10 van Emde Boas Trees

Dynamic Set Data Structure S:

- S. insert(x)
- S. delete(x)
- S. search(x)
- S. min()
- S. max()
- S. succ(x)
- S. pred(x)
For this chapter we ignore the problem of storing satellite data:

- **S. insert**(x): Inserts x into S.
- **S. delete**(x): Deletes x from S. Usually assumes that x ∈ S.
- **S. member**(x): Returns 1 if x ∈ S and 0 otw.
- **S. min**(): Returns the value of the minimum element in S.
- **S. max**(): Returns the value of the maximum element in S.
- **S. succ**(x): Returns successor of x in S. Returns null if x is maximum or larger than any element in S. Note that x needs not to be in S.
- **S. pred**(x): Returns the predecessor of x in S. Returns null if x is minimum or smaller than any element in S. Note that x needs not to be in S.
Can we improve the existing algorithms when the keys are from a restricted set?

In the following we assume that the keys are from \{0, 1, \ldots, u - 1\}, where \(u\) denotes the size of the universe.
Implementation 1: Array

Use an array that encodes the indicator function of the dynamic set.
Implementation 1: Array

Algorithm 21 array.insert(x)
1: content[x] ← 1;

Algorithm 22 array.delete(x)
1: content[x] ← 0;

Algorithm 23 array.member(x)
1: return content[x];

- Note that we assume that x is valid, i.e., it falls within the array boundaries.
- Obviously(?) the running time is constant.
Implementation 1: Array

Algorithm 24 array.max()
1: for (i = size − 1; i ≥ 0; i--) do
2: if content[i] = 1 then return i;
3: return null;

Algorithm 25 array.min()
1: for (i = 0; i < size; i++) do
2: if content[i] = 1 then return i;
3: return null;

> Running time is $\mathcal{O}(u)$ in the worst case.
Implementation 1: Array

Algorithm 26 array.succ(x)

1: for (i = x + 1; i < size; i++) do
2: if content[i] = 1 then return i;
3: return null;

Algorithm 27 array.pred(x)

1: for (i = x − 1; i ≥ 0; i--) do
2: if content[i] = 1 then return i;
3: return null;

> Running time is $O(u)$ in the worst case.
Implementation 2: Summary Array

- \(\sqrt{u} \) cluster-arrays of \(\sqrt{u} \) bits.
- One summary-array of \(\sqrt{u} \) bits. The \(i \)-th bit in the summary array stores the bit-wise or of the bits in the \(i \)-th cluster.
Implementation 2: Summary Array

The bit for a key x is contained in cluster number $\left\lfloor \frac{x}{\sqrt{u}} \right\rfloor$.

Within the cluster-array the bit is at position $x \mod \sqrt{u}$.

For simplicity we assume that $u = 2^{2k}$ for some $k \geq 1$. Then we can compute the cluster-number for an entry x as $\text{high}(x)$ (the upper half of the dual representation of x) and the position of x within its cluster as $\text{low}(x)$ (the lower half of the dual representation).
Implementation 2: Summary Array

Algorithm 28 member(x)
1: return cluster[high(x)].member(low(x));

Algorithm 29 insert(x)
1: cluster[high(x)].insert(low(x));
2: summary . insert(high(x));

- The running times are constant, because the corresponding array-functions have constant running times.
Implementation 2: Summary Array

Algorithm 30 delete(x)

1: cluster[high(x)].delete(low(x));
2: if cluster[high(x)].min() = null then
3: summary . delete(high(x));

The running time is dominated by the cost of a minimum computation on an array of size \sqrt{u}. Hence, $O(\sqrt{u})$.
Implementation 2: Summary Array

Algorithm 31 \texttt{max()}

1: \texttt{maxcluster} \leftarrow \texttt{summary} \cdot \texttt{max()};
2: \texttt{if} \ \texttt{maxcluster} = \texttt{null} \ \texttt{return} \ \texttt{null};
3: \texttt{offs} \leftarrow \texttt{cluster}[\texttt{maxcluster}].\texttt{max()}
4: \texttt{return} \ \texttt{maxcluster} \circ \texttt{offs};

Algorithm 32 \texttt{min()}

1: \texttt{mincluster} \leftarrow \texttt{summary} \cdot \texttt{min()};
2: \texttt{if} \ \texttt{mincluster} = \texttt{null} \ \texttt{return} \ \texttt{null};
3: \texttt{offs} \leftarrow \texttt{cluster}[\texttt{mincluster}].\texttt{min()};
4: \texttt{return} \ \texttt{mincluster} \circ \texttt{offs};

- Running time is roughly $2\sqrt{u} = \mathcal{O}(\sqrt{u})$ in the worst case.

