input: x[1]...x[n]output: s[1]...s[n] with $s[i] = \sum_{j=1}^{i} x[i]$ (w.r.t. operator *)

input: x[1]...x[n]output: s[1]...s[n] with $s[i] = \sum_{j=1}^{i} x[i]$ (w.r.t. operator *)

Algorithm 6 PrefixSum $(n, x[1] \dots x[n])$ 1: // compute prefixsums; $n = 2^k$ 2: if n = 1 then $s[1] \leftarrow x[1]$; return 3: for $1 \le i \le n/2$ pardo 4: $a[i] \leftarrow x[2i-1] * x[2i]$ 5: z[1],...,z[n/2] ← PrefixSum(n/2,a[1]...a[n/2])6: for $1 \le i \le n$ pardo 7: $i \text{ even } : s[i] \leftarrow z[i/2]$ 8: i = 1 : s[1] = x[1]*i* odd : $s[i] \leftarrow z[(i-1)/2] * x[i]$ 9:

																		S	-\	/a	lu	le	S																
	 	 -	-	 	 	 		-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	 	 	 	 	 	 	-		-	-	
	 	 -	-	 	 	 		-	-	-	-	-	_	_	_	_	_	_	-		-	_	-	-	-	-	-	-	 	 	 	 	 	 		-	-	_	
	 	 -	-	 	 	 		_	-	-	-	-	_	_	_	_	_	_				_	-	-	-	-	-	-	 	 	 	 	 	 			_	_	
	 	 -	-	 	 	 		_	-	-	-	-	_	-	_	_	_	_				_	-	-	-	-	-	-	 	 	 	 	 	 		-	_	_	
teps	 	 -	-	 	 	 	_	-	_	-	_	_	_	_	_	_	_	_			_	_	_	_	_	-	-	-	 	 	 	 	 	 		-	_	_	
ime s	 	 -	-	 	 	 		_	_	-	_	_	_	_	_	_	_	_				_	-	-	-	-	-	_	 	 	 	 	 	 			_	_	
-	 	 -	-	 	 	 	_ ·	-	_	-	_	-	_	_	_	_	_	_	-		_	_	_	_	_	-	-	-	 	 	 	 	 	 			_	_	
	 	 _	-	 	 	 		-	_	-	_	_	_	_	_	_	_	_				_	_	-	-	-	-	_	 	 	 	 	 	 			_	_	
	 	 _	_	 	 	 	_	_	_	_	_	_	_	_	_	_	_	_			_	_	_	_	_	_	_	_	 	 	 	 	 	 			_	_	
	 	 -	_	 	 	 		_	_	_	_	_	-	_	_	_	_	_				_	_	_	_	_	_	_	 	 	 	 	 	 			_	_	

																				S	-v	al	u	es																			
			-			-						-	-						-	-	-	-	-				-	-	-			-	-			-	-	-			-	-	- ·
			-		_	_	_		_			_	-								_	_	-				_	-	-	_	_	_	-				-	_			_	_	
			_			_	_					_	_								_	_	_					_	_			_	_					_				_	
			-			-	-					-	-							-	-	-	-				-	-	-			-	-					-			-	-	
SC																																											
step		-	-			-						-	-							-	-	-	-				-	-	-			-	-				-	-			-	-	
ne			_			_						_	_							_	_	_	_					_	_			_	_					_					
Ę																																											
			-			-						-	-								-	-	-					-	-			_	-					_			-	_	
		-	-			-	-					-	-							-	-	-	-				-	-	-			-	-					-			-	-	
				_										_																				_									-
	(1))-	-(2)-		(3)	- (4)-	(5)-	-(6)	⊦ -	-(7)) –	(8) –	-(9)		-(1	0	_	(11) -	- (12)-	-(1	3)		(1-	4)	- (15) –	-(1	6)
	0						-													x	-\	'a	lu	es	;													-					-

The algorithm uses work O(n) and time $O(\log n)$ for solving Prefix Sum on an EREW-PRAM with n processors.

It is clearly work-optimal.

