
Prof. Dr. Susanne Albers
Dr. Suzanne van der Ster
Dario Frascaria
Lehrstuhl für Theoretische Informatik
Fakultät für Informatik
Technische Universität München

Problem set 1
April 15, 2016

Summer Semester 2016

Online and Approximation Algorithms

Due April 22, 2016 at 08:15, in class

Exercise 1 (Ski Rental - 10 points)
The ski rental problem is defined as follows: Assume that renting a pair of skis costs 1 per
day while buying a pair of skis costs b. Every day we have to decide, in an online fashion,
whether we want to continue renting skis for another day or buy a pair of skis. At some
unknown time D, we will break our leg and have to quit skiing. Our goal is to minimize
the cost of skiing.

(a) What is the optimal offline cost?

(b) Develop a (2 − 1
b
)-competitive online algorithm ALG for the ski rental problem and

prove its competitiveness.

Exercise 2 (List Scheduling on Unrelated Machines - 10 points)
In class, an online greedy algorithm for the problem of scheduling n jobs on m identical
machines was presented. In this exercise, we consider the same problem in a more complex
environment with m unrelated machines M1,M2, . . . ,Mm.
In this setting, the processing time of a job Jj, 1 ≤ j ≤ n, depends on the machine on
which it is executed. Specifically, if job Jj is executed by machine Mi, then its proces-
sing time is pi,j. The greedy algorithm presented in class for identical machines can be
easily extended for unrelated machines as follows: Schedule each job Jj on a machine Mi

that results in the schedule with minimum makespan. Prove that the competitive ratio of

Greedy is not smaller than
m

1 + ε
, where ε is an arbitrary small constant.

Hint: There exists an example where each job has finite processing time only on two
machines and infinite processing time on all the other machines.

Exercise 3 (First-in First-out - 10 points)
Recall that FIFO is the online paging algorithm that evicts the page that has been in fast
memory for the longest time. Prove that FIFO is k-competitive, where k is the number
of pages that fit in fast memory.

Exercise 4 (Demand Paging - 10 points)
Paging algorithms that do not evict pages unless there is a page fault are called demand
paging. Prove that any paging algorithm can be modified to be demand paging without
increasing the overall number of memory replacements on any request sequence.


