Part V

Matchings

Matching

- Input: undirected graph G = (V, E).
- M ⊆ E is a matching if each node appears in at most one edge in M.
- Maximum Matching: find a matching of maximum cardinality

18 Bipartite Matching via Flows

Which flow algorithm to use?

- Generic augmenting path: $\mathcal{O}(m \operatorname{val}(f^*)) = \mathcal{O}(mn)$.
- Capacity scaling: $\mathcal{O}(m^2 \log C) = \mathcal{O}(m^2)$.
- Shortest augmenting path: $\mathcal{O}(mn^2)$.

For unit capacity simple graphs shortest augmenting path can be implemented in time $\mathcal{O}(m\sqrt{n})$.

Definitions.

- Given a matching *M* in a graph *G*, a vertex that is not incident to any edge of *M* is called a free vertex w.r..t. *M*.
- ▶ For a matching *M* a path *P* in *G* is called an alternating path if edges in *M* alternate with edges not in *M*.
- An alternating path is called an augmenting path for matching *M* if it ends at distinct free vertices.

Theorem 1

A matching M is a maximum matching if and only if there is no augmenting path w. r. t. M.

Augmenting Paths in Action

Augmenting Paths in Action

Proof.

- ⇒ If *M* is maximum there is no augmenting path *P*, because we could switch matching and non-matching edges along *P*. This gives matching $M' = M \oplus P$ with larger cardinality.
- $\leftarrow Suppose there is a matching M' with larger cardinality. Consider the graph H with edge-set M' \oplus M (i.e., only edges that are in either M or M' but not in both).$

Each vertex can be incident to at most two edges (one from M and one from M'). Hence, the connected components are alternating cycles or alternating path.

As |M'| > |M| there is one connected component that is a path P for which both endpoints are incident to edges from M'. P is an alternating path.

Algorithmic idea:

As long as you find an augmenting path augment your matching using this path. When you arrive at a matching for which no augmenting path exists you have a maximum matching.

Theorem 2

Let G be a graph, M a matching in G, and let u be a free vertex w.r.t. M. Further let P denote an augmenting path w.r.t. M and let $M' = M \oplus P$ denote the matching resulting from augmenting M with P. If there was no augmenting path starting at u in M then there is no augmenting path starting at u in M'.

The above theorem allows for an easier implementation of an augmenting path algorithm. Once we checked for augmenting paths starting from u we don't have to check for such paths in future rounds.

Proof

- ► Assume there is an augmenting path *P*′ w.r.t. *M*′ starting at *u*.
- If P' and P are node-disjoint, P' is also augmenting path w.r.t. M (𝔅).
- Let u' be the first node on P' that is in P, and let e be the matching edge from M' incident to u'.
- u' splits P into two parts one of which does not contain e. Call this part P₁. Denote the sub-path of P' from u to u' with P'₁.
- $P_1 \circ P'_1$ is augmenting path in M (ℓ).

Construct an alternating tree.

Construct an alternating tree.

Construct an alternating tree.

Construct an alternating tree.

Algorithm 25 BiMatch(G, match)

```
1: for x \in V do mate[x] \leftarrow 0;
2: r \leftarrow 0; free \leftarrow n;
 3: while free \geq 1 and r < n do
4:
    r \leftarrow r + 1
5: if mate[r] = 0 then
           for i = 1 to n do parent[i'] \leftarrow 0
6:
 7:
           Q \leftarrow \emptyset; Q. append(r); aug \leftarrow false;
8:
       while aug = false and Q \neq \emptyset do
               x \leftarrow Q. dequeue():
9:
10:
               for \gamma \in A_{\gamma} do
11:
                   if mate[\gamma] = 0 then
12:
                       augm(mate, parent, y);
13:
                       aug \leftarrow true;
14:
                       free \leftarrow free -1;
15.
                   else
16:
                       if parent[y] = 0 then
17:
                           parent[v] \leftarrow x;
                           Q.enqueue(mate[\gamma]);
18:
```

```
graph G = (S \cup S', E)

S = \{1, ..., n\}

S' = \{1', ..., n'\}
```

The lecture version of the slides contains a step-by-step explanation of the algorithm.

