Prof. Dr. Susanne Albers Dr. Dimitrios Letsios Dario Frascaria Lehrstuhl für Theoretische Informatik Fakultät für Informatik Technische Universität München

Problem set 10 June 22, 2015 Summer Semester 2015

Online and Approximation Algorithms

Due June 29, 2015 before class!

Exercise 1 (Metrical Task Systems - 10 points)

Show that the ski rental problem and the k-server problem can be formulated as metrical task system problems.

Exercise 2 (Next-Fit Bin Packing - 10 points)

In the bin packing problem, we are given a set of items $I = \{1, 2, ..., n\}$ which have to be to packed into bins. Each item $i \in I$ has a volume $0 \le v_i \le 1$ and it has to be assigned entirely to a single bin. The capacity of a bin is equal to 1. We would like to pack the items in a way that the total volume of the items stored in a bin does not exceed its capacity. Our objective is to minimize the number of used bins. Algorithm *Next-Fit* takes an arbitrary order of the items and it packs them one by one. It maintains an *open bin* and, for each item $i \in I$, if *i* fits in the open bin, then Next-Fit puts it in. Otherwise, the bin is closed and a new bin is opened. Show that Next-Fit is a 2-approximation. Next, show that we cannot expect a better approximation ratio for it.

Exercise 3 (Eulerian Cycle - 10 points)

Show that a connected graph G = (V, E), with possibly multiple edges between a pair of vertices, contains an Eulerian cycle if and only if every vertex $v \in V$ is of even degree.

Exercise 4 (1-2 TSP on Complete Graphs - 10 points)

The 1-2 TSP is the special case of TSP in which the length of every edge of the input graph G is either 1 or 2. Consider the algorithm which starts from an arbitrary tour of a complete graph G and improves the tour iteratively until no further improvement is possible. A tour $C = \{v_1, v_2, \ldots, v_n, v_1\}$ may be improved follows. Four different vertices $v_i, v_{i+1}, v_j, v_{j+1}$ of C are picked and the edges $(v_i, v_{i+1}), (v_j, v_{j+1})$ are replaced by the edges $(v_i, v_j), (v_{i+1}, v_{j+1})$ so as to obtain a new shorter cycle C'. Show that this algorithm is a $\frac{3}{2}$ -approximation for the 1-2 TSP.