

Augmenting Path Algorithm

Definition 1

An augmenting path with respect to flow f, is a path from s to t in the auxiliary graph G_f that contains only edges with non-zero capacity.

Algorithm 1 FordFulkerson(G = (V, E, c))

1: Initialize $f(e) \leftarrow 0$ for all edges.

2: while \exists augmenting path p in G_f do

3: augment as much flow along p as possible.

The Residual Graph

From the graph G = (V, E, c) and the current flow f we construct an auxiliary graph $G_f = (V, E_f, c_f)$ (the residual graph):

- Suppose the original graph has edges $e_1 = (u, v)$, and $e_2 = (v, u)$ between u and v.
- G_f has edge e'_1 with capacity $\max\{0, c(e_1) f(e_1) + f(e_2)\}$ and e'_2 with with capacity $\max\{0, c(e_2) - f(e_2) + f(e_1)\}$.

Augmenting Path Algorithm

Theorem 2

A flow f is a maximum flow **iff** there are no augmenting paths.

Theorem 3

The value of a maximum flow is equal to the value of a minimum *cut*.

Proof.

Let f be a flow. The following are equivalent:

- **1.** There exists a cut A, B such that val(f) = cap(A, B).
- **2.** Flow f is a maximum flow.

3. There is no augmenting path w.r.t. f.

407

Ernst Mayr, Harald Räcke

11.1 The Generic Augmenting Path Algorithm

Augmenting Path Algorithm $val(f) = \sum_{e \in out(A)} f(e) - \sum_{e \in into(A)} f(e)$ $= \sum_{e \in out(A)} c(e)$ $= cap(A, V \setminus A)$

This finishes the proof.

Here the first equality uses the flow value lemma, and the second exploits the fact that the flow along incoming edges must be 0 as the residual graph does not have edges leaving A.

	11.1 The Generi
Ernst Mayr, Harald Räcke	

חחחו

Augmenting Path Algorithm

 $1. \Rightarrow 2.$ This we already showed.

$2. \Rightarrow 3.$

If there were an augmenting path, we could improve the flow. Contradiction.

 $3. \Rightarrow 1.$

Ernst Mayr, Harald Räcke

- Let *f* be a flow with no augmenting paths.
- Let *A* be the set of vertices reachable from *s* in the residual graph along non-zero capacity edges.
- Since there is no augmenting path we have $s \in A$ and $t \notin A$.

11.1 The Generic Augmenting Path Algorithm Ernst Mayr, Harald Räcke

408

Analysis Assumption: All capacities are integers between 1 and C. Invariant: Every flow value f(e) and every residual capacity $c_f(e)$ remains integral troughout the algorithm.

11.1 The Generic Augmenting Path Algorithm

Lemma 4

The algorithm terminates in at most $val(f^*) \le nC$ iterations, where f^* denotes the maximum flow. Each iteration can be implemented in time O(m). This gives a total running time of O(nmC).

Theorem 5

If all capacities are integers, then there exists a maximum flow for which every flow value f(e) is integral.

Ernst	Mayr,	Harald	Räcke

11.1 The Generic Augmenting Path Algorithm

411

A Bad Input

Problem: The running time may not be polynomial.

How to choose augmenting paths?

- We need to find paths efficiently.
- We want to guarantee a small number of iterations.

Several possibilities:

- Choose path with maximum bottleneck capacity.
- Choose path with sufficiently large bottleneck capacity.
- Choose the shortest augmenting path.

Ernst Mayr, Harald Räcke	11.1 The Generic Augmenting Path Algorithm

Overview: Shortest Augmenting Paths

These two lemmas give the following theorem:

Theorem 8

The shortest augmenting path algorithm performs at most O(mn) augmentations. This gives a running time of $O(m^2n)$.

Proof.

- We can find the shortest augmenting paths in time $\mathcal{O}(m)$ via BFS.
- O(m) augmentations for paths of exactly k < n edges.

Overview: Shortest Augmenting Paths

Lemma 6

The length of the shortest augmenting path never decreases.

Lemma 7

After at most O(m) augmentations, the length of the shortest augmenting path strictly increases.

Ernst Mayr, Harald Räcke

11.2 Shortest Augmenting Paths

416

Shortest Augmenting Paths

Define the level $\ell(v)$ of a node as the length of the shortest *s*-*v* path in G_f .

Let L_G denote the subgraph of the residual graph G_f that contains only those edges (u, v) with $\ell(v) = \ell(u) + 1$.

A path *P* is a shortest *s*-*u* path in G_f if it is a an *s*-*u* path in L_G .

Ernst Mayr, Harald Räcke

Shortest Augmenting Path

Second Lemma: After at most m augmentations the length of the shortest augmenting path strictly increases.

Let E_L denote the set of edges in graph L_G at the beginning of a round when the distance between s and t is k.

An *s*-*t* path in G_f that uses edges not in E_L has length larger than k, even when considering edges added to G_f during the round.

In each augmentation one edge is deleted from E_L .

Shortest Augmenting Path

First Lemma:

The length of the shortest augmenting path never decreases.

After an augmentation G_f changes as follows:

- Bottleneck edges on the chosen path are deleted.
- Back edges are added to all edges that don't have back edges so far.