The operator \circ stands for the concatenation of two bitstrings. This means if $x = 01112$ and $y = 00012$ then $x \circ y = 011100012$.
Implementation 2: Summary Array

Algorithm 33 $\text{succ}(x)$

1: $m \leftarrow \text{cluster}[\text{high}(x)].\text{succ}(\text{low}(x))$
2: if $m \neq \text{null}$ then return $\text{high}(x) \circ m$;
3: $\text{succcluster} \leftarrow \text{summary} . \text{succ}(\text{high}(x))$;
4: if $\text{succcluster} \neq \text{null}$ then
5: $offs \leftarrow \text{cluster}[\text{succcluster}].\min()$;
6: return $\text{succcluster} \circ offs$;
7: return null;

Running time is roughly $3\sqrt{u} = \mathcal{O}(\sqrt{u})$ in the worst case.
Implementation 2: Summary Array

Algorithm 34 $\text{pred}(x)$
1: $m \leftarrow \text{cluster}[\text{high}(x)].\text{pred}(\text{low}(x))$
2: if $m \neq \text{null}$ then return $\text{high}(x) \circ m$;
3: $\text{predcluster} \leftarrow \text{summary}.\text{pred}(\text{high}(x))$;
4: if $\text{predcluster} \neq \text{null}$ then
5: $\text{offs} \leftarrow \text{cluster}[\text{predcluster}].\text{max}()$;
6: return $\text{predcluster} \circ \text{offs}$;
7: return null;

- Running time is roughly $3\sqrt{u} = O(\sqrt{u})$ in the worst case.
Implementation 3: Recursion

Instead of using sub-arrays, we build a recursive data-structure.

$S(u)$ is a dynamic set data-structure representing u bits:

\[
\begin{array}{cccc}
1 & 1 & 1 & 0 \\
\end{array}
\]

\[
\begin{array}{cccc}
S(\sqrt{u}) \\
S(\sqrt{u}) \\
S(\sqrt{u}) \\
S(\sqrt{u}) \\
\end{array}
\]

\[
\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\end{array}
\]

size u
We assume that $u = 2^{2^k}$ for some k.

The data-structure $S(2)$ is defined as an array of 2-bits (end of the recursion).
Implementation 3: Recursion

The code from Implementation 2 can be used unchanged. We only need to redo the analysis of the running time.

Note that in the code we do not need to specifically address the non-recursive case. This is achieved by the fact that an $S(4)$ will contain $S(2)$’s as sub-datastructures, which are arrays. Hence, a call like `cluster[1].min()` from within the data-structure $S(4)$ is not a recursive call as it will call the function `array.min()`.

This means that the non-recursive case is been dealt with while initializing the data-structure.
Implementation 3: Recursion

Algorithm 35 member(x)
1: return cluster[high(x)].member(low(x));

- $T_{\text{mem}}(u) = T_{\text{mem}}(\sqrt{u}) + 1$.
Implementation 3: Recursion

Algorithm 36 insert(x)
1: cluster[high(x)].insert(low(x));
2: summary . insert(high(x));

$T_{ins}(u) = 2T_{ins}(\sqrt{u}) + 1$.
Implementation 3: Recursion

Algorithm 37 delete(x)
1: cluster[high(x)].delete(low(x));
2: if cluster[high(x)].min() = null then
3: summary.delete(high(x));

\[T_{\text{del}}(u) = 2T_{\text{del}}(\sqrt{u}) + T_{\text{min}}(\sqrt{u}) + 1. \]
Algorithm 38 $\text{min}()$

1: $\text{mincluster} \leftarrow \text{summary} . \text{min}();$
2: \textbf{if} $\text{mincluster} = \text{null}$ \textbf{return} null;
3: $\text{offs} \leftarrow \text{cluster}[\text{mincluster}].\text{min}();$
4: \textbf{return} $\text{mincluster} \circ \text{offs};$

$T_{\text{min}}(u) = 2T_{\text{min}}(\sqrt{u}) + 1.$
Implementation 3: Recursion

Algorithm 39 $\text{succ}(x)$

1: $m \leftarrow \text{cluster}[^{\text{high}}(x)].\text{succ}(^{\text{low}}(x))$
2: if $m \neq \text{null}$ then return $^{\text{high}}(x) \circ m$;
3: $\text{succcluster} \leftarrow \text{summary} . \text{succ}(^{\text{high}}(x))$;
4: if $\text{succcluster} \neq \text{null}$ then
5: $\text{offs} \leftarrow \text{cluster}[^{\text{succcluster}}].\text{min}()$
6: return $\text{succcluster} \circ \text{offs}$;
7: return null;

