
Part V

Matchings

Ernst Mayr, Harald Räcke 540

Matching
ñ Input: undirected graph G = (V , E).
ñ M ⊆ E is a matching if each node appears in at most one

edge in M.

ñ Maximum Matching: find a matching of maximum

cardinality

18 Bipartite Matching via Flows

Which flow algorithm to use?

ñ Generic augmenting path: O(m val(f∗)) = O(mn).
ñ Capacity scaling: O(m2 logC) = O(m2).
ñ Shortest augmenting path: O(mn2).

For unit capacity simple graphs shortest augmenting path can be

implemented in time O(m√n).

18 Bipartite Matching via Flows

Ernst Mayr, Harald Räcke 542

19 Augmenting Paths for Matchings

Definitions.

ñ Given a matching M in a graph G, a vertex that is not

incident to any edge of M is called a free vertex w. r. .t. M.

ñ For a matching M a path P in G is called an alternating path

if edges in M alternate with edges not in M.

ñ An alternating path is called an augmenting path for

matching M if it ends at distinct free vertices.

Theorem 1

A matching M is a maximum matching if and only if there is no

augmenting path w. r. t. M.

19 Augmenting Paths for Matchings

Ernst Mayr, Harald Räcke 543

Augmenting Paths in Action

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14

19 Augmenting Paths for Matchings

Ernst Mayr, Harald Räcke 544

Augmenting Paths in Action

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14

19 Augmenting Paths for Matchings

Ernst Mayr, Harald Räcke 544

19 Augmenting Paths for Matchings

Proof.

⇒ If M is maximum there is no augmenting path P , because

we could switch matching and non-matching edges along P .

This gives matching M′ = M ⊕ P with larger cardinality.

⇐ Suppose there is a matching M′ with larger cardinality.

Consider the graph H with edge-set M′ ⊕M (i.e., only edges

that are in either M or M′ but not in both).

Each vertex can be incident to at most two edges (one from

M and one from M′). Hence, the connected components are

alternating cycles or alternating path.

As |M′| > |M| there is one connected component that is a

path P for which both endpoints are incident to edges from

M′. P is an alternating path.

19 Augmenting Paths for Matchings

Ernst Mayr, Harald Räcke 545

19 Augmenting Paths for Matchings

Algorithmic idea:

As long as you find an augmenting path augment your matching

using this path. When you arrive at a matching for which no

augmenting path exists you have a maximum matching.

Theorem 2

Let G be a graph, M a matching in G, and let u be a free vertex

w.r.t. M. Further let P denote an augmenting path w.r.t. M and

let M′ = M ⊕ P denote the matching resulting from augmenting

M with P . If there was no augmenting path starting at u in M
then there is no augmenting path starting at u in M′.

The above theorem allows for an easier implementation of an augment-
ing path algorithm. Once we checked for augmenting paths starting
from u we don’t have to check for such paths in future rounds.

19 Augmenting Paths for Matchings

Ernst Mayr, Harald Räcke 546

19 Augmenting Paths for Matchings

Proof

ñ Assume there is an augmenting
path P ′ w.r.t. M′ starting at u.

ñ If P ′ and P are node-disjoint, P ′ is
also augmenting path w.r.t. M (E).

ñ Let u′ be the first node on P ′ that
is in P , and let e be the matching
edge from M′ incident to u′.

ñ u′ splits P into two parts one of
which does not contain e. Call this
part P1. Denote the sub-path of P ′

from u to u′ with P ′1.

ñ P1 ◦ P ′1 is augmenting path in M (E).

u

u′

e

P′

P

P1

P′1

19 Augmenting Paths for Matchings

Ernst Mayr, Harald Räcke 547

How to find an augmenting path?

Construct an alternating tree.

u

y

x

even nodes

odd nodes

Case 1:
y is free vertex not
contained in T

you found
alternating path

19 Augmenting Paths for Matchings

Ernst Mayr, Harald Räcke 548

How to find an augmenting path?

Construct an alternating tree.

u

x

y

even nodes

odd nodes

Case 2:
y is matched vertex
not in T ; then
mate[y] ∉ T

grow the tree

19 Augmenting Paths for Matchings

Ernst Mayr, Harald Räcke 549

How to find an augmenting path?

Construct an alternating tree.

u

x

y

even nodes

odd nodes

Case 3:
y is already contained
in T as an odd vertex

ignore successor y

19 Augmenting Paths for Matchings

Ernst Mayr, Harald Räcke 550

How to find an augmenting path?