Weighted Bipartite Matching/Assignment

- Input: undirected, bipartite graph $G = L \cup R, E$.
- an edge $e = (\ell, r)$ has weight $w_e \ge 0$
- find a matching of maximum weight, where the weight of a matching is the sum of the weights of its edges

Simplifying Assumptions (wlog [why?]):

- assume that |L| = |R| = n
- ► assume that there is an edge between every pair of nodes $(\ell, r) \in V \times V$
- can assume goal is to construct maximum weight perfect matching

Theorem 3 (Halls Theorem)

A bipartite graph $G = (L \cup R, E)$ has a perfect matching if and only if for all sets $S \subseteq L$, $|\Gamma(S)| \ge |S|$, where $\Gamma(S)$ denotes the set of nodes in R that have a neighbour in S.

Halls Theorem

Proof:

- Of course, the condition is necessary as otherwise not all nodes in S could be matched to different neighbours.
- ⇒ For the other direction we need to argue that the minimum cut in the graph G' is at least |L|.
 - Let *S* denote a minimum cut and let $L_S \cong L \cap S$ and $R_S \cong R \cap S$ denote the portion of *S* inside *L* and *R*, respectively.
 - Clearly, all neighbours of nodes in L_S have to be in S, as otherwise we would cut an edge of infinite capacity.
 - This gives $R_S \ge |\Gamma(L_S)|$.
 - The size of the cut is $|L| |L_S| + |R_S|$.
 - Using the fact that $|\Gamma(L_S)| \ge L_S$ gives that this is at least |L|.

Algorithm Outline

Idea:

We introduce a node weighting \vec{x} . Let for a node $v \in V$, $x_v \in \mathbb{R}$ denote the weight of node v.

Suppose that the node weights dominate the edge-weights in the following sense:

 $x_u + x_v \ge w_e$ for every edge e = (u, v).

- Let $H(\vec{x})$ denote the subgraph of *G* that only contains edges that are tight w.r.t. the node weighting \vec{x} , i.e. edges e = (u, v) for which $w_e = x_u + x_v$.
- Try to compute a perfect matching in the subgraph $H(\vec{x})$. If you are successful you found an optimal matching.

Algorithm Outline

Reason:

• The weight of your matching M^* is

$$\sum_{(u,v)\in M^*} w_{(u,v)} = \sum_{(u,v)\in M^*} (x_u + x_v) = \sum_v x_v .$$

• Any other perfect matching *M* (in *G*, not necessarily in $H(\vec{x})$) has

$$\sum_{(u,v)\in M} w_{(u,v)} \le \sum_{(u,v)\in M} (x_u + x_v) = \sum_{v} x_v .$$

20 Weighted Bipartite Matching

Algorithm Outline

What if you don't find a perfect matching?

Then, Halls theorem guarantees you that there is a set $S \subseteq L$, with $|\Gamma(S)| < |S|$, where Γ denotes the neighbourhood w.r.t. the subgraph $H(\vec{x})$.

Idea: reweight such that:

- the total weight assigned to nodes decreases
- the weight function still dominates the edge-weights

If we can do this we have an algorithm that terminates with an optimal solution (we analyze the running time later).

Changing Node Weights

Increase node-weights in $\Gamma(S)$ by $+\delta$, and decrease the node-weights in S by $-\delta$.

- Total node-weight decreases.
- Only edges from S to R Γ(S) decrease in their weight.
- Since, none of these edges is tight (otw. the edge would be contained in *H*(*x*), and hence would go between *S* and Γ(*S*)) we can do this decrement for small enough δ > 0 until a new edge gets tight.

Edges not drawn have weight 0.

 $\delta = 1 \delta = 1$

20 Weighted Bipartite Matching

Analysis

How many iterations do we need?

- One reweighting step increases the number of edges out of S by at least one.
- Assume that we have a maximum matching that saturates the set $\Gamma(S)$, in the sense that every node in $\Gamma(S)$ is matched to a node in *S* (we will show that we can always find *S* and a matching such that this holds).
- ► This matching is still contained in the new graph, because all its edges either go between $\Gamma(S)$ and S or between L S and $R \Gamma(S)$.
- Hence, reweighting does not decrease the size of a maximum matching in the tight sub-graph.