Theorem 1

On a CREW PRAM a Prefix Sum requires running time $\Omega(\log n)$ regardless of the number of processors.

The algorithm uses work O(n) and time $O(\log n)$ for solving Prefix Sum on an EREW-PRAM with n processors.

It is clearly work-optimal.

Theorem 1

On a CREW PRAM a Prefix Sum requires running time $\Omega(\log n)$ regardless of the number of processors.

4.1 Prefix Sum

The algorithm uses work O(n) and time $O(\log n)$ for solving Prefix Sum on an EREW-PRAM with n processors.

It is clearly work-optimal.

Theorem 1

On a CREW PRAM a Prefix Sum requires running time $\Omega(\log n)$ regardless of the number of processors.

Input: a linked list given by successor pointers; a value x[i] for every list element; an operator *;

Output: for every list position ℓ the sum (w.r.t. *) of elements after ℓ in the list (including ℓ)

4.2 Parallel Prefix

Alg	gorithm 7 ParallelPrefix
1:	for $1 \le i \le n$ pardo
2:	$P[i] \leftarrow S[i]$
3:	while $S[i] \neq S[S[i]]$ do
4:	$x[i] \leftarrow x[i] * x[S[i]]$
5:	$S[i] \leftarrow S[S[i]]$
6:	if $P[i] \neq i$ then $x[i] \leftarrow x[i] * x[S(i)]$

The algorithm runs in time $O(\log n)$.

It has work requirement $O(n \log n)$. non-optimal

This technique is also known as pointer jumping

4.2 Parallel Prefix

The algorithm runs in time $O(\log n)$.

It has work requirement $O(n \log n)$. non-optimal

This technique is also known as pointer jumping

4.2 Parallel Prefix

◆ 個 ト < 聖 ト < 聖 ト 49/283

Alg	gorithm 7 ParallelPrefix
1:	for $1 \le i \le n$ pardo
2:	$P[i] \leftarrow S[i]$
3:	while $S[i] \neq S[S[i]]$ do
4:	$x[i] \leftarrow x[i] * x[S[i]]$
5:	$S[i] \leftarrow S[S[i]]$
6:	if $P[i] \neq i$ then $x[i] \leftarrow x[i] * x[S(i)]$

The algorithm runs in time $O(\log n)$.

It has work requirement $\mathcal{O}(n \log n)$. non-optimal

This technique is also known as pointer jumping

4.2 Parallel Prefix

Alg	gorithm 7 ParallelPrefix
1:	for $1 \le i \le n$ pardo
2:	$P[i] \leftarrow S[i]$
3:	while $S[i] \neq S[S[i]]$ do
4:	$x[i] \leftarrow x[i] * x[S[i]]$
5:	$S[i] \leftarrow S[S[i]]$
6:	if $P[i] \neq i$ then $x[i] \leftarrow x[i] * x[S(i)]$

The algorithm runs in time $O(\log n)$.

It has work requirement $\mathcal{O}(n \log n)$. non-optimal

This technique is also known as pointer jumping

Given two sorted sequences $A = (a_1, ..., a_n)$ and $B = (b_1, ..., b_n)$, compute the sorted squence $C = (c_1, ..., c_n)$.

Definition 2

Let $X = (x_1, ..., x_l)$ be a sequence. The rank rank(y : X) of y in X is

$$\operatorname{rank}(y:X) = |\{x \in X \mid x \le y\}|$$

For a sequence $Y = (y_1, \dots, y_s)$ we define rank $(Y : X) := (r_1, \dots, r_s)$ with $r_i = rank(y_i : X)$.

Given two sorted sequences $A = (a_1, ..., a_n)$ and $B = (b_1, ..., b_n)$, compute the sorted squence $C = (c_1, ..., c_n)$.

Definition 2

Let $X = (x_1, ..., x_t)$ be a sequence. The rank rank(y : X) of y in X is

 $\operatorname{rank}(y:X) = |\{x \in X \mid x \le y\}|$

For a sequence $Y = (y_1, \dots, y_s)$ we define rank $(Y : X) := (r_1, \dots, r_s)$ with $r_i = rank(y_i : X)$.

