Prof. Dr. Susanne Albers Dr. Dimitrios Letsios Dario Frascaria Lehrstuhl für Theoretische Informatik Fakultät für Informatik Technische Universität München

Problem set 12 July 06, 2015 Summer Semester 2015

Online and Approximation Algorithms

Due July 13, 2015 before class!

Exercise 1 (Independent Set - 10 points)

In the independent set problem, we are given a connected undirected graph G = (V, E) and we want to find a maximum subset of vertices which are pairwise non-adjacent. Propose a greedy algorithm for this problem and show that it achieves an approximation ratio of $\frac{1}{\Delta}$, where Δ is the maximum vertex degree.

Exercise 2 (MAX-NAE3SAT - 10 points)

We consider the MAX-NAE3SAT (Max-not-all-equal-3SAT) problem. In this problem we are given a 3CNF formula and our goal is to find a variable assignment, such that the number of clauses containing at least one true **and** one false literal is maximized. Develop a randomized approximation algorithm for MAX-NAE3SAT with an approximation factor of $\frac{3}{4}$.

Exercise 3 (2SAT - 10 points)

Consider the 2SAT problem. In this problem we are given a boolean formula in 2CNF and have to decide whether the formula is satisfiable or not.

- (a) Describe a method of encoding the given 2CNF-formula as a directed graph.
- (b) Develop an algorithm that decides in polynomial time whether the given formula can be satisfied or not.
- (c) Develop an algorithm that returns a satisfying assignment if it exists and show that it runs in polynomial time as well.

Exercise 4 (Randomized Max Cut - 10 points)

Let G = (V, E) be an undirected graph with n vertices and m edges and assume that m is an even number. A *cut* C of G is a partition of the vertices in V into two disjoint sets A and B. The *size* of C is the number edges with one endpoint in A and the other in B. Consider the following randomized algorithm for finding a maximum cut. Each vertex $u \in V$ is assigned into one of the two sets A or B with probability $\frac{1}{2}$. Show that this algorithm achieves an approximation ratio of $\frac{1}{2}$. Then, derandomize the algorithm.