Analysis

- We will show that after at most n reweighting steps the size of the maximum matching can be increased by finding an augmenting path.
- This gives a polynomial running time.

Construct an alternating tree.

20 Weighted Bipartite Matching

Analysis

How do we find S?

- Start on the left and compute an alternating tree, starting at any free node u.
- If this construction stops, there is no perfect matching in the tight subgraph (because for a perfect matching we need to find an augmenting path starting at *u*).
- The set of even vertices is on the left and the set of odd vertices is on the right and contains all neighbours of even nodes.
- ► All odd vertices are matched to even vertices. Furthermore, the even vertices additionally contain the free vertex *u*. Hence, |V_{odd}| = |Γ(V_{even})| < |V_{even}|, and all odd vertices are saturated in the current matching.

Analysis

- ► The current matching does not have any edges from V_{odd} to L \ V_{even} (edges that may possibly be deleted by changing weights).
- After changing weights, there is at least one more edge connecting V_{even} to a node outside of V_{odd}. After at most n reweights we can do an augmentation.
- ► A reweighting can be trivially performed in time O(n²) (keeping track of the tight edges).
- An augmentation takes at most $\mathcal{O}(n)$ time.
- In total we obtain a running time of $\mathcal{O}(n^4)$.
- A more careful implementation of the algorithm obtains a running time of $\mathcal{O}(n^3)$.

Construct an alternating tree.

Definition 4

A flower in a graph G = (V, E) w.r.t. a matching M and a (free) root node r, is a subgraph with two components:

- A stem is an even length alternating path that starts at the root node r and terminates at some node w. We permit the possibility that r = w (empty stem).
- A blossom is an odd length alternating cycle that starts and terminates at the terminal node w of a stem and has no other node in common with the stem. w is called the base of the blossom.

Properties:

- 1. A stem spans $2\ell + 1$ nodes and contains ℓ matched edges for some integer $\ell \ge 0$.
- **2.** A blossom spans 2k + 1 nodes and contains k matched edges for some integer $k \ge 1$. The matched edges match all nodes of the blossom except the base.
- **3.** The base of a blossom is an even node (if the stem is part of an alternating tree starting at *r*).

Properties:

- 4. Every node x in the blossom (except its base) is reachable from the root (or from the base of the blossom) through two distinct alternating paths; one with even and one with odd length.
- 5. The even alternating path to x terminates with a matched edge and the odd path with an unmatched edge.

Shrinking Blossoms

When during the alternating tree construction we discover a blossom B we replace the graph G by G' = G/B, which is obtained from G by contracting the blossom B.

- Delete all vertices in *B* (and its incident edges) from *G*.
- ► Add a new (pseudo-)vertex *b*. The new vertex *b* is connected to all vertices in *V* \ *B* that had at least one edge to a vertex from *B*.

Shrinking Blossoms

- Edges of T that connect a node u not in B to a node in B become tree edges in T' connecting u to b.
- Matching edges (there is at most one) that connect a node u not in B to a node in B become matching edges in M'.
- Nodes that are connected in G to at least one node in B become connected to b in G'.

Shrinking Blossoms

- Edges of T that connect a node u not in B to a node in B become tree edges in T' connecting u to b.
- Matching edges (there is at most one) that connect a node u not in B to a node in B become matching edges in M'.
- Nodes that are connected in G to at least one node in B become connected to b in G'.

Example: Blossom Algorithm

Animation of Blossom Shrinking algorithm is only available in the lecture version of the slides.

Assume that in *G* we have a flower w.r.t. matching *M*. Let *r* be the root, *B* the blossom, and *w* the base. Let graph G' = G/B with pseudonode *b*. Let *M'* be the matching in the contracted graph.

Lemma 5

If G' contains an augmenting path P' starting at r (or the pseudo-node containing r) w.r.t. the matching M' then G contains an augmenting path starting at r w.r.t. matching M.