Given two sorted sequences $A = (a_1, ..., a_n)$ and $B = (b_1, ..., b_n)$, compute the sorted squence $C = (c_1, ..., c_n)$.

Definition 2

Let $X = (x_1, ..., x_t)$ be a sequence. The rank rank(y : X) of y in X is

$$\operatorname{rank}(y:X) = |\{x \in X \mid x \le y\}|$$

For a sequence $Y = (y_1, \dots, y_s)$ we define rank $(Y : X) := (r_1, \dots, r_s)$ with $r_i = rank(y_i : X)$.

Given two sorted sequences $A = (a_1, ..., a_n)$ and $B = (b_1, ..., b_n)$, compute the sorted squence $C = (c_1, ..., c_n)$.

Definition 2

Let $X = (x_1, ..., x_t)$ be a sequence. The rank rank(y : X) of y in X is

$$\operatorname{rank}(y:X) = |\{x \in X \mid x \le y\}|$$

For a sequence $Y = (y_1, ..., y_s)$ we define rank $(Y : X) := (r_1, ..., r_s)$ with $r_i = \operatorname{rank}(y_i : X)$.

Given two sorted sequences $A = (a_1 \dots a_n)$ and $B = (b_1 \dots b_n)$, compute the sorted squence $C = (c_1 \dots c_n)$.

Observation:

We can assume wlog. that elements in A and B are different.

Then for $c_i \in C$ we have $i = \operatorname{rank}(c_i : A \cup B)$.

This means we just need to determine $rank(x : A \cup B)$ for all elements!

Observe, that $rank(x : A \cup B) = rank(x : A) + rank(x : B)$.

Given two sorted sequences $A = (a_1 \dots a_n)$ and $B = (b_1 \dots b_n)$, compute the sorted squence $C = (c_1 \dots c_n)$.

Observation:

We can assume wlog. that elements in A and B are different.

Then for $c_i \in C$ we have $i = \operatorname{rank}(c_i : A \cup B)$.

This means we just need to determine $rank(x : A \cup B)$ for all elements!

Observe, that $rank(x : A \cup B) = rank(x : A) + rank(x : B)$.

Given two sorted sequences $A = (a_1 \dots a_n)$ and $B = (b_1 \dots b_n)$, compute the sorted squence $C = (c_1 \dots c_n)$.

Observation:

We can assume wlog. that elements in A and B are different.

Then for $c_i \in C$ we have $i = \operatorname{rank}(c_i : A \cup B)$.

This means we just need to determine $rank(x : A \cup B)$ for all elements!

Observe, that $rank(x : A \cup B) = rank(x : A) + rank(x : B)$.

Given two sorted sequences $A = (a_1 \dots a_n)$ and $B = (b_1 \dots b_n)$, compute the sorted squence $C = (c_1 \dots c_n)$.

Observation:

We can assume wlog. that elements in A and B are different.

Then for $c_i \in C$ we have $i = \operatorname{rank}(c_i : A \cup B)$.

This means we just need to determine $rank(x : A \cup B)$ for all elements!

Observe, that $rank(x : A \cup B) = rank(x : A) + rank(x : B)$.

Given two sorted sequences $A = (a_1 \dots a_n)$ and $B = (b_1 \dots b_n)$, compute the sorted squence $C = (c_1 \dots c_n)$.

Observation:

We can assume wlog. that elements in A and B are different.

Then for $c_i \in C$ we have $i = \operatorname{rank}(c_i : A \cup B)$.

This means we just need to determine $rank(x : A \cup B)$ for all elements!

Observe, that $rank(x : A \cup B) = rank(x : A) + rank(x : B)$.

Given two sorted sequences $A = (a_1 \dots a_n)$ and $B = (b_1 \dots b_n)$, compute the sorted squence $C = (c_1 \dots c_n)$.

Observation:

We can assume wlog. that elements in A and B are different.