Construct an alternating tree.

u

x

y

even nodes

odd nodes

Case 4:
y is already contained
in T as an even vertex

can’t ignore y

does not happen in
bipartite graphs

19 Augmenting Paths for Matchings

Ernst Mayr, Harald Räcke 551

Algorithm 25 BiMatch(G,match)
1: for x ∈ V do mate[x]← 0;
2: r ← 0; free← n;
3: while free ≥ 1 and r < n do
4: r ← r + 1
5: if mate[r] = 0 then
6: for i = 1 to n do parent[i′]← 0
7: Q ← �; Q. append(r); aug ← false;
8: while aug = false and Q ≠ � do
9: x ← Q.dequeue();

10: for y ∈ Ax do
11: if mate[y] = 0 then
12: augm(mate,parent, y);
13: aug ← true;
14: free← free− 1;
15: else
16: if parent[y] = 0 then
17: parent[y]← x;
18: Q. enqueue(mate[y]); The lecture version of the slides

contains a step-by-step explana-
tion of the algorithm.

graph G = (S ∪ S′, E)
S = {1, . . . , n}
S′ = {1′, . . . , n′}

20 Weighted Bipartite Matching

Weighted Bipartite Matching/Assignment

ñ Input: undirected, bipartite graph G = L∪ R,E.

ñ an edge e = (`, r) has weight we ≥ 0

ñ find a matching of maximum weight, where the weight of a

matching is the sum of the weights of its edges

Simplifying Assumptions (wlog [why?]):

ñ assume that |L| = |R| = n
ñ assume that there is an edge between every pair of nodes

(`, r) ∈ V × V
ñ can assume goal is to construct maximum weight perfect

matching

20 Weighted Bipartite Matching

Ernst Mayr, Harald Räcke 553

Weighted Bipartite Matching

Theorem 3 (Halls Theorem)

A bipartite graph G = (L∪ R,E) has a perfect matching if and

only if for all sets S ⊆ L, |Γ(S)| ≥ |S|, where Γ(S) denotes the set

of nodes in R that have a neighbour in S.

20 Weighted Bipartite Matching

Ernst Mayr, Harald Räcke 554

20 Weighted Bipartite Matching

s t

1

2

3

4

5
L R

1̃

2̃

3̃

4̃

5̃

S

Halls Theorem

Proof:

⇐ Of course, the condition is necessary as otherwise not all

nodes in S could be matched to different neigbhours.

⇒ For the other direction we need to argue that the minimum
cut in the graph G′ is at least |L|.

ñ Let S denote a minimum cut and let LS Ö L∩ S and
RS Ö R ∩ S denote the portion of S inside L and R,
respectively.

ñ Clearly, all neighbours of nodes in LS have to be in S, as
otherwise we would cut an edge of infinite capacity.

ñ This gives RS ≥ |Γ(LS)|.
ñ The size of the cut is |L| − |LS| + |RS|.
ñ Using the fact that |Γ(LS)| ≥ LS gives that this is at least |L|.

20 Weighted Bipartite Matching

Ernst Mayr, Harald Räcke 556

Algorithm Outline

Idea:

We introduce a node weighting ~x. Let for a node v ∈ V , xv ∈ R
denote the weight of node v.

ñ Suppose that the node weights dominate the edge-weights

in the following sense:

xu + xv ≥ we for every edge e = (u,v).

ñ Let H(~x) denote the subgraph of G that only contains

edges that are tight w.r.t. the node weighting ~x, i.e. edges

e = (u,v) for which we = xu + xv .

ñ Try to compute a perfect matching in the subgraph H(~x). If

you are successful you found an optimal matching.

20 Weighted Bipartite Matching

Ernst Mayr, Harald Räcke 557

Algorithm Outline

Reason:

ñ The weight of your matching M∗ is∑
(u,v)∈M∗

w(u,v) =
∑

(u,v)∈M∗
(xu + xv) =

∑
v
xv .

ñ Any other perfect matching M (in G, not necessarily in

H(~x)) has ∑
(u,v)∈M

w(u,v) ≤
∑

(u,v)∈M
(xu + xv) =

∑
v
xv .

20 Weighted Bipartite Matching

Ernst Mayr, Harald Räcke 558

Algorithm Outline

What if you don’t find a perfect matching?

