Prof. Dr. Susanne Albers Dr. Suzanne van der Ster Dario Frascaria Lehrstuhl für Theoretische Informatik Fakultät für Informatik Technische Universität München

Problem set 8 June 3, 2016 Summer Semester 2016

Online and Approximation Algorithms

Due June 10, 2016 before 10:00

Exercise 1 (Lower envelope - 10 points)

Recall the Lower Envelope Algorithm (LEA) from the lecture. In the lecture we showed, that the algorithm is $3 - 2\sqrt{2}$ competitive for general state systems.

We consider the special case where the costs for powering down are additive, i.e., for i < j < k, powering down from state s_i to s_j and from s_j to s_k is equally expensive as powering down from s_i to s_k .

Prove that in this setting LEA is 2-competitive.

Hint: Fold the cost for powering down into the cost for powering up. This yields a system where powering down is free and only transitions from low-power states to higher-power states create costs.

Exercise 2 (Power-Down Mechanisms - 10 points)

Recall the energy efficiency problem presented in class in which there is a system with an active state s_0 and several lower-power sleep states s_1, s_2, \ldots, s_ℓ . Each state s_i has an individual power-consumption rate r_i and there is a cost $d_{i,j}$ for transitioning from state s_i to state s_j where the transition costs satisfy the triangle inequality. For a maximal idle period of length t, we denote by OPT(t) the optimal offline cost of this period. Show that OPT(t) is a continuous and concave function of t.

Exercise 3 (Randomized Search and One-way trading - 10 points)

We consider one-way trading problems and randomized search algorithms. Recall the following theorem:

Theorem 1 (i) Let ALG_1 be any randomized one-way trading algorithm. Then there exists a deterministic one-way trading algorithm ALG_2 such that for any price sequence σ , $ALG_2(\sigma) = E[ALG_1(\sigma)]$.

(ii) Let ALG_2 be any deterministic one-way trading algorithm. Then there exists a randomized search algorithm ALG_1 such that $E[ALG_1(\sigma)] = ALG_2(\sigma)$.

Show the following statements.

(a) The competitive ratio of any one-way trading algorithm is independent of transaction costs determined by a fixed percentage applied to the amount spent. In this case, the equivalence of Theorem 1 obviously holds.

- (b) When we introduce transaction fees determined by a fixed percentage applied to the prices rates, the competitive ratio improves, but Theorem 1 still holds. **NB: There is a mistake in this exercise. Please check the solution for more details.**
- (c) When fixed transaction costs are introduced, the deterministic competitive ratio increases and there is no longer an equivalence between deterministic one-way trading algorithms and randomized search algorithms.

Exercise 4 (EXPO - 10 points)

Recall the online search problem presented in class and the EXPO algorithm for solving it. Moreover, let μ be a probability distribution of the natural numbers \mathbb{N} according to which the number *i* is chosen with probability q_i . Now, consider the EXPO(μ) algorithm which is defined as follows: Choose the price $p \cdot 2^i$ with probability q_i , where *p* is the first price revealed.

Show that $\text{EXPO}(\mu)$ is $\frac{2}{q_j}$ -competitive, for some $j \in \mathbb{N}$.