Then for $c_i \in C$ we have $i = \operatorname{rank}(c_i : A \cup B)$.

This means we just need to determine $rank(x : A \cup B)$ for all elements!

Observe, that $rank(x : A \cup B) = rank(x : A) + rank(x : B)$.

Given two sorted sequences $A = (a_1 \dots a_n)$ and $B = (b_1 \dots b_n)$, compute the sorted squence $C = (c_1 \dots c_n)$.

Observation:

We can assume wlog. that elements in A and B are different.

Then for $c_i \in C$ we have $i = \operatorname{rank}(c_i : A \cup B)$.

This means we just need to determine $rank(x : A \cup B)$ for all elements!

Observe, that $rank(x : A \cup B) = rank(x : A) + rank(x : B)$.

Compute rank(x : A) for all $x \in B$ and rank(x : B) for all $x \in A$. can be done in $O(\log n)$ time with 2n processors by binary search

Lemma 3 On a CREW PRAM, Merging can be done in $O(\log n)$ time and $O(n \log n)$ work.

Compute rank(x : A) for all $x \in B$ and rank(x : B) for all $x \in A$. can be done in $O(\log n)$ time with 2n processors by binary search

Lemma 3 On a CREW PRAM, Merging can be done in $O(\log n)$ time and $O(n \log n)$ work.

Compute rank(x : A) for all $x \in B$ and rank(x : B) for all $x \in A$. can be done in $O(\log n)$ time with 2n processors by binary search

Lemma 3 On a CREW PRAM, Merging can be done in $O(\log n)$ time and $O(n \log n)$ work.

Compute rank(x : A) for all $x \in B$ and rank(x : B) for all $x \in A$. can be done in $O(\log n)$ time with 2n processors by binary search

Lemma 3 On a CREW PRAM, Merging can be done in $O(\log n)$ time and $O(n \log n)$ work.

 $A = (a_1, \dots, a_n); B = (b_1, \dots, b_n);$ log n integral; $k := n / \log n$ integral;

```
Algorithm 8 GenerateSubproblems1: j_0 \leftarrow 02: j_k \leftarrow n3: for 1 \le i \le k - 1 pardo4: j_i \leftarrow \operatorname{rank}(b_{i\log n} : A)5: for 0 \le i \le k - 1 pardo6: B_i \leftarrow (b_{i\log n+1}, \dots, b_{(i+1)\log n})7: A_i \leftarrow (a_{j_i+1}, \dots, a_{j_{i+1}})
```


$$A = (a_1, \dots, a_n); B = (b_1, \dots, b_n);$$

log *n* integral; $k := n / \log n$ integral;

```
Algorithm 8 GenerateSubproblems1: j_0 \leftarrow 02: j_k \leftarrow n3: for 1 \le i \le k - 1 pardo4: j_i \leftarrow \operatorname{rank}(b_{i\log n} : A)5: for 0 \le i \le k - 1 pardo6: B_i \leftarrow (b_{i\log n+1}, \dots, b_{(i+1)\log n})7: A_i \leftarrow (a_{j_i+1}, \dots, a_{j_{i+1}})
```


$$A = (a_1, \dots, a_n); B = (b_1, \dots, b_n);$$

log *n* integral; $k := n / \log n$ integral;

Algorithm 8 GenerateSubproblems1: $j_0 \leftarrow 0$ 2: $j_k \leftarrow n$ 3: for $1 \le i \le k - 1$ pardo4: $j_i \leftarrow \operatorname{rank}(b_{i\log n} : A)$ 5: for $0 \le i \le k - 1$ pardo6: $B_i \leftarrow (b_{i\log n+1}, \dots, b_{(i+1)\log n})$ 7: $A_i \leftarrow (a_{j_i+1}, \dots, a_{j_{i+1}})$

$$A = (a_1, \dots, a_n); B = (b_1, \dots, b_n);$$

log *n* integral; $k := n / \log n$ integral;

Algorithm 8 GenerateSubproblems 1: $j_0 \leftarrow 0$ 2: $j_k \leftarrow n$ 3: for $1 \le i \le k - 1$ pardo 4: $j_i \leftarrow \operatorname{rank}(b_{i\log n} : A)$ 5: for $0 \le i \le k - 1$ pardo 6: $B_i \leftarrow (b_{i\log n+1}, \dots, b_{(i+1)\log n})$ 7: $A_i \leftarrow (a_{j_i+1}, \dots, a_{j_{i+1}})$

We can generate the subproblems in time $\mathcal{O}(\log n)$ and work $\mathcal{O}(n).$

Note that in a sub-problem B_i has length $\log n$.