Then, Halls theorem guarantees you that there is a set S ⊆ L,

with |Γ(S)| < |S|, where Γ denotes the neighbourhood w.r.t. the

subgraph H(~x).

Idea: reweight such that:

ñ the total weight assigned to nodes decreases

ñ the weight function still dominates the edge-weights

If we can do this we have an algorithm that terminates with an

optimal solution (we analyze the running time later).

20 Weighted Bipartite Matching

Ernst Mayr, Harald Räcke 559

Changing Node Weights

Increase node-weights in Γ(S) by +δ, and decrease the

node-weights in S by −δ.

ñ Total node-weight decreases.

ñ Only edges from S to R − Γ(S)
decrease in their weight.

ñ Since, none of these edges is

tight (otw. the edge would be

contained in H(~x), and hence

would go between S and Γ(S))
we can do this decrement for

small enough δ > 0 until a new

edge gets tight.
L R

S

Γ(S)

−δ

+δ

20 Weighted Bipartite Matching

Ernst Mayr, Harald Räcke 560

Weighted Bipartite Matching

Edges not drawn have weight 0.

δ = 1 δ = 1

5

2

6

4

2

4

1

6

3

1

3

0

6

2

0

0

0

0

0

0

0

1

0

0

0

0

2

0

0

1

2

2

4

6

4

1
2

5

3

3

20 Weighted Bipartite Matching

Ernst Mayr, Harald Räcke 561

Analysis

How many iterations do we need?

ñ One reweighting step increases the number of edges out of

S by at least one.

ñ Assume that we have a maximum matching that saturates

the set Γ(S), in the sense that every node in Γ(S) is matched

to a node in S (we will show that we can always find S and a

matching such that this holds).

ñ This matching is still contained in the new graph, because

all its edges either go between Γ(S) and S or between L− S
and R − Γ(S).

ñ Hence, reweighting does not decrease the size of a

maximum matching in the tight sub-graph.

20 Weighted Bipartite Matching

Ernst Mayr, Harald Räcke 562

Analysis

ñ We will show that after at most n reweighting steps the size

of the maximum matching can be increased by finding an

augmenting path.

ñ This gives a polynomial running time.

20 Weighted Bipartite Matching

Ernst Mayr, Harald Räcke 563

How to find an augmenting path?

Construct an alternating tree.

u

y

20 Weighted Bipartite Matching

Ernst Mayr, Harald Räcke 564

Analysis

How do we find S?

ñ Start on the left and compute an alternating tree, starting at

any free node u.

ñ If this construction stops, there is no perfect matching in

the tight subgraph (because for a perfect matching we need

to find an augmenting path starting at u).

ñ The set of even vertices is on the left and the set of odd

vertices is on the right and contains all neighbours of even

nodes.

ñ All odd vertices are matched to even vertices. Furthermore,

the even vertices additionally contain the free vertex u.

Hence, |Vodd| = |Γ(Veven)| < |Veven|, and all odd vertices are

saturated in the current matching.

20 Weighted Bipartite Matching

Ernst Mayr, Harald Räcke 565

Analysis

ñ The current matching does not have any edges from Vodd to

L \ Veven (edges that may possibly be deleted by changing

weights).

ñ After changing weights, there is at least one more edge

connecting Veven to a node outside of Vodd. After at most n
reweights we can do an augmentation.

ñ A reweighting can be trivially performed in time O(n2)
(keeping track of the tight edges).

ñ An augmentation takes at most O(n) time.

ñ In total we obtain a running time of O(n4).
ñ A more careful implementation of the algorithm obtains a

running time of O(n3).

20 Weighted Bipartite Matching

Ernst Mayr, Harald Räcke 566

How to find an augmenting path?

Construct an alternating tree.

u

x

y

w

even nodes

odd nodes

Case 4:
y is already contained
in T as an even vertex

can’t ignore y

The cycle w ↔ y − x ↔ w
is called a blossom.
w is called the base of the
blossom (even node!!!).
The path u-w is called the
stem of the blossom.

21 Maximum Matching in General Graphs

Ernst Mayr, Harald Räcke 567

Flowers and Blossoms

Definition 4

A flower in a graph G = (V , E) w.r.t. a matching M and a (free)

root node r , is a subgraph with two components:

ñ A stem is an even length alternating path that starts at the

root node r and terminates at some node w. We permit the

possibility that r = w (empty stem).

ñ A blossom is an odd length alternating cycle that starts and

terminates at the terminal node w of a stem and has no

other node in common with the stem. w is called the base

of the blossom.

