Amortized Analysis

Definition 1
A data structure with operations \(op_1(), \ldots, op_k()\) has amortized running times \(t_1, \ldots, t_k\) for these operations if the following holds.

Suppose you are given a sequence of operations (starting with an empty data-structure) that operate on at most \(n\) elements, and let \(k_i\) denote the number of occurrences of \(op_i()\) within this sequence. Then the actual running time must be at most
\[
\sum_{i=1}^{k} k_i \cdot t_i(n).
\]

Potential Method

Introduce a potential for the data structure.
- \(\Phi(D_i)\) is the potential after the \(i\)-th operation.
- Amortized cost of the \(i\)-th operation is
 \[
 \hat{c}_i = c_i + \Phi(D_i) - \Phi(D_{i-1}).
 \]
- Show that \(\Phi(D_i) \geq \Phi(D_0)\).

Then
\[
\sum_{i=1}^{k} c_i \leq \sum_{i=1}^{k} c_i + \Phi(D_k) - \Phi(D_0) = \sum_{i=1}^{k} \hat{c}_i.
\]

This means the amortized costs can be used to derive a bound on the total cost.

Example: Stack

Stack
- \(S.\ push()\)
- \(S.\ pop()\)
- \(S.\ multipop(k)\): removes \(k\) items from the stack. If the stack currently contains less than \(k\) items it empties the stack.
- The user has to ensure that pop and multipop do not generate an underflow.

Actual cost:
- \(S.\ push()\): cost 1.
- \(S.\ pop()\): cost 1.
- \(S.\ multipop(k)\): cost \(\min\{\text{size}, k\} = k\).

Example: Stack

Use potential function \(\Phi(S) = \text{number of elements on the stack}\).

Amortized cost:
- \(S.\ push()\): cost
 \[
 \hat{C}_{\text{push}} = C_{\text{push}} + \Delta \Phi = 1 + 1 \leq 2.
 \]
- \(S.\ pop()\): cost
 \[
 \hat{C}_{\text{pop}} = C_{\text{pop}} + \Delta \Phi = 1 - 1 \leq 0.
 \]
- \(S.\ multipop(k)\): cost
 \[
 \hat{C}_{\text{mp}} = C_{\text{mp}} + \Delta \Phi = \min\{\text{size}, k\} - \min\{\text{size}, k\} \leq 0.
 \]

Note that the analysis becomes wrong if pop() or multipop() are called on an empty stack.
Example: Binary Counter

Incrementing a binary counter:
Consider a computational model where each bit-operation costs one time-unit.

Incrementing an \(n \)-bit binary counter may require to examine \(n \)-bits, and maybe change them.

Actual cost:
- Changing bit from 0 to 1: cost 1.
- Changing bit from 1 to 0: cost 1.
- Increment: cost is \(k + 1 \), where \(k \) is the number of consecutive ones in the least significant bit-positions (e.g, 001101 has \(k = 1 \)).

Amortized cost:
- Changing bit from 0 to 1:
 \[
 \hat{C}_{0 \rightarrow 1} = C_{0 \rightarrow 1} + \Delta \Phi = 1 + 1 \leq 2.
 \]
- Changing bit from 1 to 0:
 \[
 \hat{C}_{1 \rightarrow 0} = C_{1 \rightarrow 0} + \Delta \Phi = 1 - 1 \leq 0.
 \]
- Increment: Let \(k \) denotes the number of consecutive ones in the least significant bit-positions. An increment involves \(k \) (1 \(\rightarrow \) 0)-operations, and one (0 \(\rightarrow \) 1)-operation.

 Hence, the amortized cost is \(k\hat{C}_{1 \rightarrow 0} + \hat{C}_{0 \rightarrow 1} \leq 2 \).

8.3 Fibonacci Heaps

Collection of trees that fulfill the heap property.

Structure is much more relaxed than binomial heaps.