$T_{\text{succ}}(u) = 2T_{\text{succ}}(\sqrt{u}) + T_{\text{min}}(\sqrt{u}) + 1.$
Implementation 3: Recursion

\[T_{\text{mem}}(u) = T_{\text{mem}}(\sqrt{u}) + 1: \]

Set \(\ell := \log u \) and \(X(\ell) := T_{\text{mem}}(2^\ell) \). Then

\[X(\ell) = T_{\text{mem}}(2^\ell) = T_{\text{mem}}(u) = T_{\text{mem}}(\sqrt{u}) + 1 \]
\[= T_{\text{mem}}(2^{\frac{\ell}{2}}) + 1 = X(\frac{\ell}{2}) + 1 . \]

Using Master theorem gives \(X(\ell) = \Theta(\log \ell) \), and hence
\[T_{\text{mem}}(u) = \Theta(\log \log u). \]
Implementation 3: Recursion

\[T_{\text{ins}}(u) = 2T_{\text{ins}}(\sqrt{u}) + 1. \]

Set \(\ell := \log u \) and \(X(\ell) := T_{\text{ins}}(2^\ell) \). Then

\[X(\ell) = T_{\text{ins}}(2^\ell) = T_{\text{ins}}(u) = 2T_{\text{ins}}(\sqrt{u}) + 1 \]
\[= 2T_{\text{ins}}(2^{\ell/2}) + 1 = 2X(\ell/2) + 1. \]

Using Master theorem gives \(X(\ell) = \mathcal{O}(\ell) \), and hence
\(T_{\text{ins}}(u) = \mathcal{O}(\log u) \).

The same holds for \(T_{\text{max}}(u) \) and \(T_{\text{min}}(u) \).
Implementation 3: Recursion

\[T_{\text{del}}(u) = 2T_{\text{del}}(\sqrt{u}) + T_{\text{min}}(\sqrt{u}) + 1 \leq 2T_{\text{del}}(\sqrt{u}) + c \log(u). \]

Set \(\ell := \log u \) and \(X(\ell) := T_{\text{del}}(2^\ell) \). Then

\[
X(\ell) = T_{\text{del}}(2^\ell) = T_{\text{del}}(u) = 2T_{\text{del}}(\sqrt{u}) + c \log u
\]

\[
= 2T_{\text{del}}(2^{\ell/2}) + c\ell = 2X(\frac{\ell}{2}) + c\ell.
\]

Using Master theorem gives \(X(\ell) = \Theta(\ell \log \ell) \), and hence \(T_{\text{del}}(u) = \Theta(\log u \log \log u) \).

The same holds for \(T_{\text{pred}}(u) \) and \(T_{\text{succ}}(u) \).
The bit referenced by \textbf{min} is not set within sub-datastructures.

The bit referenced by \textbf{max} is set within sub-datastructures (if \textbf{max} \(\neq \) \textbf{min}).
Advantages of having max/min pointers:

- Recursive calls for min and max are constant time.
- $\text{min} = \text{null}$ means that the data-structure is empty.
- $\text{min} = \text{max} \neq \text{null}$ means that the data-structure contains exactly one element.
- We can insert into an empty datastructure in constant time by only setting $\text{min} = \text{max} = x$.
- We can delete from a data-structure that just contains one element in constant time by setting $\text{min} = \text{max} = \text{null}$.
Implementation 4: van Emde Boas Trees

Algorithm 40 \texttt{max}()
1: \textbf{return} max;

Algorithm 41 \texttt{min}()
1: \textbf{return} min;

- Constant time.
Algorithm 42 \texttt{member}(x)

1: \textbf{if } $x = \min$ \textbf{then return} 1; // TRUE \\
2: \textbf{return} \texttt{cluster}[\texttt{high}(x)].\texttt{member}(\texttt{low}(x));

\begin{itemize}
 \item $T_{\text{mem}}(u) = T_{\text{mem}}(\sqrt{u}) + 1 \Rightarrow T(u) = \Theta(\log \log u)$.
\end{itemize}
Algorithm 43 $\text{succ}(x)$

1: if $\text{min} \neq \text{null} \land x < \text{min}$ then return min;
2: $\text{maxincluster} \leftarrow \text{cluster}[\text{high}(x)].\text{max}();$
3: if $\text{maxincluster} \neq \text{null} \land \text{low}(x) < \text{maxincluster}$ then
4: $\text{offs} \leftarrow \text{cluster}[\text{high}(x)].\text{succ}(\text{low}(x));$
5: return $\text{high}(x) \circ \text{offs};$
6: else
7: $\text{succcluster} \leftarrow \text{summary} . \text{succ}(\text{high}(x));$
8: if $\text{succcluster} = \text{null}$ then return $\text{null};$
9: $\text{offs} \leftarrow \text{cluster}[\text{succcluster}].\text{min}();$
10: return $\text{succcluster} \circ \text{offs};$