If we run the algorithm again for every subproblem, (where A_i takes the role of B) we can in time $\mathcal{O}(\log \log n)$ and work $\mathcal{O}(n)$ generate subproblems where A_j and B_j have both length at most $\log n$.

Such a subproblem can be solved by a single processor in time $O(\log n)$ and work $O(|A_i| + |B_i|)$.

Parallelizing the last step gives total work O(n) and time $O(\log n)$.

the resulting algorithm is work optimal

We can generate the subproblems in time $O(\log n)$ and work O(n).

Note that in a sub-problem B_i has length $\log n$.

If we run the algorithm again for every subproblem, (where A_i takes the role of B) we can in time $\mathcal{O}(\log \log n)$ and work $\mathcal{O}(n)$ generate subproblems where A_j and B_j have both length at most $\log n$.

Such a subproblem can be solved by a single processor in time $O(\log n)$ and work $O(|A_i| + |B_i|)$.

Parallelizing the last step gives total work O(n) and time $O(\log n)$.

We can generate the subproblems in time $O(\log n)$ and work O(n).

Note that in a sub-problem B_i has length $\log n$.

If we run the algorithm again for every subproblem, (where A_i takes the role of B) we can in time $\mathcal{O}(\log \log n)$ and work $\mathcal{O}(n)$ generate subproblems where A_j and B_j have both length at most $\log n$.

Such a subproblem can be solved by a single processor in time $O(\log n)$ and work $O(|A_i| + |B_i|)$.

Parallelizing the last step gives total work O(n) and time $O(\log n)$.

We can generate the subproblems in time $O(\log n)$ and work O(n).

Note that in a sub-problem B_i has length $\log n$.

If we run the algorithm again for every subproblem, (where A_i takes the role of B) we can in time $\mathcal{O}(\log \log n)$ and work $\mathcal{O}(n)$ generate subproblems where A_j and B_j have both length at most $\log n$.

Such a subproblem can be solved by a single processor in time $O(\log n)$ and work $O(|A_i| + |B_i|)$.

Parallelizing the last step gives total work O(n) and time $O(\log n)$.

We can generate the subproblems in time $O(\log n)$ and work O(n).

Note that in a sub-problem B_i has length $\log n$.

If we run the algorithm again for every subproblem, (where A_i takes the role of B) we can in time $\mathcal{O}(\log \log n)$ and work $\mathcal{O}(n)$ generate subproblems where A_j and B_j have both length at most $\log n$.

Such a subproblem can be solved by a single processor in time $O(\log n)$ and work $O(|A_i| + |B_i|)$.

Parallelizing the last step gives total work O(n) and time $O(\log n)$.

We can generate the subproblems in time $O(\log n)$ and work O(n).

Note that in a sub-problem B_i has length $\log n$.

If we run the algorithm again for every subproblem, (where A_i takes the role of B) we can in time $\mathcal{O}(\log \log n)$ and work $\mathcal{O}(n)$ generate subproblems where A_j and B_j have both length at most $\log n$.

Such a subproblem can be solved by a single processor in time $O(\log n)$ and work $O(|A_i| + |B_i|)$.

Parallelizing the last step gives total work $\mathcal{O}(n)$ and time $\mathcal{O}(\log n)$.

Lemma 4

On a CRCW PRAM the maximum of n numbers can be computed in time O(1) with n^2 processors.

proof on board...

Lemma 4

On a CRCW PRAM the maximum of n numbers can be computed in time O(1) with n^2 processors.

proof on board ...