Additional implementation details:
- Every node \(x \) stores its degree in a field \(x.\text{degree} \). Note that this can be updated in constant time when adding a child to \(x \).
- Every node stores a boolean value \(x.\text{marked} \) that specifies whether \(x \) is marked or not.
8.3 Fibonacci Heaps

The potential function:
- \(t(S) \) denotes the number of trees in the heap.
- \(m(S) \) denotes the number of marked nodes.
- We use the potential function \(\Phi(S) = t(S) + 2m(S) \).

The potential is \(\Phi(S) = 5 + 2 \cdot 3 = 11 \).

8.3 Fibonacci Heaps

We assume that one unit of potential can pay for a constant amount of work, where the constant is chosen “big enough” (to take care of the constants that occur).

To make this more explicit we use \(c \) to denote the amount of work that a unit of potential can pay for.

8.3 Fibonacci Heaps

\(S. \) minimum()

- Access through the min-pointer.
- Actual cost \(\Theta(1) \).
- No change in potential.
- Amortized cost \(\Theta(1) \).

8.3 Fibonacci Heaps

\(S. \) merge\((S')\)

- Merge the root lists.
- Adjust the min-pointer

Running time:
- Actual cost \(\Theta(1) \).
- No change in potential.
- Hence, amortized cost is \(\Theta(1) \).
8.3 Fibonacci Heaps

S. insert \(x \)
- Create a new tree containing \(x \).
- Insert \(x \) into the root-list.
- Update min-pointer, if necessary.

Running time:
- Actual cost \(\mathcal{O}(1) \).
- Change in potential is +1.
- Amortized cost is \(c + \mathcal{O}(1) = \mathcal{O}(1) \).

8.3 Fibonacci Heaps

S. delete-min \(x \)
- Delete minimum; add child-trees to heap; time: \(D(\text{min}) \cdot \mathcal{O}(1) \).
- Update min-pointer; time: \((t + D(\text{min})) \cdot \mathcal{O}(1) \).

During the consolidation we traverse the root list. Whenever we discover two trees that have the same degree, we use an array that contains for every degree value \(d \) a pointer to a tree left of the current pointer whose root has degree \(d \) (if such a tree exist).
8.3 Fibonacci Heaps

Consolidate:

Consolidate:

Consolidate:

Consolidate:
8.3 Fibonacci Heaps

Consolidate:

current

min → 7

© Harald Racke

8.3 Fibonacci Heaps

Consolidate:

current

min → 7

© Harald Racke

8.3 Fibonacci Heaps

Consolidate:

current

min → 7

© Harald Racke

8.3 Fibonacci Heaps

Consolidate:

current

min → 7

© Harald Racke
8.3 Fibonacci Heaps

Actual cost for delete-min()
- At most $D_n + t$ elements in root-list before consolidate.
- Hence there exists c_1 s.t. actual cost is at most $c_1 \cdot (D_n + t)$.

Amortized cost for delete-min()
- $t' \leq D_n + 1$ as degrees are different after consolidating.
- Therefore $\Delta \Phi \leq D_n + 1 - t$;
- We can pay $c \cdot (t-D_n-1)$ from the potential decrease.
- The amortized cost is

 \[
 c_1 \cdot (D_n + t) - c \cdot (t-D_n-1)
 \leq (c_1 + c)D_n + (c_1 - c)t + c \leq 2c(D_n + 1) \leq \Theta(D_n)
 \]

 for $c \geq c_1$.

Fibonacci Heaps: decrease-key(handle h, v)

Case 1: decrease-key does not violate heap-property
- Just decrease the key-value of element referenced by h.
 Nothing else to do.

Case 2: heap-property is violated, but parent is not marked
- Decrease key-value of element x reference by h.
- If the heap-property is violated, cut the parent edge of x, and make x into a root.
- Adjust min-pointers, if necessary.
- Mark the (previous) parent of x (unless it’s a root).
Fibonacci Heaps: decrease-key\((\text{handle } h, v)\)

Case 2: heap-property is violated, but parent is not marked
- Decrease key-value of element \(x\) reference by \(h\).
- If the heap-property is violated, cut the parent edge of \(x\), and make \(x\) into a root.
- Adjust min-pointers, if necessary.
- Mark the (previous) parent of \(x\) (unless it’s a root).