21 Maximum Matching in General Graphs

Ernst Mayr, Harald Räcke 568

Flowers and Blossoms

1

2

3

4

5

6

7

8

9

1 2 3 4 5

6

7

8

9

10

11

21 Maximum Matching in General Graphs

Ernst Mayr, Harald Räcke 569

Flowers and Blossoms

Properties:

1. A stem spans 2` + 1 nodes and contains ` matched edges

for some integer ` ≥ 0.

2. A blossom spans 2k+ 1 nodes and contains k matched

edges for some integer k ≥ 1. The matched edges match all

nodes of the blossom except the base.

3. The base of a blossom is an even node (if the stem is part of

an alternating tree starting at r).

21 Maximum Matching in General Graphs

Ernst Mayr, Harald Räcke 570

Flowers and Blossoms

Properties:

4. Every node x in the blossom (except its base) is reachable

from the root (or from the base of the blossom) through two

distinct alternating paths; one with even and one with odd

length.

5. The even alternating path to x terminates with a matched

edge and the odd path with an unmatched edge.

21 Maximum Matching in General Graphs

Ernst Mayr, Harald Räcke 571

Flowers and Blossoms

1 2 3 4 5

6

7

8

9

10

11

21 Maximum Matching in General Graphs

Ernst Mayr, Harald Räcke 572

Shrinking Blossoms

When during the alternating tree construction we discover a

blossom B we replace the graph G by G′ = G/B, which is

obtained from G by contracting the blossom B.

ñ Delete all vertices in B (and its incident edges) from G.

ñ Add a new (pseudo-)vertex b. The new vertex b is

connected to all vertices in V \ B that had at least one edge

to a vertex from B.

21 Maximum Matching in General Graphs

Ernst Mayr, Harald Räcke 573

Shrinking Blossoms

ñ Edges of T that connect a node u
not in B to a node in B become

tree edges in T ′ connecting u to

b.

ñ Matching edges (there is at most

one) that connect a node u not in

B to a node in B become

matching edges in M′.
ñ Nodes that are connected in G to

at least one node in B become

connected to b in G′.

w

x y

21 Maximum Matching in General Graphs

Ernst Mayr, Harald Räcke 574

Shrinking Blossoms

ñ Edges of T that connect a node u
not in B to a node in B become

tree edges in T ′ connecting u to

b.

ñ Matching edges (there is at most

one) that connect a node u not in

B to a node in B become

matching edges in M′.
ñ Nodes that are connected in G to

at least one node in B become

connected to b in G′.

21 Maximum Matching in General Graphs

Ernst Mayr, Harald Räcke 574

Example: Blossom Algorithm

Animation of Blossom Shrinking

algorithm is only available in the

lecture version of the slides.

21 Maximum Matching in General Graphs

Ernst Mayr, Harald Räcke 575

Correctness

Assume that in G we have a flower w.r.t. matching M. Let r be

the root, B the blossom, and w the base. Let graph G′ = G/B
with pseudonode b. Let M′ be the matching in the contracted

graph.

Lemma 5

If G′ contains an augmenting path P ′ starting at r (or the

pseudo-node containing r) w.r.t. the matching M′ then G
contains an augmenting path starting at r w.r.t. matching M.

21 Maximum Matching in General Graphs

Ernst Mayr, Harald Räcke 576

Correctness

Proof.

If P ′ does not contain b it is also an augmenting path in G.

Case 1: non-empty stem

ñ Next suppose that the stem is non-empty.

P1 P3
r i b ` q

P1

P3

r i w

k ` q

21 Maximum Matching in General Graphs

Ernst Mayr, Harald Räcke 577

Correctness

ñ After the expansion ` must be incident to some node in the

blossom. Let this node be k.

ñ If k ≠ w there is an alternating path P2 from w to k that

ends in a matching edge.

ñ P1 ◦ (i,w) ◦ P2 ◦ (k, `) ◦ P3 is an alternating path.

ñ If k = w then P1 ◦ (i,w) ◦ (w, `) ◦ P3 is an alternating path.

21 Maximum Matching in General Graphs

Ernst Mayr, Harald Räcke 578

Correctness

Proof.

Case 2: empty stem

ñ If the stem is empty then after expanding the blossom,

w = r .
P3

b ` q

P3

w

k ` q

ñ The path r ◦ P2 ◦ (k, `) ◦ P3 is an alternating path.