Lemma 5

On a CRCW PRAM the maximum of n numbers can be computed in time $O(\log \log n)$ with n processors and work $O(n \log \log n)$.

proof on board...

Lemma 5

On a CRCW PRAM the maximum of n numbers can be computed in time $O(\log \log n)$ with n processors and work $O(n \log \log n)$.

proof on board ...

Lemma 6

On a CRCW PRAM the maximum of n numbers can be computed in time $O(\log \log n)$ with n processors and work O(n).

proof on board...

Lemma 6

On a CRCW PRAM the maximum of n numbers can be computed in time $O(\log \log n)$ with n processors and work O(n).

proof on board ...

Given a (2,3)-tree with n elements, and a sequence $x_0 < x_1 < x_2 < \cdots < x_k$ of elements. We want to insert elements x_1, \ldots, x_k into the tree $(k \ll n)$.

time: $\mathcal{O}(\log n)$; work: $\mathcal{O}(k \log n)$

4.5 Inserting into a (2,3)-tree

▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 ▶ 58/283

Given a (2, 3)-tree with n elements, and a sequence $x_0 < x_1 < x_2 < \cdots < x_k$ of elements. We want to insert elements x_1, \ldots, x_k into the tree $(k \ll n)$. time: $\mathcal{O}(\log n)$; work: $\mathcal{O}(k \log n)$

4.5 Inserting into a (2,3)-tree

▲ 個 ▶ ▲ 필 ▶ ▲ 필 ▶ 58/283

- determine for every x_i the leaf element before which it has to be inserted time: O(log n); work: O(k log n); CREW PRAM
 - all x_i 's that have to be inserted before the same element form a chain
- 2. determine the largest/smallest/middle element of every chain
 - time: $\mathcal{O}(\log k)$; work: $\mathcal{O}(k)$;
- 3. insert the middle element of every chain
 - compute new chains

time: $O(\log n)$; work: $O(k_i \log n + k)$; k_i = #inserted elements

(computing new chains is constant time)

1. determine for every x_i the leaf element before which it has to be inserted time: $O(\log n)$; work: $O(k \log n)$; CREW PRAM

all x_i 's that have to be inserted before the same element form a chain

2. determine the largest/smallest/middle element of every chain

time: $O(\log k)$; work: O(k);

3. insert the middle element of every chain

compute new chains

time: $\mathcal{O}(\log n)$; work: $\mathcal{O}(k_i \log n + k)$; k_i = #inserted

(computing new chains is constant time)

1. determine for every x_i the leaf element before which it has to be inserted

time: $O(\log n)$; work: $O(k \log n)$; CREW PRAM

all x_i 's that have to be inserted before the same element form a chain

2. determine the largest/smallest/middle element of every chain

time: $\mathcal{O}(\log k)$; work: $\mathcal{O}(k)$;

3. insert the middle element of every chain

compute new chains

time: $\mathcal{O}(\log n)$; work: $\mathcal{O}(k_i \log n + k)$; k_i = #inserted

elements

(computing new chains is constant time)

1. determine for every x_i the leaf element before which it has to be inserted

time: $\mathcal{O}(\log n)$; work: $\mathcal{O}(k \log n)$; CREW PRAM

all x_i 's that have to be inserted before the same element form a chain

2. determine the largest/smallest/middle element of every chain

time: $\mathcal{O}(\log k)$; work: $\mathcal{O}(k)$;

3. insert the middle element of every chain

compute new chains time: $O(\log n)$; work: $O(k_i \log n + k)$; k_i = #inserted elements

(computing new chains is constant time)

1. determine for every x_i the leaf element before which it has to be inserted

time: $\mathcal{O}(\log n)$; work: $\mathcal{O}(k \log n)$; CREW PRAM

all x_i 's that have to be inserted before the same element form a chain

2. determine the largest/smallest/middle element of every chain

time: $\mathcal{O}(\log k)$; work: $\mathcal{O}(k)$;

