_j/|\hat{S}_j| \leq \frac{\text{OPT}}{n_\ell}$.

Let n_{ℓ} denote the number of elements that remain at the beginning of iteration ℓ . $n_1 = n = |U|$ and $n_{s+1} = 0$ if we need s iterations.

In the ℓ -th iteration

$$\min_{j} \frac{w_{j}}{|\hat{S}_{j}|} \leq \frac{\sum_{j \in \text{OPT}} w_{j}}{\sum_{j \in \text{OPT}} |\hat{S}_{j}|} = \frac{\text{OPT}}{\sum_{j \in \text{OPT}} |\hat{S}_{j}|} \leq \frac{\text{OPT}}{n_{\ell}}$$

since an optimal algorithm can cover the remaining n_ℓ elements with cost OPT.

Let \hat{S}_j be a subset that minimizes this ratio. Hence, $w_j/|\hat{S}_j| \leq \frac{\text{OPT}}{n_\ell}$.

Let n_{ℓ} denote the number of elements that remain at the beginning of iteration ℓ . $n_1 = n = |U|$ and $n_{s+1} = 0$ if we need s iterations.

In the ℓ -th iteration

$$\min_{j} \frac{w_{j}}{|\hat{S}_{j}|} \leq \frac{\sum_{j \in \text{OPT}} w_{j}}{\sum_{j \in \text{OPT}} |\hat{S}_{j}|} = \frac{\text{OPT}}{\sum_{j \in \text{OPT}} |\hat{S}_{j}|} \leq \frac{\text{OPT}}{n_{\ell}}$$

since an optimal algorithm can cover the remaining n_ℓ elements with cost OPT.

Let \hat{S}_j be a subset that minimizes this ratio. Hence, $w_j/|\hat{S}_j| \leq \frac{\text{OPT}}{n_\ell}$.

Let n_{ℓ} denote the number of elements that remain at the beginning of iteration ℓ . $n_1 = n = |U|$ and $n_{s+1} = 0$ if we need s iterations.

In the ℓ -th iteration

$$\min_{j} \frac{w_{j}}{|\hat{S}_{j}|} \leq \frac{\sum_{j \in \text{OPT}} w_{j}}{\sum_{j \in \text{OPT}} |\hat{S}_{j}|} = \frac{\text{OPT}}{\sum_{j \in \text{OPT}} |\hat{S}_{j}|} \leq \frac{\text{OPT}}{n_{\ell}}$$

since an optimal algorithm can cover the remaining n_ℓ elements with cost OPT.

Let \hat{S}_j be a subset that minimizes this ratio. Hence, $w_j/|\hat{S}_j| \leq \frac{\text{OPT}}{n_\ell}$.

Adding this set to our solution means $n_{\ell+1} = n_{\ell} - |\hat{S}_j|$.

$$w_j \le \frac{|\hat{S}_j| \text{OPT}}{n_\ell} = \frac{n_\ell - n_{\ell+1}}{n_\ell} \cdot \text{OPT}$$

Adding this set to our solution means $n_{\ell+1} = n_{\ell} - |\hat{S}_j|$.

$$w_j \leq \frac{|\hat{S}_j|\text{OPT}}{n_\ell} = \frac{n_\ell - n_{\ell+1}}{n_\ell} \cdot \text{OPT}$$

 $\sum_{j\in I} w_j$

13.4 Greedy

▲ 個 ▶ ▲ 里 ▶ ▲ 里 ▶ 294/521

$$\sum_{j \in I} w_j \le \sum_{\ell=1}^s \frac{n_\ell - n_{\ell+1}}{n_\ell} \cdot \text{OPT}$$