21 Maximum Matching in General Graphs

Ernst Mayr, Harald Räcke 579

Correctness

Lemma 6

If G contains an augmenting path P from r to q w.r.t. matching

M then G′ contains an augmenting path from r (or the

pseudo-node containing r) to q w.r.t. M′.

21 Maximum Matching in General Graphs

Ernst Mayr, Harald Räcke 580

Correctness

Proof.

ñ If P does not contain a node from B there is nothing to

prove.

ñ We can assume that r and q are the only free nodes in G.

Case 1: empty stem

Let i be the last node on the path P that is part of the blossom.

P is of the form P1 ◦ (i, j) ◦ P2, for some node j and (i, j) is

unmatched.

(b, j) ◦ P2 is an augmenting path in the contracted network.

21 Maximum Matching in General Graphs

Ernst Mayr, Harald Räcke 581

Correctness

Illustration for Case 1:

r

i

j q

b j q

21 Maximum Matching in General Graphs

Ernst Mayr, Harald Räcke 582

Correctness

Case 2: non-empty stem

Let P3 be alternating path from r to w; this exists because r and

w are root and base of a blossom. Define M+ = M ⊕ P3.

In M+, r is matched and w is unmatched.

G must contain an augmenting path w.r.t. matching M+, since M
and M+ have same cardinality.

This path must go between w and q as these are the only

unmatched vertices w.r.t. M+.

For M′+ the blossom has an empty stem. Case 1 applies.

G′ has an augmenting path w.r.t. M′+. It must also have an

augmenting path w.r.t. M′, as both matchings have the same

cardinality.

This path must go between r and q.

21 Maximum Matching in General Graphs

Ernst Mayr, Harald Räcke 583

Algorithm 26 search(r , found)
1: set Ā(i)← A(i) for all nodes i
2: found ← false

3: unlabel all nodes;

4: give an even label to r and initialize list ← {r}
5: while list ≠ � do

6: delete a node i from list

7: examine(i, found)
8: if found = true then return

The lecture version
of the slides has a
step by step expla-
nation.

Search for an augmenting path
starting at r .

Algorithm 27 examine(i, found)
1: for all j ∈ Ā(i) do

2: if j is even then contract(i, j) and return

3: if j is unmatched then

4: q ← j;
5: pred(q)← i;
6: found ← true;

7: return

8: if j is matched and unlabeled then

9: pred(j)← i;
10: pred(mate(j))← j;
11: add mate(j) to list

The lecture version
of the slides has a
step by step expla-
nation.

Examine the neighbours of a node i

Algorithm 28 contract(i, j)
1: trace pred-indices of i and j to identify a blossom B
2: create new node b and set Ā(b)← ∪x∈BĀ(x)
3: label b even and add to list

4: update Ā(j)← Ā(j)∪ {b} for each j ∈ Ā(b)
5: form a circular double linked list of nodes in B
6: delete nodes in B from the graph

21 Maximum Matching in General Graphs

Ernst Mayr, Harald Räcke 586

Contract blossom identified by
nodes i and j

Algorithm 28 contract(i, j)
1: trace pred-indices of i and j to identify a blossom B
2: create new node b and set Ā(b)← ∪x∈BĀ(x)
3: label b even and add to list

4: update Ā(j)← Ā(j)∪ {b} for each j ∈ Ā(b)
5: form a circular double linked list of nodes in B
6: delete nodes in B from the graph

21 Maximum Matching in General Graphs

Ernst Mayr, Harald Räcke 586

Get all nodes of the blossom.

Time: O(m)

Algorithm 28 contract(i, j)
1: trace pred-indices of i and j to identify a blossom B
2: create new node b and set Ā(b)← ∪x∈BĀ(x)
3: label b even and add to list

4: update Ā(j)← Ā(j)∪ {b} for each j ∈ Ā(b)
5: form a circular double linked list of nodes in B
6: delete nodes in B from the graph

21 Maximum Matching in General Graphs

Ernst Mayr, Harald Räcke 586

Identify all neighbours of b.

Time: O(m) (how?)

Algorithm 28 contract(i, j)
1: trace pred-indices of i and j to identify a blossom B
2: create new node b and set Ā(b)← ∪x∈BĀ(x)
3: label b even and add to list

4: update Ā(j)← Ā(j)∪ {b} for each j ∈ Ā(b)
5: form a circular double linked list of nodes in B
6: delete nodes in B from the graph

21 Maximum Matching in General Graphs

Ernst Mayr, Harald Räcke 586

b will be an even node, and it has
unexamined neighbours.