3. insert the middle element of every chain

compute new chains

time: $\mathcal{O}(\log n)$; work: $\mathcal{O}(k_i \log n + k)$; k_i = #inserted elements

(computing new chains is constant time)

4.5 Inserting into a (2,3)-tree

◆聞▶◆聖▶◆聖 60/283

4.5 Inserting into a (2,3)-tree

4.5 Inserting into a (2,3)-tree

◆聞▶◆聖▶◆聖 60/283

4.5 Inserting into a (2,3)-tree

◆ @ ▶ ◆ 聖 ▶ ◆ 聖 ▶ 60/283

each internal node is split into at most two parts

4.5 Inserting into a (2,3)-tree

◆ @ ▶ ◆ 臺 ▶ **◆** 臺 ▶ 60/283

- each internal node is split into at most two parts
- each split operation promotes at most one element

- each internal node is split into at most two parts
- each split operation promotes at most one element
- hence, on every level we want to insert at most one element per successor pointer

- each internal node is split into at most two parts
- each split operation promotes at most one element
- hence, on every level we want to insert at most one element per successor pointer
- we can use the same routine for every level

Step 3, works in phases; one phase for every level of the tree

 Step 4, works in rounds; in each round a different set of elements is inserted

Observation

We can start with phase i of round r as long as phase i of round r - 1 and (of course), phase i - 1 of round r has finished.

- Step 3, works in phases; one phase for every level of the tree
- Step 4, works in rounds; in each round a different set of elements is inserted

Observation

We can start with phase i of round r as long as phase i of round r - 1 and (of course), phase i - 1 of round r has finished.

- Step 3, works in phases; one phase for every level of the tree
- Step 4, works in rounds; in each round a different set of elements is inserted

Observation

We can start with phase i of round r as long as phase i of round r-1 and (of course), phase i-1 of round r has finished.

- Step 3, works in phases; one phase for every level of the tree
- Step 4, works in rounds; in each round a different set of elements is inserted

Observation

We can start with phase i of round r as long as phase i of round r-1 and (of course), phase i-1 of round r has finished.

The following algorithm colors an n-node cycle with $\lceil \log n \rceil$ colors.

Algorithm 9 BasicColoring			
1: for	$1 \le i \le n$ pardo		
2:	$\operatorname{col}(i) \leftarrow i$		
3:	$k_i \leftarrow \text{smallest bitpos where } \operatorname{col}(i) \text{ and } \operatorname{col}(S(i)) \text{ differ}$		
4:	$\operatorname{col}'(i) \leftarrow 2k_i + \operatorname{col}(i)_{k_i}$		

(bit positions are numbered starting with 0)

v	col	k	col'
1	0001	1	2
3	0011	2	4
7	0111	0	1
14	1110	2	5
2	0010	0	0
15	1111	0	1
4	0100	0	0
5	0101	0	1
6	0110	1	3
8	1000	1	2
10	1010	0	0
11	1011	0	1
12	1100	0	0
9	1001	2	4
13	1101	2	5

Applying the algorithm to a coloring with bit-length t generates a coloring with largest color at most

2(t-1) + 1

and bit-length at most

$\lceil \log_2(2(t-1)+1) \rceil \le \lceil \log_2(2t) \rceil = \lceil \log_2(t) \rceil + 1$

Applying the algorithm repeatedly generates a constant number of colors after $O(\log^* n)$ operations.

Applying the algorithm to a coloring with bit-length t generates a coloring with largest color at most

$$2(t-1) + 1$$

and bit-length at most

 $\lceil \log_2(2(t-1)+1) \rceil \le \lceil \log_2(2t) \rceil = \lceil \log_2(t) \rceil + 1$

Applying the algorithm repeatedly generates a constant number of colors after $O(\log^* n)$ operations.

Applying the algorithm to a coloring with bit-length t generates a coloring with largest color at most

$$2(t-1) + 1$$

and bit-length at most

 $\lceil \log_2(2(t-1)+1) \rceil \le \lceil \log_2(2t) \rceil = \lceil \log_2(t) \rceil + 1$

Applying the algorithm repeatedly generates a constant number of colors after $O(\log^* n)$ operations.