$T_{\text{succ}}(u) = T_{\text{succ}}(\sqrt{u}) + 1 \Rightarrow T_{\text{succ}}(u) = \mathcal{O}(\log \log u)$.
Algorithm 44 insert(x)
1: if $\text{min} = \text{null}$ then
2: \hspace{1em} $\text{min} = x$; $\text{max} = x$;
3: else
4: \hspace{1em} if $x < \text{min}$ then exchange x and min;
5: \hspace{1em} if $\text{cluster}[\text{high}(x)].\text{min} = \text{null}$; then
6: \hspace{2em} $\text{summary}.\text{insert}(\text{high}(x))$;
7: \hspace{2em} $\text{cluster}[\text{high}(x)].\text{insert}(\text{low}(x))$;
8: else
9: \hspace{2em} $\text{cluster}[\text{high}(x)].\text{insert}(\text{low}(x))$;
10: if $x > \text{max}$ then $\text{max} = x$;

$\text{T}_{\text{ins}}(u) = \text{T}_{\text{ins}}(\sqrt{u}) + 1 \Rightarrow \text{T}_{\text{ins}}(u) = \mathcal{O}(\log \log u)$.
Note that the recursive call in Line 7 takes constant time as the if-condition in Line 5 ensures that we are inserting in an empty sub-tree.

The only non-constant recursive calls are the call in Line 6 and in Line 9. These are mutually exclusive, i.e., only one of these calls will actually occur.

From this we get that $T_{ins}(u) = T_{ins}(\sqrt{u}) + 1$.
Implementation 4: van Emde Boas Trees

- Assumes that x is contained in the structure.

Algorithm 45 delete(x)

1: if $\text{min} = \text{max}$ then
2: $\text{min} = \text{null}; \text{max} = \text{null};$
3: else
4: if $x = \text{min}$ then find new minimum
5: $\text{firstcluster} \leftarrow \text{summary}.\text{min}();$
6: $\text{offs} \leftarrow \text{cluster}[\text{firstcluster}].\text{min}();$
7: $x \leftarrow \text{firstcluster} \circ \text{offs};$
8: $\text{min} \leftarrow x;$
9: cluster[high(x)].delete(low(x));
10: continued...

© Harald Räcke 427
Algorithm 45 delete(x)

...continued

10: if cluster[high(x)].min() = null then
11: summary.delete(high(x));
12: if $x = \text{max}$ then
13: summax ← summary.max();
14: if summax = null then max ← min;
15: else
16: offs ← cluster[summax].max();
17: max ← summax ◦ offs
18: else
19: if $x = \text{max}$ then
20: offs ← cluster[high(x)].max();
21: max ← high(x) ◦ offs;
Implementation 4: van Emde Boas Trees

Note that only one of the possible recursive calls in Line 9 and Line 11 in the deletion-algorithm may take non-constant time.

To see this observe that the call in Line 11 only occurs if the cluster where x was deleted is now empty. But this means that the call in Line 9 deleted the last element in $\text{cluster}[\text{high}(x)]$. Such a call only takes constant time.

Hence, we get a recurrence of the form

$$T_{\text{del}}(u) = T_{\text{del}}(\sqrt{u}) + c.$$

This gives $T_{\text{del}}(u) = \Theta(\log \log u)$.
Space requirements:

- The space requirement fulfills the recurrence

\[S(u) = (\sqrt{u} + 1)S(\sqrt{u}) + \Theta(\sqrt{u}) . \]

- Note that we cannot solve this recurrence by the Master theorem as the branching factor is not constant.

- One can show by induction that the space requirement is \(S(u) = \Theta(u) \). Exercise.
Let the “real” recurrence relation be

\[S(k^2) = (k + 1)S(k) + c_1 \cdot k; \quad S(4) = c_2 \]

Replacing \(S(k) \) by \(R(k) := S(k)/c_2 \) gives the recurrence

\[R(k^2) = (k + 1)R(k) + ck; \quad R(4) = 1 \]

where \(c = c_1/c_2 < 1 \).

Now, we show \(R(k) \leq k - 2 \) for squares \(k \geq 4 \).

- Obviously, this holds for \(k = 4 \).
- For \(k = \ell^2 > 4 \) with \(\ell \) integral we have

\[
R(k) = (1 + \ell)R(\ell) + c\ell \\
\leq (1 + \ell)(\ell - 2) + \ell \leq k - 2
\]

This shows that \(R(k) \) and, hence, \(S(k) \) grows linearly.
van Emde Boas Trees

Bibliography

See Chapter 20 of [CLRS90].