Algorithm 28 contract(i, j)
1: trace pred-indices of i and j to identify a blossom B
2: create new node b and set Ā(b)← ∪x∈BĀ(x)
3: label b even and add to list

4: update Ā(j)← Ā(j)∪ {b} for each j ∈ Ā(b)
5: form a circular double linked list of nodes in B
6: delete nodes in B from the graph

21 Maximum Matching in General Graphs

Ernst Mayr, Harald Räcke 586

Every node that was adjacent to a node
in B is now adjacent to b

Algorithm 28 contract(i, j)
1: trace pred-indices of i and j to identify a blossom B
2: create new node b and set Ā(b)← ∪x∈BĀ(x)
3: label b even and add to list

4: update Ā(j)← Ā(j)∪ {b} for each j ∈ Ā(b)
5: form a circular double linked list of nodes in B
6: delete nodes in B from the graph

21 Maximum Matching in General Graphs

Ernst Mayr, Harald Räcke 586

Only for making a blossom
expansion easier.

Algorithm 28 contract(i, j)
1: trace pred-indices of i and j to identify a blossom B
2: create new node b and set Ā(b)← ∪x∈BĀ(x)
3: label b even and add to list

4: update Ā(j)← Ā(j)∪ {b} for each j ∈ Ā(b)
5: form a circular double linked list of nodes in B
6: delete nodes in B from the graph

21 Maximum Matching in General Graphs

Ernst Mayr, Harald Räcke 586

Only delete links from nodes not in B to B.

When expanding the blossom again we can
recreate these links in time O(m).

Analysis

ñ A contraction operation can be performed in time O(m).
Note, that any graph created will have at most m edges.

ñ The time between two contraction-operation is basically a

BFS/DFS on a graph. Hence takes time O(m).
ñ There are at most n contractions as each contraction

reduces the number of vertices.

ñ The expansion can trivially be done in the same time as

needed for all contractions.

ñ An augmentation requires time O(n). There are at most n
of them.

ñ In total the running time is at most

n · (O(mn)+O(n)) = O(mn2) .

21 Maximum Matching in General Graphs

Ernst Mayr, Harald Räcke 587

Example: Blossom Algorithm

Animation of Blossom Shrinking

algorithm is only available in the

lecture version of the slides.

21 Maximum Matching in General Graphs

Ernst Mayr, Harald Räcke 588

A Fast Matching Algorithm

Algorithm 29 Bimatch-Hopcroft-Karp(G)
1: M ← �
2: repeat

3: let P = {P1, . . . , Pk} be maximal set of

4: vertex-disjoint, shortest augmenting path w.r.t. M.

5: M ← M ⊕ (P1 ∪ · · · ∪ Pk)
6: until P = �
7: return M

We call one iteration of the repeat-loop a phase of the algorithm.

22 The Hopcroft-Karp Algorithm

Ernst Mayr, Harald Räcke 589

Analysis Hopcroft-Karp

Lemma 7

Given a matching M and a maximal matching M∗ there exist

|M∗| − |M| vertex-disjoint augmenting path w.r.t. M.

Proof:

ñ Similar to the proof that a matching is optimal iff it does not

contain an augmenting path.
ñ Consider the graph G = (V ,M ⊕M∗), and mark edges in

this graph blue if they are in M and red if they are in M∗.
ñ The connected components of G are cycles and paths.
ñ The graph contains k Ö |M∗| − |M| more red edges than

blue edges.
ñ Hence, there are at least k components that form a path

starting and ending with a red edge. These are augmenting

paths w.r.t. M.

22 The Hopcroft-Karp Algorithm

Ernst Mayr, Harald Räcke 590

Analysis Hopcroft-Karp

ñ Let P1, . . . , Pk be a maximal collection of vertex-disjoint,

shortest augmenting paths w.r.t. M (let ` = |Pi|).
ñ M′ Ö M ⊕ (P1 ∪ · · · ∪ Pk) = M ⊕ P1 ⊕ · · · ⊕ Pk.
ñ Let P be an augmenting path in M′.

Lemma 8

The set A Ö M ⊕ (M′ ⊕ P) = (P1 ∪ · · · ∪ Pk)⊕ P contains at least

(k+ 1)` edges.

