Technische Universität München Fakultät für Informatik Lehrstuhl für Effiziente Algorithmen Prof. Dr. Harald Räcke Chris Pinkau

Parallel Algorithms

Due date: November 17th, 2014 before class!

Problem 1 (10 Points)

- 1. Using an $\mathcal{O}(\log \log n)$ algorithm to compute the prefix (or suffix) minima of A, design an $\mathcal{O}(\log \log n)$ time algorithm for the range-minima problem using $\mathcal{O}(n \log n)$ operations.
- 2. Divide the array into subarrays to make this algorithm optimal, i.e. only $\mathcal{O}(n)$ operations must be used.

Problem 2 (20 Points)

Consider the ANSV problem, defined on Problem Set 3.

- 1. Using a balanced binary tree, develop an $\mathcal{O}(\log^2 n)$ time algorithm to solve the ANSV problem of an array of length n with a total of $\mathcal{O}(n \log n)$ operations. *Hint*: Use recursion and the developed algorithms for prefix and suffix minima.
- 2. How can this algorithm run in $\mathcal{O}(\log n)$ time?

Problem 3 (10 Points)

Consider the fast merging algorithm presented in the lecture for merging two sorted sequences of lengths n and m, respectively, with $m \leq n$, in $\mathcal{O}(\log \log m)$ time requiring $\mathcal{O}((n+m)\log \log m)$ work (so not the optimal merging algorithm). Show how to handle the corresponding processor allocation problem to implement this algorithm in a CREW PRAM with n + m processors.

Hint: Store the j(i)'s in a separate array. The pair (B_i, A_i) should be handled by processors $P_{i\sqrt{m}+j(i)+1}, \ldots, P_{(i+1)\sqrt{m}+j(i+1)}$. Decompose the n + m processors into groups, each with \sqrt{m} processors. Let $P_{i_{\ell}}$ be the first processor in the ℓ -th group. The k-th processor in group ℓ can determine whether or not $P_{i_{\ell}}$ is assigned to the subproblem (B_k, A_k) .