Case 3: heap-property is violated, and parent is marked
- Decrease key-value of element \(x\) reference by \(h\).
- Cut the parent edge of \(x\), and make \(x\) into a root.
- Adjust min-pointers, if necessary.
- Continue cutting the parent until you arrive at an unmarked node.

Marking a node can be viewed as a first step towards becoming a root. The first time \(x\) loses a child it is marked; the second time it loses a child it is made into a root.
Fibonacci Heaps: decrease-key(handle h, v)

Actual cost:
- Constant cost for decreasing the value.
- Constant cost for each of ℓ cuts.
- Hence, cost is at most \(c_2 \cdot (ℓ + 1) \), for some constant \(c_2 \).

Amortized cost:
- \(t' = t + ℓ \), as every cut creates one new root.
- \(m' \leq m - (ℓ - 1) + 1 = m - ℓ + 2 \), since all but the first cut unmarks a node; the last cut may mark a node.
- \(∆Φ \leq ℓ + 2(-ℓ + 2) = 4 - ℓ \)
- Amortized cost is at most \(c_2(ℓ + 1) + c(4 - ℓ) \leq (c_2 - c)ℓ + 4c + c_2 = O(1) \), if \(c \geq c_2 \).

Delete node

\(H. \, delete(x) \):
- decrease value of \(x \) to \(-∞\).
- delete-min.

Amortized cost: \(O(D_n) \)
- \(O(1) \) for decrease-key.
- \(O(D_n) \) for delete-min.

8.3 Fibonacci Heaps

Lemma 2
Let \(x \) be a node with degree \(k \) and let \(y_1, \ldots, y_k \) denote the children of \(x \) in the order that they were linked to \(x \). Then

\[
\text{degree}(y_i) \geq \begin{cases}
0 & \text{if } i = 1 \\
\text{degree}(y_i) - 2 & \text{if } i > 1
\end{cases}
\]

The marking process is very important for the proof of this lemma. It ensures that a node can have lost at most one child since the last time it became a non-root node. When losing a first child the node gets marked; when losing the second child it is cut from the parent and made into a root.

Proof
- When \(y_1 \) was linked to \(x \), at least \(y_1, \ldots, y_{i-1} \) were already linked to \(x \).
- Hence, at this time degree(x) ≥ i − 1, and therefore also degree(y_i) ≥ i − 1 as the algorithm links nodes of equal degree only.
- Since, then \(y_1 \) has lost at most one child.
- Therefore, degree(y_i) ≥ i − 2.
8.3 Fibonacci Heaps

Let s_k be the minimum possible size of a sub-tree rooted at a node of degree k that can occur in a Fibonacci heap.

- s_k monotonically increases with k
- $s_0 = 1$ and $s_1 = 2$.

Let x be a degree k node of size s_k and let y_1, \ldots, y_k be its children.

\[
s_k = 2 + \sum_{i=2}^{k} \text{size}(y_i) \\
\geq 2 + \sum_{i=2}^{k} s_{i-2} \\
= 2 + \sum_{i=0}^{k-2} s_i
\]

\[
F_k = \begin{cases}
1 & \text{if } k = 0 \\
2 & \text{if } k = 1 \\
F_{k-1} + F_{k-2} & \text{if } k \geq 2
\end{cases}
\]

Facts:

1. $F_k \geq \phi^k$.
2. For $k \geq 2$: $F_k = 2 + \sum_{i=0}^{k-2} F_i$.

The above facts can be easily proved by induction. From this it follows that $s_k \geq F_k \geq \phi^k$, which gives that the maximum degree in a Fibonacci heap is logarithmic.