Applying the algorithm to a coloring with bit-length t generates a coloring with largest color at most

$$2(t-1) + 1$$

and bit-length at most

 $\lceil \log_2(2(t-1)+1)\rceil \leq \lceil \log_2(2t)\rceil = \lceil \log_2(t)\rceil + 1$

Applying the algorithm repeatedly generates a constant number of colors after $\mathcal{O}(\log^* n)$ operations.

Applying the algorithm to a coloring with bit-length t generates a coloring with largest color at most

$$2(t-1) + 1$$

and bit-length at most

$$\lceil \log_2(2(t-1)+1) \rceil \le \lceil \log_2(2t) \rceil = \lceil \log_2(t) \rceil + 1$$

Applying the algorithm repeatedly generates a constant number of colors after $O(\log^* n)$ operations.

As long as the bit-length $t \ge 4$ the bit-length decreases.

Applying the algorithm with bit-length 3 gives a coloring with colors in the range $0, \ldots, 5 = 2t - 1$.

We can improve to a 3-coloring by successively re-coloring nodes from a color-class:

This requires time O(1) and work O(n).

4.6 Symmetry Breaking

◆ @ ▶ ◆ 臣 ▶ ◆ 臣 ▶ 65/283

As long as the bit-length $t \ge 4$ the bit-length decreases.

Applying the algorithm with bit-length 3 gives a coloring with colors in the range $0, \ldots, 5 = 2t - 1$.

We can improve to a 3-coloring by successively re-coloring nodes from a color-class:

This requires time $\mathcal{O}(1)$ and work $\mathcal{O}(n)$.

4.6 Symmetry Breaking

▲ 個 ▶ ▲ 臺 ▶ ▲ 臺 ▶ 65/283

As long as the bit-length $t \ge 4$ the bit-length decreases.

Applying the algorithm with bit-length 3 gives a coloring with colors in the range $0, \ldots, 5 = 2t - 1$.

We can improve to a 3-coloring by successively re-coloring nodes from a color-class:

Algorithm 10 ReColor		
1: for ℓ ← 5 to 3		
2:	for $1 \le i \le n$ pardo	
3:	if $col(i) = \ell$ then	
4:	$\operatorname{col}(i) \leftarrow \min\{\{0,1,2\} \setminus \{\operatorname{col}(P[i]),\operatorname{col}(S[i])\}\}$	

This requires time O(1) and work O(n).

As long as the bit-length $t \ge 4$ the bit-length decreases.

Applying the algorithm with bit-length 3 gives a coloring with colors in the range $0, \ldots, 5 = 2t - 1$.

We can improve to a 3-coloring by successively re-coloring nodes from a color-class:

Algorithm 10 ReColor		
1: for ℓ ← 5 to 3		
2:	for $1 \le i \le n$ pardo	
3:	if $col(i) = \ell$ then	
4:	$\operatorname{col}(i) \leftarrow \min\{\{0,1,2\} \setminus \{\operatorname{col}(P[i]), \operatorname{col}(S[i])\}\}$	

This requires time $\mathcal{O}(1)$ and work $\mathcal{O}(n)$.

Lemma 7

We can color vertices in a ring with three colors in $O(\log^* n)$ time and with $O(n \log^* n)$ work.

not work optimal

Lemma 8

Given n integers in the range $0, ..., O(\log n)$, there is an algorithm that sorts these numbers in $O(\log n)$ time using a linear number of operations.

Proof: Exercise!


```
Algorithm 11 OptColor1: for 1 \le i \le n pardo2: col(i) \leftarrow i3: apply BasicColoring once4: sort vertices by colors5: for \ell = 2\lceil \log n \rceil to 3 do6: for all vertices i of color \ell pardo7: col(i) \leftarrow min\{\{0, 1, 2\} \setminus \{col(P[i]), col(S[i])\}\}
```


Lemma 9

A ring can be colored with 3 colors in time $O(\log n)$ and with work O(n).

work optimal but not too fast