Proof.

If P' does not contain b it is also an augmenting path in G.

Case 1: non-empty stem

Next suppose that the stem is non-empty.

- After the expansion ℓ must be incident to some node in the blossom. Let this node be k.
- If $k \neq w$ there is an alternating path P_2 from w to k that ends in a matching edge.
- ▶ $P_1 \circ (i, w) \circ P_2 \circ (k, \ell) \circ P_3$ is an alternating path.
- If k = w then $P_1 \circ (i, w) \circ (w, \ell) \circ P_3$ is an alternating path.

Proof.

Case 2: empty stem

If the stem is empty then after expanding the blossom,

w = r.

• The path $r \circ P_2 \circ (k, \ell) \circ P_3$ is an alternating path.

Ernst Mayr, Harald Räcke

Lemma 6

If G contains an augmenting path P from r to q w.r.t. matching M then G' contains an augmenting path from r (or the pseudo-node containing r) to q w.r.t. M'.

Proof.

- If P does not contain a node from B there is nothing to prove.
- We can assume that *r* and *q* are the only free nodes in *G*.

Case 1: empty stem

Let i be the last node on the path P that is part of the blossom.

P is of the form $P_1 \circ (i, j) \circ P_2$, for some node j and (i, j) is unmatched.

 $(b, j) \circ P_2$ is an augmenting path in the contracted network.

Illustration for Case 1:

Case 2: non-empty stem

Let P_3 be alternating path from r to w; this exists because r and w are root and base of a blossom. Define $M_+ = M \oplus P_3$.

In M_+ , r is matched and w is unmatched.

G must contain an augmenting path w.r.t. matching M_+ , since M and M_+ have same cardinality.

This path must go between w and q as these are the only unmatched vertices w.r.t. M_+ .

For M'_+ the blossom has an empty stem. Case 1 applies.

G' has an augmenting path w.r.t. M'_+ . It must also have an augmenting path w.r.t. M', as both matchings have the same cardinality.

This path must go between r and q.

Algorithm 26 search(*r*, *found*)

- 1: set $\bar{A}(i) \leftarrow A(i)$ for all nodes i
- 2: *found* ← false
- 3: unlabel all nodes;
- 4: give an even label to r and initialize *list* \leftarrow {r}
- 5: while $list \neq \emptyset$ do
- 6: delete a node *i* from *list*
- 7: examine(*i*, *found*)
- 8: **if** *found* = true **then return**

Search for an augmenting path starting at r. of the slides has a

step by step expla-

nation.

Algorithm 27 examine(*i*, *found*)

```
1: for all j \in \overline{A}(i) do
         if j is even then contract(i, j) and return
2:
         if j is unmatched then
3:
4:
               q \leftarrow j;
5:
               \operatorname{pred}(q) \leftarrow i;
              found ← true:
6:
7:
               return
         if j is matched and unlabeled then
8:
               pred(j) \leftarrow i;
9:
               pred(mate(j)) \leftarrow j;
10:
               add mate(j) to list
11:
```


- 1: trace pred-indices of i and j to identify a blossom B
- 2: create new node b and set $\bar{A}(b) \leftarrow \bigcup_{x \in B} \bar{A}(x)$
- 3: label *b* even and add to *list*
- 4: update $\bar{A}(j) \leftarrow \bar{A}(j) \cup \{b\}$ for each $j \in \bar{A}(b)$
- 5: form a circular double linked list of nodes in B
- 6: delete nodes in *B* from the graph

Contract blossom identified by nodes i and j

- 1: trace pred-indices of i and j to identify a blossom B
- 2: create new node b and set $\bar{A}(b) \leftarrow \bigcup_{x \in B} \bar{A}(x)$
- 3: label *b* even and add to *list*
- 4: update $\bar{A}(j) \leftarrow \bar{A}(j) \cup \{b\}$ for each $j \in \bar{A}(b)$
- 5: form a circular double linked list of nodes in B
- 6: delete nodes in *B* from the graph

Get all nodes of the blossom.