13.4 Greedy

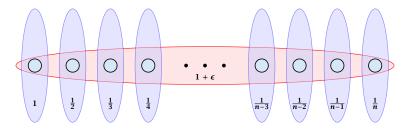
▲ 個 ▶ ▲ ■ ▶ ▲ ■ ▶ 294/521

$$\sum_{j \in I} w_j \le \sum_{\ell=1}^{s} \frac{n_{\ell} - n_{\ell+1}}{n_{\ell}} \cdot \text{OPT}$$
$$\le \text{OPT} \sum_{\ell=1}^{s} \left(\frac{1}{n_{\ell}} + \frac{1}{n_{\ell} - 1} + \dots + \frac{1}{n_{\ell+1} + 1} \right)$$

$$\sum_{j \in I} w_j \le \sum_{\ell=1}^s \frac{n_\ell - n_{\ell+1}}{n_\ell} \cdot \text{OPT}$$
$$\le \text{OPT} \sum_{\ell=1}^s \left(\frac{1}{n_\ell} + \frac{1}{n_\ell - 1} + \dots + \frac{1}{n_{\ell+1} + 1} \right)$$
$$= \text{OPT} \sum_{i=1}^k \frac{1}{i}$$

$$\sum_{j \in I} w_j \le \sum_{\ell=1}^s \frac{n_\ell - n_{\ell+1}}{n_\ell} \cdot \text{OPT}$$
$$\le \text{OPT} \sum_{\ell=1}^s \left(\frac{1}{n_\ell} + \frac{1}{n_\ell - 1} + \dots + \frac{1}{n_{\ell+1} + 1} \right)$$
$$= \text{OPT} \sum_{i=1}^k \frac{1}{i}$$
$$= H_n \cdot \text{OPT} \le \text{OPT}(\ln n + 1) \quad .$$

A tight example:



13.4 Greedy

▲ 個 ▶ ▲ 圖 ▶ ▲ 圖 ▶ 295/521

Technique 5: Randomized Rounding

One round of randomized rounding: Pick set S_j uniformly at random with probability $1 - x_j$ (for all j).

Version A: Repeat rounds until you have a cover.

Version B: Repeat for *s* rounds. If you have a cover STOP. Otherwise, repeat the whole algorithm.

Technique 5: Randomized Rounding

One round of randomized rounding:

Pick set S_j uniformly at random with probability $1 - x_j$ (for all j).

Version A: Repeat rounds until you have a cover.

Version B: Repeat for *s* rounds. If you have a cover STOP. Otherwise, repeat the whole algorithm.

Technique 5: Randomized Rounding

One round of randomized rounding:

Pick set S_j uniformly at random with probability $1 - x_j$ (for all j).

Version A: Repeat rounds until you have a cover.

Version B: Repeat for *s* rounds. If you have a cover STOP. Otherwise, repeat the whole algorithm.

$$= \prod_{j:u\in S_j} (1-x_j)$$

$$= \prod_{j:u\in S_j} (1-x_j) \le \prod_{j:u\in S_j} e^{-x_j}$$

$$= \prod_{j:u\in S_j} (1-x_j) \le \prod_{j:u\in S_j} e^{-x_j}$$
$$= e^{-\sum_{j:u\in S_j} x_j}$$

$$= \prod_{j:u\in S_j} (1-x_j) \le \prod_{j:u\in S_j} e^{-x_j}$$
$$= e^{-\sum_{j:u\in S_j} x_j} \le e^{-1} .$$

Pr[*u* not covered in one round]

$$= \prod_{j:u\in S_j} (1-x_j) \le \prod_{j:u\in S_j} e^{-x_j}$$
$$= e^{-\sum_{j:u\in S_j} x_j} \le e^{-1} .$$

Probability that $u \in U$ is not covered (after ℓ rounds):

$$\Pr[u \text{ not covered after } \ell \text{ round}] \leq \frac{1}{e^{\ell}}$$
.