These changes cannot decrease the distance between s and t.

Shortest Augmenting Paths

Theorem 9

The shortest augmenting path algorithm performs at most $\mathcal{O}(mn)$ augmentations. Each augmentation can be performed in time $\mathcal{O}(m)$.

Theorem 10 (without proof)

There exist networks with $m = \Theta(n^2)$ that require $\mathcal{O}(mn)$ augmentations, when we restrict ourselves to only augment along shortest augmenting paths.

Note:

There always exists a set of m augmentations that gives a maximum flow (why?).

Shortest Augmenting Paths

When sticking to shortest augmenting paths we cannot improve (asymptotically) on the number of augmentations.

However, we can improve the running time to $\mathcal{O}(mn^2)$ by improving the running time for finding an augmenting path (currently we assume $\mathcal{O}(m)$ per augmentation for this).

Ernst Mayr, Harald Räcke

11.2 Shortest Augmenting Paths

423

Suppose that the initial distance between s and t in G_f is k.

 E_L is initialized as the level graph L_G .

Perform a DFS search to find a path from s to t using edges from E_L .

Either you find t after at most n steps, or you end at a node v that does not have any outgoing edges.

You can delete incoming edges of v from E_L .

Shortest Augmenting Paths

We maintain a subset E_L of the edges of G_f with the guarantee that a shortest *s*-*t* path using only edges from E_L is a shortest augmenting path.

With each augmentation some edges are deleted from E_L .

When E_L does not contain an *s*-*t* path anymore the distance between *s* and *t* strictly increases.

Note that E_L is not the set of edges of the level graph but a subset of level-graph edges.

Ernst Mayr, Harald Räcke

Ernst Mayr, Harald Räcke

11.2 Shortest Augmenting Paths

Let a phase of the algorithm be defined by the time between two augmentations during which the distance between s and t strictly increases.

Initializing E_L for the phase takes time $\mathcal{O}(m)$.

The total cost for searching for augmenting paths during a phase is at most O(mn), since every search (successful (i.e., reaching *t*) or unsuccessful) decreases the number of edges in E_L and takes time O(n).

The total cost for performing an augmentation during a phase is only $\mathcal{O}(n)$. For every edge in the augmenting path one has to update the residual graph G_f and has to check whether the edge is still in E_L for the next search.

There are at most n phases. Hence, total cost is $\mathcal{O}(mn^2)$.

11.2 Shortest Augmenting Paths Ernst Mayr, Harald Räcke

425

How to choose augmenting paths?

- We need to find paths efficiently.
- We want to guarantee a small number of iterations.

Several possibilities:

- Choose path with maximum bottleneck capacity.
- Choose path with sufficiently large bottleneck capacity.
- Choose the shortest augmenting path.

Ernst Mayr, Harald Räcke	11.3 Capacity Scaling	

Capacity	Scaling
A	Igorithm 2 maxflow(G, s, t, c)
	: foreach $e \in E$ do $f_e \leftarrow 0$;
2	$: \Delta \leftarrow 2^{\lceil \log_2 C \rceil}$
3	: while $\Delta \ge 1$ do
4	: $G_f(\Delta) \leftarrow \Delta$ -residual graph
5	: while there is augmenting path P in $G_f(\Delta)$ do
6	$f \leftarrow \text{augment}(f, c, P)$
7	: update($G_f(\Delta)$)
8	$\Delta \leftarrow \Delta/2$
9	: return <i>f</i>

Capacity Scaling

Intuition:

- Choosing a path with the highest bottleneck increases the flow as much as possible in a single step.
- Don't worry about finding the exact bottleneck.
- Maintain scaling parameter Δ .
- $G_f(\Delta)$ is a sub-graph of the residual graph G_f that contains only edges with capacity at least Δ .

Capacity Scaling

Assumption:

All capacities are integers between 1 and C.

Invariant:

All flows and capacities are/remain integral throughout the algorithm.

Correctness:

Ernst Mayr, Harald Räcke

The algorithm computes a maxflow:

- because of integrality we have $G_f(1) = G_f$
- therefore after the last phase there are no augmenting paths anymore
- this means we have a maximum flow.

Capacity Scaling

Lemma 11 *There are* $\lceil \log C \rceil$ *iterations over* \triangle *.* **Proof:** obvious.

Lemma 12

Let f be the flow at the end of a Δ -phase. Then the maximum flow is smaller than $val(f) + m\Delta$.

Proof: less obvious, but simple:

- There must exist an *s*-*t* cut in $G_f(\Delta)$ of zero capacity.
- In G_f this cut can have capacity at most $m\Delta$.
- This gives me an upper bound on the flow that I can still add.

החוחר	11.3 Capacity Scaling	
∐└──│ U│ Ernst Mayr, Harald Räcke		431

Capacity Scaling

Lemma 13

There are at most 2m augmentations per scaling-phase.

Proof:

- Let *f* be the flow at the end of the previous phase.
- $\operatorname{val}(f^*) \leq \operatorname{val}(f) + 2m\Delta$
- Each augmentation increases flow by Δ .

Theorem 14

We need $O(m \log C)$ augmentations. The algorithm can be implemented in time $O(m^2 \log C)$.

11.3 Capacity Scaling