22 The Hopcroft-Karp Algorithm

Ernst Mayr, Harald Räcke 591

Analysis Hopcroft-Karp

Proof.

ñ The set describes exactly the symmetric difference between

matchings M and M′ ⊕ P .

ñ Hence, the set contains at least k+ 1 vertex-disjoint

augmenting paths w.r.t. M as |M′| = |M| + k+ 1.

ñ Each of these paths is of length at least `.

22 The Hopcroft-Karp Algorithm

Ernst Mayr, Harald Räcke 592

Analysis Hopcroft-Karp

Lemma 9

P is of length at least ` + 1. This shows that the length of a

shortest augmenting path increases between two phases of the

Hopcroft-Karp algorithm.

Proof.

ñ If P does not intersect any of the P1, . . . , Pk, this follows

from the maximality of the set {P1, . . . , Pk}.
ñ Otherwise, at least one edge from P coincides with an edge

from paths {P1, . . . , Pk}.
ñ This edge is not contained in A.

ñ Hence, |A| ≤ k` + |P | − 1.

ñ The lower bound on |A| gives (k+ 1)` ≤ |A| ≤ k` + |P | − 1,

and hence |P | ≥ ` + 1.

22 The Hopcroft-Karp Algorithm

Ernst Mayr, Harald Räcke 593

Analysis Hopcroft-Karp

If the shortest augmenting path w.r.t. a matching M has ` edges

then the cardinality of the maximum matching is of size at most

|M| + |V |
`+1 .

Proof.

The symmetric difference between M and M∗ contains

|M∗| − |M| vertex-disjoint augmenting paths. Each of these

paths contains at least ` + 1 vertices. Hence, there can be at

most |V |
`+1 of them.

22 The Hopcroft-Karp Algorithm

Ernst Mayr, Harald Räcke 594

Analysis Hopcroft-Karp

Lemma 10

The Hopcroft-Karp algorithm requires at most 2
√|V | phases.

Proof.

ñ After iteration b√|V |c the length of a shortest augmenting

path must be at least b√|V |c + 1 ≥ √|V |.
ñ Hence, there can be at most |V |/(√|V | + 1) ≤ √|V |

additional augmentations.

22 The Hopcroft-Karp Algorithm

Ernst Mayr, Harald Räcke 595

Analysis Hopcroft-Karp

Lemma 11

One phase of the Hopcroft-Karp algorithm can be implemented

in time O(m).
construct a “level graph” G′:
ñ construct Level 0 that includes all free vertices on left side L
ñ construct Level 1 containing all neighbors of Level 0

ñ construct Level 2 containing matching neighbors of Level 1

ñ construct Level 3 containing all neighbors of Level 2

ñ . . .

ñ stop when a level (apart from Level 0) contains a free vertex

can be done in time O(m) by a modified BFS

22 The Hopcroft-Karp Algorithm

Ernst Mayr, Harald Räcke 596

Analysis Hopcroft-Karp

ñ a shortest augmenting path must go from Level 0 to the last

layer constructed

ñ it can only use edges between layers

ñ construct a maximal set of vertex disjoint augmenting path

connecting the layers

ñ for this, go forward until you either reach a free vertex or

you reach a “dead end” v
ñ if you reach a free vertex delete the augmenting path and

all incident edges from the graph

ñ if you reach a dead end backtrack and delete v together

with its incident edges

22 The Hopcroft-Karp Algorithm

Ernst Mayr, Harald Räcke 597

Analysis Hopcroft-Karp

See lecture versions of the slides.

Analysis: Shortest Augmenting Path for Flows

cost for searches during a phase is O(mn)
ñ a search (successful or unsuccessful) takes time O(n)
ñ a search deletes at least one edge from the level graph

there are at most n phases

Time: O(mn2).

22 The Hopcroft-Karp Algorithm

Ernst Mayr, Harald Räcke 599

Analysis for Unit-capacity Simple Networks

cost for searches during a phase is O(m)
ñ an edge/vertex is traversed at most twice

need at most O(√n) phases

ñ after
√
n phases there is a cut of size at most

√
n in the

residual graph

ñ hence at most
√
n additional augmentations required

Time: O(m√n).

22 The Hopcroft-Karp Algorithm

Ernst Mayr, Harald Räcke 600

	Matchings
	Definition
	Bipartite Matching via Flows
	Augmenting Paths for Matchings
	Weighted Bipartite Matching
	Maximum Matching in General Graphs
	The Hopcroft-Karp Algorithm