$\Pr[\exists u \in U \text{ not covered after } \ell \text{ round}]$

 $\Pr[\exists u \in U \text{ not covered after } \ell \text{ round}]$

= $\Pr[u_1 \text{ not covered} \lor u_2 \text{ not covered} \lor \ldots \lor u_n \text{ not covered}]$

= $\Pr[u_1 \text{ not covered } \lor u_2 \text{ not covered } \lor \dots \lor u_n \text{ not covered}]$ $\leq \sum_i \Pr[u_i \text{ not covered after } \ell \text{ rounds}]$

 $= \Pr[u_1 \text{ not covered } \lor u_2 \text{ not covered } \lor \ldots \lor u_n \text{ not covered}]$ $\leq \sum_i \Pr[u_i \text{ not covered after } \ell \text{ rounds}] \leq ne^{-\ell} .$

$$= \Pr[u_1 \text{ not covered} \lor u_2 \text{ not covered} \lor \ldots \lor u_n \text{ not covered}]$$

$$\leq \sum_i \Pr[u_i \text{ not covered after } \ell \text{ rounds}] \leq ne^{-\ell} .$$

Lemma 5 With high probability $O(\log n)$ rounds suffice.

$$= \Pr[u_1 \text{ not covered } \lor u_2 \text{ not covered } \lor \ldots \lor u_n \text{ not covered}]$$

$$\leq \sum_i \Pr[u_i \text{ not covered after } \ell \text{ rounds}] \leq ne^{-\ell} .$$

Lemma 5 With high probability $O(\log n)$ rounds suffice.

With high probability:

For any constant α the number of rounds is at most $O(\log n)$ with probability at least $1 - n^{-\alpha}$.

Proof: We have

 $\Pr[\#\mathsf{rounds} \ge (\alpha + 1) \ln n] \le n e^{-(\alpha + 1) \ln n} = n^{-\alpha} .$

Version A.

Repeat for $s = (\alpha + 1) \ln n$ rounds. If you don't have a cover simply take for each element u the cheapest set that contains u.

Version A.

Repeat for $s = (\alpha + 1) \ln n$ rounds. If you don't have a cover simply take for each element u the cheapest set that contains u.

E[cost]

Version A.

Repeat for $s = (\alpha + 1) \ln n$ rounds. If you don't have a cover simply take for each element u the cheapest set that contains u.

 $E[\cos t] \le (\alpha + 1) \ln n \cdot \cos(LP) + (n \cdot OPT) n^{-\alpha}$

Version A.

Repeat for $s = (\alpha + 1) \ln n$ rounds. If you don't have a cover simply take for each element u the cheapest set that contains u.

 $E[\text{cost}] \le (\alpha + 1) \ln n \cdot \text{cost}(LP) + (n \cdot \text{OPT})n^{-\alpha} = \mathcal{O}(\ln n) \cdot \text{OPT}$

Version B.

Repeat for $s = (\alpha + 1) \ln n$ rounds. If you don't have a cover simply repeat the whole process.

E[cost] =

Version B.

Repeat for $s = (\alpha + 1) \ln n$ rounds. If you don't have a cover simply repeat the whole process.

```
E[cost] = Pr[success] \cdot E[cost | success] + Pr[no success] \cdot E[cost | no success]
```


Version B.

Repeat for $s = (\alpha + 1) \ln n$ rounds. If you don't have a cover simply repeat the whole process.

```
E[cost] = Pr[success] \cdot E[cost | success] 
+ Pr[no success] \cdot E[cost | no success]
```

This means E[cost | success]

Version B.

Repeat for $s = (\alpha + 1) \ln n$ rounds. If you don't have a cover simply repeat the whole process.

```
E[cost] = Pr[success] \cdot E[cost | success] + Pr[no success] \cdot E[cost | no success]
```

This means

```
E[\cos t | \text{success}] = \frac{1}{\Pr[\text{succ.}]} \Big( E[\cos t] - \Pr[\text{no success}] \cdot E[\cos t | \text{no success}] \Big)
```


Version B.