Time: $\mathcal{O}(m)$

- 1: trace pred-indices of i and j to identify a blossom B
- 2: create new node *b* and set $\bar{A}(b) \leftarrow \bigcup_{x \in B} \bar{A}(x)$
- 3: label *b* even and add to *list*
- 4: update $\bar{A}(j) \leftarrow \bar{A}(j) \cup \{b\}$ for each $j \in \bar{A}(b)$
- 5: form a circular double linked list of nodes in B
- 6: delete nodes in *B* from the graph

Identify all neighbours of *b*.

Time: $\mathcal{O}(m)$ (how?)

- 1: trace pred-indices of i and j to identify a blossom B
- 2: create new node b and set $\bar{A}(b) \leftarrow \bigcup_{x \in B} \bar{A}(x)$
- 3: label *b* even and add to *list*
- 4: update $\bar{A}(j) \leftarrow \bar{A}(j) \cup \{b\}$ for each $j \in \bar{A}(b)$
- 5: form a circular double linked list of nodes in B
- 6: delete nodes in *B* from the graph

b will be an even node, and it has unexamined neighbours.

- 1: trace pred-indices of i and j to identify a blossom B
- 2: create new node b and set $\bar{A}(b) \leftarrow \bigcup_{x \in B} \bar{A}(x)$
- 3: label *b* even and add to *list*
- 4: update $\bar{A}(j) \leftarrow \bar{A}(j) \cup \{b\}$ for each $j \in \bar{A}(b)$
- 5: form a circular double linked list of nodes in B
- 6: delete nodes in *B* from the graph

Every node that was adjacent to a node in *B* is now adjacent to *b*

- 1: trace pred-indices of i and j to identify a blossom B
- 2: create new node b and set $\bar{A}(b) \leftarrow \bigcup_{x \in B} \bar{A}(x)$
- 3: label *b* even and add to *list*
- 4: update $\bar{A}(j) \leftarrow \bar{A}(j) \cup \{b\}$ for each $j \in \bar{A}(b)$
- 5: form a circular double linked list of nodes in B
- 6: delete nodes in *B* from the graph

Only for making a blossom expansion easier.

- 1: trace pred-indices of i and j to identify a blossom B
- 2: create new node b and set $\bar{A}(b) \leftarrow \bigcup_{x \in B} \bar{A}(x)$
- 3: label *b* even and add to *list*
- 4: update $\bar{A}(j) \leftarrow \bar{A}(j) \cup \{b\}$ for each $j \in \bar{A}(b)$
- 5: form a circular double linked list of nodes in B

6: delete nodes in *B* from the graph

Only delete links from nodes not in *B* to *B*.

When expanding the blossom again we can recreate these links in time O(m).

Analysis

- A contraction operation can be performed in time O(m).
 Note, that any graph created will have at most m edges.
- ► The time between two contraction-operation is basically a BFS/DFS on a graph. Hence takes time O(m).
- There are at most n contractions as each contraction reduces the number of vertices.
- The expansion can trivially be done in the same time as needed for all contractions.
- ► An augmentation requires time O(n). There are at most n of them.
- In total the running time is at most

```
n \cdot (\mathcal{O}(mn) + \mathcal{O}(n)) = \mathcal{O}(mn^2) .
```

Example: Blossom Algorithm

Animation of Blossom Shrinking algorithm is only available in the lecture version of the slides.

A Fast Matching Algorithm

We call one iteration of the repeat-loop a phase of the algorithm.

Lemma 7

Given a matching M and a maximal matching M^* there exist $|M^*| - |M|$ vertex-disjoint augmenting path w.r.t. M.

Proof:

- Similar to the proof that a matching is optimal iff it does not contain an augmenting path.
- Consider the graph G = (V, M ⊕ M*), and mark edges in this graph blue if they are in M and red if they are in M*.
- The connected components of *G* are cycles and paths.
- ► The graph contains $k \triangleq |M^*| |M|$ more red edges than blue edges.
- Hence, there are at least k components that form a path starting and ending with a red edge. These are augmenting paths w.r.t. M.