Repeat for $s = (\alpha + 1) \ln n$ rounds. If you don't have a cover simply repeat the whole process.

```
E[cost] = Pr[success] \cdot E[cost | success] 
+ Pr[no success] \cdot E[cost | no success]
```

This means

E[cost | success]

$$= \frac{1}{\Pr[\mathsf{succ.}]} \Big(E[\cos t] - \Pr[\mathsf{no success}] \cdot E[\cos t | \mathsf{no success}] \Big)$$

$$\leq \frac{1}{\Pr[\mathsf{succ.}]} E[\cos t] \leq \frac{1}{1 - n^{-\alpha}} (\alpha + 1) \ln n \cdot \operatorname{cost}(\operatorname{LP})$$

Version B.

Repeat for $s = (\alpha + 1) \ln n$ rounds. If you don't have a cover simply repeat the whole process.

```
E[cost] = Pr[success] \cdot E[cost | success] 
+ Pr[no success] \cdot E[cost | no success]
```

This means

E[cost | success]

$$= \frac{1}{\Pr[\mathsf{succ.}]} \left(E[\cos t] - \Pr[\mathsf{no \ success}] \cdot E[\cos t \mid \mathsf{no \ success}] \right)$$

$$\leq \frac{1}{\Pr[\mathsf{succ.}]} E[\cos t] \leq \frac{1}{1 - n^{-\alpha}} (\alpha + 1) \ln n \cdot \operatorname{cost}(\operatorname{LP})$$

$$\leq 2(\alpha + 1) \ln n \cdot \operatorname{OPT}$$

Version B.

Repeat for $s = (\alpha + 1) \ln n$ rounds. If you don't have a cover simply repeat the whole process.

```
E[cost] = Pr[success] \cdot E[cost | success] 
+ Pr[no success] \cdot E[cost | no success]
```

This means

E[cost | success]

$$= \frac{1}{\Pr[\mathsf{succ.}]} \left(E[\cos t] - \Pr[\mathsf{no \ success}] \cdot E[\cos t \mid \mathsf{no \ success}] \right)$$

$$\leq \frac{1}{\Pr[\mathsf{succ.}]} E[\cos t] \leq \frac{1}{1 - n^{-\alpha}} (\alpha + 1) \ln n \cdot \operatorname{cost}(\operatorname{LP})$$

$$\leq 2(\alpha + 1) \ln n \cdot \operatorname{OPT}$$

for $n \geq 2$ and $\alpha \geq 1$.

Randomized rounding gives an $O(\log n)$ approximation. The running time is polynomial with high probability.

Theorem 6 (without proof)

There is no approximation algorithm for set cover with approximation guarantee better than $\frac{1}{2}\log n$ unless NP has quasi-polynomial time algorithms (algorithms with running time $2poly(\log n)$).

Randomized rounding gives an $O(\log n)$ approximation. The running time is polynomial with high probability.

Theorem 6 (without proof)

There is no approximation algorithm for set cover with approximation guarantee better than $\frac{1}{2}\log n$ unless NP has quasi-polynomial time algorithms (algorithms with running time $2^{\operatorname{poly}(\log n)}$).

Integrality Gap

The integrality gap of the SetCover LP is $\Omega(\log n)$.

- ▶ $n = 2^k 1$
- Elements are all vectors *i* over *GF*[2] of length *k* (excluding zero vector).
- Every vector j defines a set as follows

$$S_j := \{ \boldsymbol{i} \mid \boldsymbol{i} \cdot \boldsymbol{j} = 1 \}$$

• each set contains 2^{k-1} vectors; each vector is contained in 2^{k-1} sets

•
$$x_i = \frac{1}{2^{k-1}} = \frac{2}{n+1}$$
 is fractional solution.

Integrality Gap

Every collection of p < k sets does not cover all elements.

Hence, we get a gap of $\Omega(\log n)$.

Techniques:

- Deterministic Rounding
- Rounding of the Dual
- Primal Dual
- Greedy
- Randomized Rounding
- Local Search
- Rounding Data + Dynamic Programming