- ► Let $P_1, ..., P_k$ be a maximal collection of vertex-disjoint, shortest augmenting paths w.r.t. *M* (let $\ell = |P_i|$).
- $M' \stackrel{\text{\tiny def}}{=} M \oplus (P_1 \cup \cdots \cup P_k) = M \oplus P_1 \oplus \cdots \oplus P_k.$
- Let P be an augmenting path in M'.

Lemma 8

The set $A \cong M \oplus (M' \oplus P) = (P_1 \cup \cdots \cup P_k) \oplus P$ contains at least $(k+1)\ell$ edges.

22 The Hopcroft-Karp Algorithm

Proof.

- ► The set describes exactly the symmetric difference between matchings M and $M' \oplus P$.
- ► Hence, the set contains at least k + 1 vertex-disjoint augmenting paths w.r.t. M as |M'| = |M| + k + 1.
- Each of these paths is of length at least ℓ .

Lemma 9

P is of length at least $\ell + 1$. This shows that the length of a shortest augmenting path increases between two phases of the Hopcroft-Karp algorithm.

Proof.

- ► If P does not intersect any of the P₁,..., P_k, this follows from the maximality of the set {P₁,..., P_k}.
- ► Otherwise, at least one edge from *P* coincides with an edge from paths {*P*₁,...,*P*_k}.
- This edge is not contained in A.
- Hence, $|A| \le k\ell + |P| 1$.
- ► The lower bound on |A| gives $(k+1)\ell \le |A| \le k\ell + |P| 1$, and hence $|P| \ge \ell + 1$.

If the shortest augmenting path w.r.t. a matching M has ℓ edges then the cardinality of the maximum matching is of size at most $|M| + \frac{|V|}{\ell+1}$.

Proof.

The symmetric difference between M and M^* contains $|M^*| - |M|$ vertex-disjoint augmenting paths. Each of these paths contains at least $\ell + 1$ vertices. Hence, there can be at most $\frac{|V|}{\ell+1}$ of them.

22 The Hopcroft-Karp Algorithm

Lemma 10

The Hopcroft-Karp algorithm requires at most $2\sqrt{|V|}$ phases.

Proof.

- ► After iteration $\lfloor \sqrt{|V|} \rfloor$ the length of a shortest augmenting path must be at least $\lfloor \sqrt{|V|} \rfloor + 1 \ge \sqrt{|V|}$.
- ► Hence, there can be at most $|V|/(\sqrt{|V|} + 1) \le \sqrt{|V|}$ additional augmentations.

Lemma 11

One phase of the Hopcroft-Karp algorithm can be implemented in time O(m).

construct a "level graph" G':

- construct Level 0 that includes all free vertices on left side L
- construct Level 1 containing all neighbors of Level 0
- construct Level 2 containing matching neighbors of Level 1
- construct Level 3 containing all neighbors of Level 2
- ▶ ...

stop when a level (apart from Level 0) contains a free vertex can be done in time $\mathcal{O}(m)$ by a modified BFS

- a shortest augmenting path must go from Level 0 to the last layer constructed
- it can only use edges between layers
- construct a maximal set of vertex disjoint augmenting path connecting the layers
- for this, go forward until you either reach a free vertex or you reach a "dead end" v
- if you reach a free vertex delete the augmenting path and all incident edges from the graph
- if you reach a dead end backtrack and delete v together with its incident edges

See lecture versions of the slides.

Analysis: Shortest Augmenting Path for Flows

cost for searches during a phase is $\mathcal{O}(mn)$

- a search (successful or unsuccessful) takes time O(n)
- a search deletes at least one edge from the level graph

there are at most *n* phases

Time: $\mathcal{O}(mn^2)$.

22 The Hopcroft-Karp Algorithm

Analysis for Unit-capacity Simple Networks

cost for searches during a phase is $\mathcal{O}(m)$

an edge/vertex is traversed at most twice

need at most $\mathcal{O}(\sqrt{n})$ phases

- after \sqrt{n} phases there is a cut of size at most \sqrt{n} in the residual graph
- hence at most \sqrt{n} additional augmentations required

Time: $\mathcal{O}(m\sqrt{n})$.

